
TLS Handshake and Certificate

TLS Handshake

Establish a TLS Connection

● Client Hello

● Server Hello

● Server Certificate

● Server Key Exchange

● Server Hello Done

● Client Key Exchange

● Client Change Cipher Spec

● Client Handshake Finished

● Server Change Cipher Spec

● Server Handshake Finished

Client Hello

● Client version

● Client random

● Session ID

● Compression methods

● Cipher suites

Establish a TLS Connection

CVE-2011-3389: BEAST (Browser Exploit Against SSL/TLS)

● Popular configurations of TLS use cipher block chaining (CBC) mode

CVE-2011-3389: BEAST (Browser Exploit Against SSL/TLS)

● Attack Scenario

CVE-2011-3389: BEAST (Browser Exploit Against SSL/TLS)

● Attack

CVE-2011-3389: BEAST (Browser Exploit Against SSL/TLS)

● As you might notice, stealing a block of 16 bytes (256 bits) data requires 2256 guesses, which makes
the attack nearly impossible to be carried out.

● However, by carefully padding the block with known data to the point where only the last byte of the
block is unknown, we only need 28=256 guesses which is realistic for real world scenario.

● How can the attacker pad the message then?
● The attacker knows what a typical HTTP request looks like, he/she can control the request plain text

by modifying the ‘path’ attribute in the HTTP request header, therefore control the padding.

CVE-2012-4929: CRIME (Compression Ratio Info-leak Made Easy)

● Common compression method replace repeated byte sequences with a pointer to the first instance of
the sequence, thus reduce the message size

● The attacker will abuse this TLS compression method to hijack users’ session by stealing their cookies
● Suppose victim is browsing his banking website and the website uses cookie to identify the session
● The attacker will host a malicious website which has multiple tags in it, and all tags have path to

the victim’s banking website
● When victim visits attacker’s malicious website, the tag will be automatically loaded, thus trigger

the browser to send requests to the banking website without user’s notice
● Since TLS compress data from mixed source, the path and victim’s valid cookie will be

compressed together
● The attacker then can sniff the packets and get the size of the requests that are sent
● By brute forcing each character, the attacker can steal the cookie from user eventually

Cipher suites are identified by strings.

A sample cipher suite string is: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

This string contains the following information:

● TLS is the protocol being used
● ECDHE is the key exchange algorithm (Elliptic Curve Diffie–Hellman)
● ECDSA is the authentication algorithm (Elliptic Curve Digital Signature Algorithm)
● AES_128_GCM is the data encryption algorithm (Advanced Encryption Standard 128 bit

Galois/Counter Mode)
● SHA256 is the Message Authentication Code (MAC) algorithm (Secure Hash Algorithm 256 bit)

Cipher suites example

CVE-2020-0601: CurveBall Vulnerability

● A spoofing vulnerability exists in the way Windows CryptoAPI (Crypt32.dll) validates Elliptic
Curve Cryptography (ECC) certificates.

● Elliptic Curve Cryptography Signature Algorithm (ECDSA) is a digital signature algorithm
which uses Elliptic Curve Cryptography

● In ECDSA, we can use the private key k and generator G to compute public key Pk= k ⋅ G

● It is easy to compute a generator given private key Pk and public key k

● Normally, the ECC certificate validation algorithm would need to check whether the certificate
has a standardized generator

● However, Windows CryptoAPI wouldn’t check for the generator if there is a valid cached
certificate to be matched

● Therefore, we can craft a “ valid certificate” (has the same public key as the real one) using a
fake generator

Establish a TLS Connection

● Client Hello

● Server Hello

● Server Certificate

● Server Key Exchange

● Server Hello Done

● Client Key Exchange

● Client Change Cipher Spec

● Client Handshake Finished

● Server Change Cipher Spec

● Server Handshake Finished

Establish a TLS Connection

● Client Hello

● Server Hello

● Server Certificate

● Server Key Exchange

● Server Hello Done

● Client Key Exchange

● Client Change Cipher Spec

● Client Handshake Finished

● Server Change Cipher Spec

● Server Handshake Finished

Client Key Exchange

● The pre-master secret is created by the client (the method of creation depends on the cipher
suite) and then shared with the server.

● There are several key exchange algorithms: RSA, DH…
○ RSA: client encrypts randomly chosen premaster secret with the server's RSA public key
○ DH: client and server securely exchanging cryptographic keys as premaster secret

Establish a TLS Connection

Diffie-Hellman

● Alice and Bob agree on modulus p = 23 and base g = 5 (which is a primitive root modulo 23)

● Alice chooses a secret integer a = 4, then sends Bob A = ga mod p
○ A = ga mod p = 54 mod 23 = 4

● Bob chooses a secret integer b = 3, theeen sends Alice B = gb mod p
○ B = gb mod p = 53 mod 23 = 10

● Alice computes S = Ba mod p
○ S = Ba mod p = 104 mod 23 =18

● Bob computes s = Ab mod p
○ S = Ab mod p = 43 mod 23 = 18

● Alice and Bob now share a secret (the number S = 18)

● Proof: Ab mod p = (ga mod p)b mod p = (ga)b mod p
● (ga mod p)b mod p = (gb mod p)a mod p

Client Key Exchange

● The pre-master secret is created by the client (the method of creation depends on the cipher
suite) and then shared with the server.

● There are several key exchange algorithms: RSA, DH…
○ RSA: client encrypts randomly chosen premaster secret with the server's RSA public key
○ DH: client and server securely exchanging cryptographic keys as premaster secret

● Then both client and server use the premaster secret with client_random and server_random
(sent in ClientHello and ServerHello messages) to generate a master secret.

● The master secret will be used to generate 4 session keys:
○ Client write key: encrypt client to server messages
○ Server write key: encrypt server to client messages
○ Client write MAC key: digitally sign client to server messages
○ Server write MAC key: digitally sign server to client messages

Establish a TLS Connection

Establish a TLS Connection

● Client Hello

● Server Hello

● Server Certificate

● Server Key Exchange

● Server Hello Done

● Client Key Exchange

● Client Change Cipher Spec

● Client Handshake Finished

● Server Change Cipher Spec

● Server Handshake Finished

Establish a TLS Connection

Client Change Cipher Spec

● The Change Cipher Spec protocol is used to change the encryption method. Any data sent by
the client from now on will be encrypted using the symmetric shared key.

Client Handshake Finished

● The last message of the handshake process from the client signifies that the handshake is
finished. This is also the first encrypted message of the secure connection.

Server Change Cipher Spec

Server Handshake Finished

How to Obtain a Certificate

Step 1: provide domain name alongside with other information about your website

Step 2: generate a pair of public private key

Step 3: sign the information with the newly generated private key and send it to CA

Step 4: the CA will verify the Certificate Signing Request

Step 5: the CA will sign the certificate with its private key and send it back to the client

Step 6: the client add trusted certificate to the web server

What is Inside a Certificate

● Certificate
○ Version Number
○ Serial Number
○ Signature Algorithm ID
○ Issuer Name
○ Validity period

■ Not Before
■ Not After

○ Subject name
○ Subject Public Key Info

■ Public Key Algorithm
■ Subject Public Key

○ Issuer Unique Identifier (optional)
○ Subject Unique Identifier (optional)
○ Extensions (optional)

■ ...
● Certificate Signature Algorithm
● Certificate Signature

