TLS Handshake and Certificate

HTTP vs HTTPS

]

User Insecure Connection Normal HTTP

D e

SSL Certificate
User Encrypted Connection Secure HTTPS

ClientHello

ClientKeyExchange
ChangeCipherSpec
Finished

client 115 Handshake

Server

ServerHello
= Certificate
ServerHelloDone

ChangeCipherSpec
Finished

swosg
dol

swoLl
S1L

Establish a TLS Connection

Client Hello

Server Hello

Server Certificate

Server Key Exchange
Server Hello Done

Client Key Exchange

Client Change Cipher Spec
Client Handshake Finished
Server Change Cipher Spec

Server Handshake Finished

Establish a TLS Connection

Client Hello
e Client version
e Client random
e SessionID
e Compression methods

e Cipher suites

CVE-2011-3389: BEAST (Browser Exploit Against SSL/TLS)

e Popular configurations of TLS use cipher block chaining (CBC) mode

Plaintext Plaintext Plaintext
ITITTTTTTTT TITTTTTTTTT [NEENENNNEEEEE]
Initialization Vector (1V)
M — D 57
block cipher block cipher block cipher
key encryption Reye encryption Key encryption
TTITTTTTTTT [ENEEEEENENEEE] [NEEEEENNEEEEE]
Ciphertext Ciphertext Ciphertext
Cipher Block Chaining (CBC) mode encryption
Ciphertext Ciphertext Ciphertext
[EENNENENNEEEN ITTTTITTTTT] [EENNENENEEEEN
block cipher block cipher block cipher
= decryption = decryption = decryption
Initialization Vector (1V)
MMM ——g E—— —_— =
ITTTTITTTTT] ITTTTITTTTT] ITTTIITTTTT]
Plaintext Plaintext Plaintext

Cipher Block Chaining (CBC) mode decryption

CVE-2011-3389: BEAST (Browser Exploit Against SSL/TLS)

e Attack Scenario

(D Vieit

\/?ctEVVL

Bank

D inject code

2z *PfOFC?Z The victim

TO Qepdk rRguests
o Pank

@ cend cookio

/

Lyil

Q) otocker %m@ +ho
Victwn o cend € ==
Plodntext. @C%Mngeé 7 @mg(
@X/dimf c emcr% Pﬁ@a(
e sz 046'@@.

CVE-2011-3389: BEAST (Browser Exploit Against SSL/TLS)

e Attack S =

& —- o
J B J]
Cig C; Ci- Cq'

We wout. To }C)VM@Q P%/,Q@’—x ke owr guess
Ci= B(K, Ci® [2»)
Ci=E (k, Ci0 P

Pet 3 = Cin @Cj—1@><
Cx=zTElk, C;-@ Q—:@Cj—a@x)
C;=FEck, Cai@ <)

2 % = Vo (lowr quese T2 cerract)

Cy = BElx, CGia® xD>= (K, G-@® D= Cy

CVE-2011-3389: BEAST (Browser Exploit Against SSL/TLS)

e As you might notice, stealing a block of 16 bytes (256 bits) data requires 22°° guesses, which makes
the attack nearly impossible to be carried out.

e However, by carefully padding the block with known data to the point where only the last byte of the
block is unknown, we only need 28=256 guesses which is realistic for real world scenario.

e How can the attacker pad the message then?

e The attacker knows what a typical HTTP request looks like, he/she can control the request plain text
by modifying the ‘path’ attribute in the HTTP request header, therefore control the padding.

Message |Clo|o| k|t |e|=|C||B|IC|ils|Nol+]|S

Podded Mescoge [O-[O] O Ol O] 0] € ololk|ilel=|C|B
QO &0 O Acunme Bonk

Guesses! |0 Ojjajaja|o| 1| Size g 9 bytes

1

CVE-2012-4929: CRIME (Compression Ratio Info-leak Made Easy)

Common compression method replace repeated byte sequences with a pointer to the first instance of
the sequence, thus reduce the message size

Googling the googles 2L) Googling the g(-13,4)s

‘. Number of characters (oogl)

Backwards position from the beginning of first occurrence
1312111098 7654 3 21

Googling the g

The attacker will abuse this TLS compression method to hijack users’ session by stealing their cookies
Suppose victim is browsing his banking website and the website uses cookie to identify the session
The attacker will host a malicious website which has multiple tags in it, and all tags have path to
the victim’s banking website

When victim visits attacker's malicious website, the tag will be automatically loaded, thus trigger
the browser to send requests to the banking website without user’s notice

Since TLS compress data from mixed source, the path and victim's valid cookie will be
compressed together

The attacker then can sniff the packets and get the size of the requests that are sent

By brute forcing each character, the attacker can steal the cookie from user eventually

Cipher suites example

Cipher suites are identified by strings.
A sample cipher suite string is: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
This string contains the following information:

TLS is the protocol being used

ECDHE is the key exchange algorithm (Elliptic Curve Diffie—Hellman)

ECDSA is the authentication algorithm (Elliptic Curve Digital Signature Algorithm)
AES_128_GCM is the data encryption algorithm (Advanced Encryption Standard 128 bit
Galois/Counter Mode)

e SHA256 is the Message Authentication Code (MAC) algorithm (Secure Hash Algorithm 256 bit)

CVE-2020-0601: CurveBall Vulnerability

e A spoofing vulnerability exists in the way Windows CryptoAPI (Crypt32.dll) validates Elliptic
Curve Cryptography (ECC) certificates.

e Elliptic Curve Cryptography Signature Algorithm (ECDSA) is a digital signature algorithm
which uses Elliptic Curve Cryptography

e InECDSA, we can use the private key k and generator G to compute public key P,=k - G
e Itis easyto compute a generator given private key P, and public key k

e Normally, the ECC certificate validation algorithm would need to check whether the certificate
has a standardized generator

e However, Windows CryptoAPI wouldn't check for the generator if there is a valid cached
certificate to be matched

e Therefore, we can craft a “ valid certificate” (has the same public key as the real one) using a
fake generator

Establish a TLS Connection

Client Hello

Server Hello

Server Certificate

Server Key Exchange
Server Hello Done

Client Key Exchange

Client Change Cipher Spec
Client Handshake Finished
Server Change Cipher Spec

Server Handshake Finished

Establish a TLS Connection

Client Hello

Server Hello

Server Certificate

Server Key Exchange
Server Hello Done

Client Key Exchange

Client Change Cipher Spec
Client Handshake Finished
Server Change Cipher Spec

Server Handshake Finished

Establish a TLS Connection

Client Key Exchange

e The pre-master secret is created by the client (the method of creation depends on the cipher
suite) and then shared with the server.

e There are several key exchange algorithms: RSA, DH...
o RSA: client encrypts randomly chosen premaster secret with the server's RSA public key
o DH: client and server securely exchanging cryptographic keys as premaster secret

Diffie-Hellman

e Alice and Bob agree on modulus p = 23 and base g = 5 (which is a primitive root modulo 23)

e Alice chooses a secret integer a = 4, then sends Bob A = g2 mod p
o A=g°modp=5*mod23=4

e Bob chooses a secret integer b = 3, theeen sends Alice B = g° mod p
o B=g”modp=5"mod23=10

e Alice computes S =B?mod p
o S=B*modp=10*mod 23 =18

e Bobcomputes s =A" mod p
o S=Amodp=4°mod23=18

e Alice and Bob now share a secret (the number S = 18)

e Proof: A’ mod p = (g% mod p)° mod p = (g%)® mod p
e (g?mod p)? mod p = (g° mod p)® mod p

Establish a TLS Connection

Client Key Exchange

e The pre-master secret is created by the client (the method of creation depends on the cipher
suite) and then shared with the server.

e There are several key exchange algorithms: RSA, DH...
o RSA: client encrypts randomly chosen premaster secret with the server's RSA public key
o DH: client and server securely exchanging cryptographic keys as premaster secret

e Then both client and server use the premaster secret with client_random and server_random
(sent in ClientHello and ServerHello messages) to generate a master secret.

e The master secret will be used to generate 4 session keys:
o Client write key: encrypt client to server messages
o Server write key: encrypt server to client messages
o Client write MAC key: digitally sign client to server messages
o Server write MAC key: digitally sign server to client messages

Establish a TLS Connection

Client Hello

Server Hello

Server Certificate

Server Key Exchange
Server Hello Done

Client Key Exchange

Client Change Cipher Spec
Client Handshake Finished
Server Change Cipher Spec

Server Handshake Finished

Establish a TLS Connection

Client Change Cipher Spec

e The Change Cipher Spec protocol is used to change the encryption method. Any data sent by
the client from now on will be encrypted using the symmetric shared key.

Client Handshake Finished

e The last message of the handshake process from the client signifies that the handshake is
finished. This is also the first encrypted message of the secure connection.

Server Change Cipher Spec

Server Handshake Finished

How to Obtain a Certificate

Step 1: provide domain name alongside with other information about your website
Step 2: generate a pair of public private key

Step 3: sign the information with the newly generated private key and send it to CA
Step 4: the CA will verify the Certificate Signing Request

Step 5: the CA will sign the certificate with its private key and send it back to the client

Step 6: the client add trusted certificate to the web server

What is Inside a Certificate

J Cirtlﬁ\(;z::ion Number Example of an SSL/TLS Certificate
o Serial Number Google Certificate: Basic Certificate Attributes _ _ _ _ _ _ _ _
o Signature Algorithm ID | Version: 2
o Issuer Name | Serial Number: 50:24:0D:DD:00:03:00:00:26:72
o Validity period | Signature Algorithm: sha1WithRSAEncryption

| Not valid before: Dec 18 00:00:00 2009 GMT
= Not Before I Not valid after: Dec 18 23:59:59 2011 GMT

|
l
|
l
|
|
Public Key Algorithm: rsaEncryption :
|
|
|
|
|

m Not After |
o Subject name | RSA Public Key: (1024 bit) Modulus (1024 bit): XX ... XX
o Subject Public Key Info | Subject: /C=US, /ST=California, /L=Mountain View,

m Public Key Algorithm I /0=Google Inc, CN=www.google.com

m Subject Public Key :Isswr:lfli.f:aamwgl;aévate(:imsulﬁng (Pty) Ltd.,

o Issuer Unique Identifier (optional) |-~ """ """~ "5 - oo m e e e

o Subject Unique Identifier (optional) - = = = — — — . Certificate Extension Attributes _ _ _ _ _ _ _ l
o Extensions (optional) SRRV Extutione:
- X509v3 Basic Constraints: critical

|CA: FALSE

|

see '
c . : |

0 Cenilineaie Sfnelliie Ageriim | X509v3 CRL Distribution Points: URL:http:/crl.thawte.com/[XXX].cr :
|

I

o Certificate Signature | X509v3 Extended Key Usage: TLS Web Server Authentication,

| Authority Information Access: OCSP - [XXX], CA Issuers - [XXX]

