Search and Optimization Problems

These notes supplement the old CSC 364S course notes "**NP and NP-Completeness**" and "**Turing Machines and Reductions**" by presenting **NP** Search and Optimization problems.

Problems in **NP** are formally sets of strings, but we often define them as *decision problems*. For example **SAT** is defined as follows:

\mathbf{SAT}

Instance: $\langle \varphi \rangle$, where φ is a formula of the propositional calculus.

 $\frac{\text{Question:}}{\text{Is } \varphi \text{ satisfiable?}}$

Thus **SAT** is the problem: given a propositional formula, decide whether or not it is satisfiable. But in practice we often want to know more: If φ is satisfiable, we would like to find a satisfying truth assignment. This problem can be stated as follows:

SAT-SEARCH

Instance: $\langle \varphi \rangle$, where φ is a formula of the propositional calculus.

Output: A satisfying assignment for φ , or 'NO' if none exists.

This idea can be generalized to apply to arbitrary sets $A \subseteq \Sigma^*$ in **NP**. By definition (see **Definition 1** in the notes **NP and NP-Complteness**) A is in **NP** iff there is a polynomial time computable relation R(x, y) and constants c, d such that for all $x \in \Sigma^*$

 $x \in A \Leftrightarrow$ there exists $y \in \Sigma^*$ so $|y| \leq c|x|^d$ and R(x,y)

Here we call any string y a *certificate* for x if it satisfies the conditions $|y| \le c|x|^d$ and R(x, y) in the definition.

The corresponding search problem for A is

A-SEARCH Instance: $x \in \Sigma^*$ <u>Output:</u> $y \in \Sigma^*$ such that $|y| \le c|x|^d$ and R(x, y), or 'NO' if no such y exists.

It turns out that if A is **NP**-complete, then the two problems A (the decision problem) and **A-SEARCH** are polynomial time reducible to each other.

For this kind of polynomial reducibility we refer the reader to Definition 6 in the Notes **Turing Machines and Reductions**. Repeating this definition we have

Definition 6. P_1 is polynomial-time reducible to P_2 (in symbols: $(P_1 \xrightarrow{p} P_2)$) if there is a polynomial-time algorithm for P_1 which is allowed to access a solver for P_2 , where the time taken by P_2 is not counted.

Theorem 1 (Self Reducibility). 1) If A is any problem in NP, then $A \xrightarrow{p} A$ -SEARCH.

2) If A is **NP-complete** then A-SEARCH \xrightarrow{p} A.

Proof. The proof of 1) is obvious: An input x is in A iff the answer to **A-SEARCH** is a certificate y for x.

For the proof of 2), we use the fact that if A is **NP-complete**, then *every* decision problem B in **NP** is polytime reducible to A. We leave it to the reader to think of a useful **NP** problem B such that the answers to polynomially many queries to B can be used to find a certificate y for x (assuming $x \in A$).

Although we know from part 2) of the above theorem that A-SEARCH $\xrightarrow{p} A$ when A is **NP**-complete, it is interesting to give explicit reductions from search to decision for specific **NP-complete** problems A.

Example 1: SAT-SEARCH \xrightarrow{p} SAT. (i.e. SAT is self-reducible.)

Proof. Assume that $Sat(\varphi)$ is a Boolean solver for **SAT**. Thus

 $Sat(\varphi)$ is true $\Leftrightarrow \varphi \in \mathbf{SAT}$

We assume that Boolean formulas can have constants 1 (for true) and 0 (for false). We use the notation $\psi[x_i \leftarrow 1]$ for the result of replacing every instance of the variable x_i in formula ψ by 1, and similarly for $\psi[x_i \leftarrow 0]$.

Below is the program: (We assume that the input formula φ has variables x_1, \ldots, x_n .)

Input φ if $\neg Sat(\varphi)$ then output 'NO' $\psi \leftarrow \varphi$ for $i = 1 \dots n$ (*) if $Sat(\psi[x_i \leftarrow 1])$ then $\psi \leftarrow \psi[x_i \leftarrow 1]; \tau(x_i) = 1$ else $\psi \leftarrow \psi[x_i \leftarrow 0]; \tau(x_i) = 0$ end if end for Output τ

(*) Loop Invariant: ψ is satisfiable and $\psi = \varphi[x_1 \leftarrow \tau(x_1), \dots, x_i \leftarrow \tau(x_i)].$

Example 2: Recall that if G = (V, E) is an undirected graph and $V' \subseteq V$, then V' is a *clique* in G iff $(u, v) \in E$ for every pair u, v of distinct nodes in V'. The associated decision problem is:

CLIQUE

<u>Instance:</u> $\langle G, k \rangle$ where G is an undirected graph an k is a positive integer.

Question: $\overline{\text{Does } G}$ have a clique of size k?

The associated search problem for the same input as above is to find a clique of size k, if one exists. But a more interesting associated search problem is the following **optimization** problem:

MAX CLIQUE-SEARCH

Instance: $\langle G \rangle$ where G = (V, E) is an undirected graph.

Output: A clique $V' \subseteq V$ in G such that $|V'| \ge |V''|$ for every clique V'' in G.

Theorem 2. MAX CLIQUE-SEARCH \xrightarrow{p} CLIQUE.

Proof. Assume that Clique(G, k) is a Boolean solver for **CLIQUE**. The program for **MAX CLIQUE-SEARCH** has two parts. On input G = (V, E), the first part finds the largest number k_G such that G has a clique of size k_G , and the second part finds a clique of size k_G .

Here is the program for MAX CLIQUE-SEARCH. We assume that the input graph is G = (V, E), where $V = \{v_1, \ldots, v_n\}$.

If H is a graph, then the notation $H - \{v_i\}$ stands for the graph obtained from H by removing the vertex v_i and all edges incident to v_i .

for
$$i = 1 \dots n$$

if $Clique(G, i)$ then $k \leftarrow i$
end for
 $k_G \leftarrow k$
 $H \leftarrow G$
for $i = 1 \dots, n$ (*)
if $Clique(H - \{v_i\}, k_G)$ then $H \leftarrow H - \{v_i\}$
end for
 $V' =$ the set of vertices in H .
Output V'

Correctness proof:

It is clear from the first part of the program that k_G is the size of the largest clique in G.

To see that the output V' of the second part is a clique of size k_G we use the following loop invariant (which is proved by induction on i):

(*) Loop invariant:

Let $H = (V_i, E_i)$. Then H has a clique V' of size k_G , where

$$V_i \cap \{v_1, \ldots, v_{i-1}\} \subseteq V' \subseteq V_i$$

Hence after the for loop is finished, in effect the next i = n + 1, so $V_{n+1} = V'$, where V_{n+1} is the set of vertices in the final graph H. Thus the set of vertices in the final H is a clique of size k_G .