The C Programming Language

« C is a high-level language — structured
« Cis a low-level language — machine access
« Cis a small language, extendable with libraries

« C is permissive: assumes you know what
you're doing
Good: efficient, powerful, portable, flexible

Bad: easy to make errors, obfuscation,
little support for modularization

Intro to C

#include <stdio.h>

int main() {
int 1i;
extern int gcd(int x, int y);
for (i = 0; i < 20; i++) {
printf("gcd of 12 and %d is %d\n",
i, gcd(1l2,1));
}

return (0);

The rest of the file

int gcd(int x, int y) {

int t;
while (y) {

t = X3

X =Y

y =t 3 y;
}

return (X);

}

About C

e Similar to Java - Java took best of C

e #include - use declarations of
functions

e main () returns int, the exit status

* Functions must be
— declared - tells compiler how to use function
— defined - creates the item

» Declarations must appear before code

Basic Control Structures

* Functions - can omit extern declaration

e for loop - like Java
— body is one statement
— braces { } enclose blocks
— blocks introduce scope level

— can't mix declarations and non-declarations
e for (int i ... -illegalin ANSIC

More about C

 Uninitialized variables have no default
value!

* No run-time checking!

* No polymorphism (printf format
strings)

* No objects

Compile: gcec -Wall -g -o ged gcd.c

C data types
 basic types and literals (King: Ch 7)

int i = 38; long el = 38L;

int hex = 0x2a; int oct = 033;

printf("i = %d, el = %1d, hex $d, oct = %d\n",
i, el, hex, oct);

i =38, el = 38, hex = 42, oct = 27

I
w

double dl 0.3; double d2 .0

double d3 6.02e23;
printf("dl = %£f, d2 = &£, d3 = %e\n", dl, d2, d3)

e

dl = 0.300000, d2 = 3.000000, d3 = 6.020000e+23

C literals and types

Literal Value Type

38 38 int

38L 38 long int
0x2a (hex) |42 int

033 (octal) |27 int

38.0 38.0 double
38.0f 38.0 float

C data types

* Most things in C are ints:

— Boolean values are ints
* 0 means false, nonzero means true

— characters are ints (ASCII code)
e 'a'==97 '\n'==10, '\033'==033==27
— enumerations are really ints

e signed vs. unsigned types

e char, int, long, ... are just different sizes of
iIntegers.

Data Type Conversion

* The expression on the right side is converted to the
type of the variable on the left.

char c;
int i = c; /* ¢ 1is converted to int */

double d = i; /* i1 is converted to double */

* This is no problem as long as the variable’s type is at

least as “wide” as the expression.
char ¢ = 500; /* compiler warning */

4
"¢ = %c, k = %d\n", c, k);

10

Data Type Capacity

« What happens when the following code
IS executed?
char ¢ = 127;
int d;

printf("c = %d\n", c);
c++;

d = 512 / c;

printf("c ¥d\n", c, d);

Il
o©°
(O
(O

Il

11

Mixed Mode Arithmetic

double m = 5/6; /* int / int = int */
printf("Result of 5/6 is %f\n", m);

Result of 5/6 is 0.000000

double n = (double)5/6; /* double / int = double */
printf("Result of (double)5/6 is %f\n", n);

Result of (double)5/6 is 0.833333

double o = 5.0/6; /* double / int = double */
printf("Result of 5.0/6 is %f\n", 0);

Result of 5.0/6 is 0.833333

int p = 5.0/6; /* double / int = double but then
converted to int */
printf("Result of 5.0/6 is %d\n", p);

Result of 5.0/6 is 0

12

Logical
address

Memory model

 Memory is just a sequence

of bytes

A memory location is
identified by an address.

Code

Static Data

Dynamic Data

1

Unused Logical
Address Space

232 1

T

Stack

13

int
int

int

int

Example

x = 10;
yi
f(int p, int qg) {

int j = 5;
return p * g + Jj;

main() {

int 1 = x;

y = £(i, 1);

return 0; £ <

0x8049430 x

0x8049528 y

[Oxffff3a30
0xffff3a34 p

Oxffff3a38 g

main { Oxffff8910 i

Code

10

77?77

Dynamic Data

Unused Logical
Address Space

3

10

10

10

Stack 14

Arrays

* Arrays in C are a contiguous chunk of memory
that contain a list of items of the same type.

 |If an array of ints contains 10 ints, then the
array is 40 bytes. There is nothing extra.

* In particular, the size of the array is not stored
with the array. There is no runtime checking.

15

x[0]

int x[5]; x[1]

for (i = 0; i <= 5; i++) { x[2]
X[1] = 1i*1i;

X[4]

Arrays

« No runtime checking of array bounds

0x88681140
0x88681144
0x88681148
0x8868114c
0x88681150
0x88681154

« Behaviour of exceeding array bounds is “undefined”

> program might appear to work
> program might crash

> program might do something apparently random

16

Initializing arrays

The sizeof
operator 1s
evaluated by the
compiler

Declaration/Definition
int a[l0]; /*declare 'a' as an
array of 10 ints*/
sizeof(a) == 10 * sizeof(int) == 40;

Static initialization:
char letters[4] = {'a', 'qg', 'e', 'r'};

Initialization loop:
for(i = 0; 1 < N; 1i++) {
a[i] = 0;

17

Arrays

* Warning: It is the programmer's
responsibility to keep track of the size of
an array!

e Often define a maximum size.

* Pre-processor directives are used for
constants:

—E.g., #define MAXSIZE 30

18

Pointers

* A pointer is a higher-level version of an address.
* A pointer has type information.

int 1i;

int *p; /* declare p to point to type int */

p = i; / dereference p — set what p points to*/

p = &i /* Give p the value of the address of i*/

char *c = p; /* Warning: initialization from
incompatible pointer type */

19

Important!

e int *p;

 Memory is allocated to store the pointer

 No memory is allocated to store what the
pointer points to!

* Also, p is not initialized to a valid
address or null.

* l.e., *p = 10; Is wrong unless memory
has been allocated and p set to point to
it.

20

A picture

int 1 = 19; 0x80493e0 19
int *p;
int *q;
*p = i; /*error*/
— d = & 0x80494dc ?
0x80494e0 |0x80493e0
Symbol Table
i | 0x80493e0
p | 0x80494dc
g | 0x80494e0

21

A picture

0x80493e0 19

int i = 19;

int *p;
int *q;
q = &i 0x80494dc | 0x8049530
p = (int *)malloc(sizeof(int));
P = 1; 0x80494e0 | 0x80493e0
Symbol Table
i | 0x80493e0 0x8049530 19
p | 0x80494dc X
g | 0x80494¢e0

22

Pointers and Arrays

— Recall the pointer syntax:
— char *cptr;
» declares a pointer to a char
« allocates space to store a pointer (to a char)
— char ¢ = 'a';
— Cptr = &cjy
e cptr gets the value of the address of ¢

 the value stored at the memory location referred to
by cptr is the address of the memory location
referred to by c;

— *cptr = 'b'; —dereference cptr

 the address stored at cptr identifies the memory
location where 'b' will be stored.

23

P

char
char
cptr
*Ccptr

Pointers and Arrays

*cptr;

C ‘a’;

&C;
‘b

0x80493e0

0x80494dc
Symbol Table

cptr [0x80493e0)
c |[0x80494dc

0x80494dc

lbl

24

Arrays vs. Pointers

* An array name in expression context is used
as into a pointer to the zero’'th element.

 E.q.
int a[3] = {1, 3, 5};
int *p = a; p = &a[0];
p[0] = 10;
printf("%d %d\n", a[0], *p);

25

Example

int *I.) (*p) ==a[0]

. . . “(p + 1) ==al1]
for(i = 0; 1 < 4; i++) {
printf("%d\n", *(p + 1));
} *(p +2) ==a[2]

"(p + 3) ==a[3]

Why does adding 1 to p move it to the next
spot for an int, when an int is 4 bytes?

26

Pointer Arithmetic

« Pointer arithmetic respects the type of the
pointer.

- E.g,
int 1[2] = {1, 2}; char c[2] = {'a','z'};
int *ip; char *cp;
ip = 1; Cp = C;
*(ip + 1) += 2; *(cp + 1) = 'b';
(really adds 4 to ip) (really adds 1 to cp)

« C knows the size of what is being pointed at
from the type of the pointer.

27

Pointer Arithmetic

 The array access operator [] is really only a
shorthand for pointer arithmetic + dereference

* These are equivalent in C:

a[i] == *(a + i)

« C translates the first form into the second.
— pointers and arrays are nearly the same in C!

28

Passing Arrays as Parameters

int main()

{
int i[3] = {10, 9, 8};
printf("sum is %d\n", sum(i)); /*22%*/
return 0;

}

int sum(What goes here?) {

}

* What is being passed to the function is the
name of the array which decays to a pointer to
the first element — a pointer of type int.

29

Passing Arrays as Parameters

sizeof (a)==4

int sum(int *a) { : .
_ _ since a 1s jus
int 1, s = 0; .

, , . a pointer here
for(1 = 0; 1 < ?2?; 1++)

s += a[i]; /* this is legal */

return s;

 How do you know how big the array is?

 Remember that arrays are not objects, so knowing
where the zero’'th element of an array is does not

tell you how big it is.
« Pass in the size of the array as another parameter.

30

Array Parameters

int sum(int *a, int size)
* Alsolegal is:
int sum(int a[], int size)
 Many advise against using this form.
— You really are passing a pointer-to-int not an array.
— You still don't know how big the array is.

— Outside of a formal parameter declaration int af[];
s illegal

= int aj; and int a[10]; are completely different
things

31

Multi-dimensional arrays

« Remember that memory is a sequence of bytes.

. row 0) row 1) row 2)
0(1(2|3/4,5|6|7]|8

int a[3][(3] = { {0, 1, 2},
{3, 4, 5},

{6, 7, 8}};

* Arrays in C are stored in row-major order
* row-major access formula

X[1][J] == *(x + 1 * n + J)

where n is the row size of x

But use arra
notation!

/

Structs

* A collection of related data items

struct record {
char name[MAXNAME];
int count;
}i
[* The semicolon is important! It terminates the declaration. */

struct record recl; /[*allocates space for the record */

strncpy(recl.name, ".exe", MAXNAME) ;
struct record *rec2;

rec2 = malloc(sizeof(struct record));
strncpy(rec2->name, ".gif", MAXNAME) ;

33

structs as arguments

/* Remember: pass-by-value */

volid print record(struct record r) {
printf("Name = %s\n", r.name);
printf ("Count=%d\n", r.count);

}

print record(recl);

print record(*rec2);

34

Passing pointer or struct?

/* Incorrect */
volid incr record(struct record r)
r.count++;

}

[* Correct */
vold incr record(struct record *r)

r->count++;

}

{

{

35

Summary

 The name of an array can also be used
as a pointer to the zero’th element of
the array.

* This is useful when passing arrays as
parameters.

* Use array notation rather than pointer
arithmetic whenever you have an array.

36

