
1

The C Programming Language

•  C is a high-level language — structured
•  C is a low-level language — machine access
•  C is a small language, extendable with libraries
•  C is permissive: assumes you know what

you’re doing
•  Good: efficient, powerful, portable, flexible
•  Bad: easy to make errors, obfuscation,

little support for modularization

2

Intro to C
#include <stdio.h>!

int main() {!
!int i;!
!extern int gcd(int x, int y);!
!for (i = 0; i < 20; i++) {!
! !printf("gcd of 12 and %d is %d\n", !
! ! ! i, gcd(12,i));!
!}!
!return (0);!
}!

3

The rest of the file

int gcd(int x, int y) {!
!int t;!
!while (y) { !
! !t = x; !
! !x = y; !
! !y = t % y;!
!}!
!return (x);!
}!

4

About C

•  Similar to Java - Java took best of C
• #include - use declarations of

functions
• main() returns int, the exit status
•  Functions must be

– declared - tells compiler how to use function
– defined - creates the item

•  Declarations must appear before code

5

Basic Control Structures

•  Functions - can omit extern declaration
• for loop - like Java

– body is one statement
– braces { } enclose blocks
– blocks introduce scope level
– can't mix declarations and non-declarations

• for (int i … - illegal in ANSI C

6

More about C

•  Uninitialized variables have no default
value!

•  No run-time checking!
•  No polymorphism (printf format

strings)
•  No objects

Compile: gcc -Wall -g -o gcd gcd.c

7

C data types
•  basic types and literals (King: Ch 7)

int i = 38; long el = 38L;!
int hex = 0x2a; int oct = 033;!
printf("i = %d, el = %ld, hex = %d, oct = %d\n",!
 i, el, hex, oct);!

double d1 = 0.3; double d2 = 3.0;!
double d3 = 6.02e23;!
printf("d1 = %f, d2 = %f, d3 = %e\n", d1, d2, d3)

i = 38, el = 38, hex = 42, oct = 27!

d1 = 0.300000, d2 = 3.000000, d3 = 6.020000e+23!

8

C literals and types

Literal Value Type
38 38 int

38L 38 long int

0x2a (hex) 42 int

033 (octal) 27 int

38.0 38.0 double

38.0f 38.0 float

9

C data types

•  Most things in C are ints:
–  Boolean values are ints

•  0 means false, nonzero means true

–  characters are ints (ASCII code)
• 'a'==97, '\n'==10, '\033'==033==27

–  enumerations are really ints

•  signed vs. unsigned types
•  char, int, long, … are just different sizes of

integers.

10

Data Type Conversion
•  The expression on the right side is converted to the

type of the variable on the left.
char c;!
int i = c; /* c is converted to int */!
double d = i; /* i is converted to double */

•  This is no problem as long as the variable’s type is at
least as “wide” as the expression.
char c = 500; /* compiler warning */!
int k = d1; !
printf("c = %c, k = %d\n", c, k);!

c = , k = 0!

11

Data Type Capacity

•  What happens when the following code
is executed?

char c = 127;!
int d;!

printf("c = %d\n", c);!
c++;!

d = 512 / c;!
printf("c = %d, d = %d\n", c, d);

12

Mixed Mode Arithmetic

Result of 5/6 is 0.000000!

Result of (double)5/6 is 0.833333!

Result of 5.0/6 is 0.833333!

Result of 5.0/6 is 0!

double m = 5/6; /* int / int = int */!
printf("Result of 5/6 is %f\n", m);

double n = (double)5/6; /* double / int = double */!
printf("Result of (double)5/6 is %f\n", n);

double o = 5.0/6; /* double / int = double */!
printf("Result of 5.0/6 is %f\n", o);

int p = 5.0/6; /* double / int = double but then!
 converted to int */!
printf("Result of 5.0/6 is %d\n", p);

13

Memory model

•  Memory is just a sequence
of bytes

•  A memory location is
identified by an address.

Code

Static Data

Dynamic Data

Unused Logical
Address Space

Stack

0

232 -1

Logical
address

14

Example
int x = 10;!
int y;!

int f(int p, int q) {!
 int j = 5;!
 return p * q + j;!
}!

int main() {!

 int i = x;!
 y = f(i, i);!
 return 0;!
}!

0x8049430 x

Code

Dynamic Data

Unused Logical
Address Space

0

10

0x8049528 y

main 10

5 0xffff3a30 j
10

0xffff8910 i

10 0xffff3a38 q
f

Stack

0xffff3a34 p

???

15

Arrays

•  Arrays in C are a contiguous chunk of memory
that contain a list of items of the same type.

•  If an array of ints contains 10 ints, then the
array is 40 bytes. There is nothing extra.

•  In particular, the size of the array is not stored
with the array. There is no runtime checking.

16

Arrays

int x[5];!
for (i = 0; i <= 5; i++) {!
 x[i] = i*i;!
}!

x[0]!

x[1]!

x[2]!

x[3]!

x[4]!

  No runtime checking of array bounds
  Behaviour of exceeding array bounds is “undefined”

  program might appear to work
  program might crash
  program might do something apparently random

?

0x88681140
0x88681144
0x88681148
0x8868114c
0x88681150
0x88681154

17

Initializing arrays
Declaration/Definition

int a[10]; /*declare 'a' as an !
 array of 10 ints*/!
sizeof(a) == 10 * sizeof(int) == 40;!

Static initialization:
char letters[4] = {'a', 'q', 'e', 'r'};!

Initialization loop:
for(i = 0; i < N; i++) {!

a[i] = 0;!
}!

The sizeof
operator is

evaluated by the
compiler

18

Arrays

•  Warning: It is the programmer's
responsibility to keep track of the size of
an array!

•  Often define a maximum size.
•  Pre-processor directives are used for

constants:
– E. g., #define MAXSIZE 30!

19

Pointers
•  A pointer is a higher-level version of an address.
•  A pointer has type information.

int i;!
int *p; /* declare p to point to type int */!
p = i; / dereference p – set what p points to*/!
p = &i /* Give p the value of the address of i*/!
char *c = p; /* Warning: initialization from !
 incompatible pointer type */!

20

Important!
• int *p;!
•  Memory is allocated to store the pointer
•  No memory is allocated to store what the

pointer points to!
•  Also, p is not initialized to a valid

address or null.
•  I.e., *p = 10; is wrong unless memory

has been allocated and p set to point to
it.

21

A picture

?

19

?

int i = 19;!
int *p;!
int *q;!
*p = i; /*error*/!
q = &i !

i
p

0x80493e0
0x80494dc
0x80494e0 q

Symbol Table

0x80493e0

0x80494e0

0x80494dc

0x80493e0

22

A picture

0x8049530

19

0x80493e0

int i = 19;!
int *p;!
int *q;!

q = &i !
p = (int *)malloc(sizeof(int));!
*p = i;!

i
p

0x80493e0
0x80494dc
0x80494e0 q

Symbol Table

0x80493e0

0x80494e0

0x80494dc

19 0x8049530

23

Pointers and Arrays
– Recall the pointer syntax:
–  char *cptr; !

•  declares a pointer to a char
•  allocates space to store a pointer (to a char)

–  char c = 'a'; !
–  cptr = &c;!

• cptr gets the value of the address of c!
•  the value stored at the memory location referred to

by cptr is the address of the memory location
referred to by c;

–  *cptr = 'b'; – dereference cptr
•  the address stored at cptr identifies the memory

location where 'b' will be stored.

24

Pointers and Arrays
char *cptr; !
char c = 'a'; !
cptr = &c;!
*cptr = 'b';!

'a'

cptr 0x80493e0
c 0x80494dc

Symbol Table

0x80493e0

0x80494dc 'b'

0x80494dc

25

Arrays vs. Pointers

•  An array name in expression context is used
as into a pointer to the zero’th element.

•  E.g.
int a[3] = {1, 3, 5};!
int *p = a; p = &a[0];!
p[0] = 10;!
printf("%d %d\n", a[0], *p);

26

Example

int a[4] = {0, 1, 2, 3};!
int *p !
p = a;!
int i = 0;!

for(i = 0; i < 4; i++) {!
 printf("%d\n", *(p + i)); !
}!

a[0]

a[1]

a[2]

a[3]

Why does adding 1 to p move it to the next
spot for an int, when an int is 4 bytes?

0

3

2

1

(*p) ==

*(p + 1) ==

*(p + 2) ==

*(p + 3) ==

27

Pointer Arithmetic

•  Pointer arithmetic respects the type of the
pointer.

•  E.g.,
int i[2] = {1, 2}; !char c[2] = {'a','z'};!
int *ip; ! ! ! !char *cp;!
ip = i; ! ! ! !cp = c;!
(ip + 1) += 2; ! !(cp + 1) = 'b';!

(really adds 4 to ip) (really adds 1 to cp)

•  C knows the size of what is being pointed at
from the type of the pointer.

28

Pointer Arithmetic

•  The array access operator [] is really only a
shorthand for pointer arithmetic + dereference

•  These are equivalent in C:
 a[i] == *(a + i)!

•  C translates the first form into the second.
–  pointers and arrays are nearly the same in C!

29

Passing Arrays as Parameters
int main()!
{!

int i[3] = {10, 9, 8};!
printf("sum is %d\n", sum(i)); /*??*/!
return 0;!

}!
int sum(What goes here?) {!
}!

•  What is being passed to the function is the
name of the array which decays to a pointer to
the first element – a pointer of type int.

1

30

Passing Arrays as Parameters
int sum(int *a) {!

int i, s = 0;!
for(i = 0; i < ??; i++) !

s += a[i]; /* this is legal */!
return s;!

}!

•  How do you know how big the array is?
•  Remember that arrays are not objects, so knowing

where the zero’th element of an array is does not
tell you how big it is.

•  Pass in the size of the array as another parameter.

sizeof(a)==4
since a is just
a pointer here

31

Array Parameters
 int sum(int *a, int size)
•  Also legal is:
 int sum(int a[], int size)!
•  Many advise against using this form.

–  You really are passing a pointer-to-int not an array.
–  You still don't know how big the array is.
–  Outside of a formal parameter declaration int a[];

is illegal
 int a; and int a[10]; are completely different

things

32

Multi-dimensional arrays
•  Remember that memory is a sequence of bytes.

 int a[3][3] = { !{0, 1, 2}, !
! ! ! ! ! !{3, 4, 5}, !
! ! ! ! ! !{6, 7, 8}};

•  Arrays in C are stored in row-major order
•  row-major access formula

x[i][j] == *(x + i * n + j)!
 where n is the row size of x!

8 7 6 5 4 3 2 1 0
row 0 row 1 row 2

But use array
notation!

33

Structs
•  A collection of related data items
struct record {!

char name[MAXNAME];!
int count;!

}; !
/* The semicolon is important! It terminates the declaration. */

struct record rec1; /*allocates space for the record */
strncpy(rec1.name, ".exe", MAXNAME);!
struct record *rec2;!
rec2 = malloc(sizeof(struct record));!
strncpy(rec2->name, ".gif", MAXNAME);!

34

structs as arguments
/* Remember: pass-by-value */
void print_record(struct record r) {!

printf("Name = %s\n", r.name);!
printf("Count=%d\n", r.count);!

}!
print_record(rec1);!
print_record(*rec2);!

35

Passing pointer or struct?
/* Incorrect */
void incr_record(struct record r) {!

r.count++;!
}!

/* Correct */
void incr_record(struct record *r) {!

r->count++;!
}!

36

Summary

•  The name of an array can also be used
as a pointer to the zero’th element of
the array.

•  This is useful when passing arrays as
parameters.

•  Use array notation rather than pointer
arithmetic whenever you have an array.

