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Abstract

Producing bug-free codes is a major challenge to computer scientists today and
with a huge growth of the field of Software Verification, there has been a sufficient
progress in it. Despite all successes the annual Verification competition SV-COMP
hasn’t seenmuch good results in a few sections and array-manipulating programs
are one of them.

Synthesizing useful loop invariant helps verification process to a great extent.
Therefore we aim to generate loop invariant for array-manipulating program.

Max-Strategy Iteration is a well-aquinted method that uses SMT solvers to synthe-
size loop invariant and for numerical programs, it can give such invariant that can
help verifying a large set of problems.

We hereby propose a novel method to generate loop invariants for a subclass of
array-manipulating programs which is an extension to the Max-Strategy Iteration
algorithm. With growth of array decision procedure in SMT solvers, our method is
supposed to generate loop invariants fast.
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Chapter 1

Introduction

Software systems are ubiquitous, and their use in mission critical systems means
that we need to have high degree of assurance that our software works according
to the given specification. Getting this high assurance for software has proven
to be much harder than for the hardware systems. There are several accounts of
disasters caused by software flaws. Such a list can be found here (Der).

Manual inspection of complex software is infeasible, and consequently a signifi-
cant body of computer science research has been focused on building tools to fa-
cilitate automatic verification of software systems. While testing provides us with
a cheaper way to find bugs, it doesn’t show that our software is bug free, so we
can’t just rely on testing for mission critical systems. Formal verification has been
a huge success in the hardware industry, but the same is not true for the software
industry, we rarely see software practitioners use formal verification tools.

Despite all its successes, verification research lack in many a fields, concurrency
and arrays being twomajor of blocks in it. In this thesis, we’ll look at the programs
with arrays and some ways to analyze that for simpler cases.

This thesis deals with the verification of safety properties about programs with
arrays. Verification of such properties amounts to checkingwhether the reachable
state space is contained in the invariant specified by the property.

Arrays are an important language feature in many imperative languages. They
provide the programmer a notion of contiguous blocks of memory which can be
accessed using array indices. Programmers using these languages often use some
kind of looping construct to access or modify regions of interest within the array.
While it’s flexible to use these constructs, it also makes it hard to reason about
these programs statically hard. Naturally, we’d like to know if we can infer things
about array accesses and use that information to simplify the verification of pro-
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6 1.1. Summary of Contribution

grams using these constructs.

The problem for arrays being difficult to analyze, we concentrate over some sub-
class for it. Wewanted to solve the problem for programswhere the array variable
are changed over a loopwith a simple loop counter. The aimbeing analyzing these
programs with some precision, where other programs will be analyzed correctly,
but they may not result in some good results. Our analysis is supposed to gener-
ate some invariant over these variables which will “cover” the property that we
want to prove or disprove.

1.1 Summary of Contribution

1. Max Strategy iteration over the proposed domain: In strategy iteration
method, we solve the fixed point equation by iteratively approximating the
the least fixed point of S = F (S) by fixed points of some easily computable
equations S = F (i)(S). These equations are induced by some so-called
"strategies". These strategies guarantees that the fixed-point will be found
after a finite number of strategies.

These techniques are applied to template domains, that is why we were
needed to define an domain for arrays.

2. Design of an Abstract Domain for Arrays: To our observation, programs
of above class may be analyzed well by segmenting the array into two parts,
segmented by some scalar expression of the loop counter.

We design a domain for this, as Cousot et. al. designed one for abstract
interpretation (CCL11).

Details of the domain is discussed in section 4, where we have discussed
which type of program our scheme will work well.

3. Implementation in 2LS:Wehave started implementing our proposed scheme
within 2LS. 2LS ("tools") is a verification tool for C programs. It is built upon
the CPROVER framework. It does array blasting for arrays. We are replacing
this with implementing our theoretical procedure.
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1.2 Organization

The remainder of this thesis is organized as follows. Chapter 2 presents notation
and describes preliminaries needed for the subsequent discussion.

Chapter 3 discusses the problem of verification of array-manipulating program
and some work that has been already done in the purpose.

Chapter 4 discusses a domain that is needed to continue working with our algo-
rithm.

In Chapter 5 we culminate with discussing our proposed algorithm for array in-
variant generation.

Chapter 6 discusses about a tool called 2LS and the design architecture needed on
that to implement our algorithm.





Chapter 2

Background

2.1 Software Verification

According to wikipedia, Software verification is a discipline of software engineer-
ing whose goal is to assure that software fully satisfies all the expected require-
ments. In general cases, a piece of code is given with a number of assertions. The
assertions being of safety or invariant properties. The task is to check, in all situa-
tions, whatever values may the variables take, whether the values are satisfied or
not.

2.2 Invariant and Fixed Point

Invariants are logical formulas which is true for all states reachable from an ini-
tial set of states.

Inductive invariants are invariant which are inductive with respect to transition
relation. That means the formula is true for all reachable states from any ar-
bitrary initial state. Here we will compute inductive invariants. Particularly,
we will compute inductive invariants of interval shape.

Fixpoint of a function is an element of the function’s domain that is mapped to
itself by the function. A formula(represents set of states) that includes set of
initial states and by applying transition to each state of the set goes to some
state inside the set. That means the set is closed under transition relation.

Invariants are actually fixpoints. Our algorithm runs until a fixpoint is found.
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10 2.3. Program Model

2.3 ProgramModel

We consider programsmodeled as symbolic control flowgraphs over a state space
Σ. A symbolic control flow graph (CFG) is a directed graph 〈L,R, l0〉, where

– L is a finite set of locations

– l0 ∈ L is the initial location

– (l, R, l‘) ∈ R define a finite number of arcs from locations l ∈ L to l‘ ∈ L

An execution of a CFG is a possibly infinite sequence

(l0, s0) −→R (l1, s1) −→ . . .

2.4 Max-strategy Iteration

Aswe stated earlier, In strategy iterationmethod, we solve the fixedpoint equation
by iteratively approximating the the least fixed point of S = F (S) by fixed points
of some easily computable equations S = F (i)(S). These equations are induced by
some so-called "strategies". These strategies guarantees that the fixed-pointwill be
found after a finite number of strategies. The fixed point may be apporached from
above or below, and that will decide, whether we call it a min- or max-strategy
iteration

Though both of these techniques are formal techniques to synthesize inductive in-
variants, there is a sharp distinction among these two. In Abstract Interpretation,
an abstract transformer is constructed by abstracting operators in program. Then,
static analysis (Kleene iteration) is done using abstract transformers to reach the
fixed point. It uses widening (for faster convergence) at the loss of precision. On
the contrary, in Max SI, there is no need to abstract program operations. The al-
gorithm searches abstract domain for fixpoints using constraint solving, mostly
using SMT solvers. It does not use widening, hence no case for loss of precision.

The definitions at section 2.3 and section 2.4 are taken from (SS13).

2.5 Programs with Arrays

Array-like properties are properties present in array-manipulating programs. These
are distinct with their characteristics. Those include :
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• The properties that are required to satisfy are generally quantified over in-
dices. E.g., all elements of the array are initilized to 0.

• A segmentation is often sufficient to generate loop invariant. E.g., all ele-
ments that have been seen in one segment, others being in other domain.

There may be variations from this pattern, but this pattern is quite common in
array-manipulating programs.





Chapter 3

Related Works

For most of the approaches to intuitively solve array verification problem, wemay
categorize them into three categories.

Array expansion is the first andmost precise approach for proving some properties
that we may take for programs with arrays. The arrays are blasted and each
variable at each index are treated as separate variables. The speciality that
same operation is done for a good number of array indices is not reflected in
this case. We can’t use the SAT solvers that can solve theories of arrays in this
case.

Array smashing stays at the opposite side of the precision spectrum where there
is the smashing of all the array elements into one summary location. It is
immediate that this is not going to work in many a cases, where there are
difference in properties for different segment of arrays.

Array Partitioning approach separates the task of array partitioning from that of
establishing array properties. Given a partition of the array into slices, the
analysis populates the slices with some abstract value. The partitioning is
done either syntactically or by some pre-analysis.

We work in this array partitioning approach. Some related works in array parti-
tioning are discussed here.

13



14 3.1. Parametric Segmentation Functor

3.1 Parametric Segmentation Functor

Gawlitza et. al. (GS07) used abstract interpretation over some abstracted seg-
mented array domain. Over the abstracted domain, they defined the Galois con-
nection between the abstract and concrete domain and did analysis using accela-
ration, widening and narrowing.

3.2 Tiling

Chakraborty et. al. (CGU17) used a pattern called tiling where tiles are defined
as following. Tile : LoopCounter × Indices→ {tt,ff} for loop L. With the theo-
rem, if Tile satisfies some properties and if Pre→ Inv holds then the Hoare triple
{Pre}L{Post} holds for a tile, the tiles are put to SMT solver to check whether
these properties hold. The major challenge here is to find the right tile.

3.3 Cell morphing

Monniaux et. al.(MG16) expresses the blocks of cells as horn clauses and tries
to infer some property from it. Array programs are turned to array-free Horn
clauses and fed to SMT-solver to check. Here, Abstract a of array type into a couple
(k, ak = a[k]) and to each program point attach, instead of a set I of concrete states
(x1, . . . , xm, a), a set I] of abstract states (x1, . . . , xm, k, ak).



Chapter 4

An Abstract Domain for Arrays

To do Max SI, we need a domain. For numerical programs, an interval domain
or a template domain is used heavily for both max-strategy iteration and abstract
interpretation. A detailed note on these domain are available here (Sch12).

For synthesizing the invariants for arrays, the domainwas needed to contain infor-
mation regarding the segmentation and the properties each segment holds. We
therefore discuss a design for the domain here. This domain is contributed to
(CCL11).

Our approach automatically divides the array into a sequence of possibly empty
segments delimited by a set of segment bounds. The content of each segment is
uniformly abstracted. The array analysis can be combined via a reduced product
with an abstraction for scalar variables.

Therefore the abstract domain has three main parameters:

(i) the expressions used to describe the segment bounds;

(ii) the abstract domain used to abstract the segment values

(iii) the abstract domain used to abstract scalar variables.

When the three parameters above are chosen to be:

(i) simple expressions in the form k or x+ k where x is a variable and k is
an integer

(ii) intervals or template bounds;

(iii) intervals or template bounds;

We start with an simple example where an array is being initialized. We want to
prove at last that all elements are initialized to 0.

15



16 4.1. Details of Domain

int[] A;
int i = 0;
while (i < A.Length) {

A[i] = 0;
i = i + 1;

}

At line 3, the invariant that contains all the property is :

(A.Length = 0 ∧ i = 0) ∨ (A.Length ≥ 1 ∧ 0 ≤ i ≤ A.Length,∀j ∈ [0, i) : A[j] = 0)

In our abstract domain, we want to encode this property as :

A: {0} [0 0] {i}? T {A.Length}?

Here, {0}, {i} and {A.length} denote segment bounds whereas, [0 0] denote
interval, within which values of all elements of index 0 to i of array A resides.

The ? after {i} denotes the segment {0} [0 0] {i} is possibly empty. The T in
the second segment denotes the value for the elements within this segment can
range in (−∞,+∞).

4.1 Details of Domain

Aswe discussed above, the proposed domain has three parts to abstract the array.

4.1.1 Segment Bounds

The initial and ending bounds being {0} and {A.length}. It denotes the complete
array is being covered by the abstraction.

When the array A is modified within a loop having a loop counter, say i, the loop
counter is added to segment the domain into two as

A: {0} T {i}? T {A.Length}?

The T in both sections denote the values can range anything.

4.1.2 Segment Values

The segment values are represented by some abstract domain. Initially we choose
interval domain for this. We may use different domains for our analysis, and it
may be the case as well that analysis of different programs behave well under
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different domains. We may use cardinal power of one domain by other domain
also.

Later we’ll show that reduced cardinal power of intervals by conditional domain
does a good analysis for a large number of programs.

4.1.3 Scalar Variables

There will be scalars associated with the abstract array domain, for example, the
loop counter variable being used as segment bound. As some major information
can be availed by analysis of this variable, we put this in our abstract domain.

This is also initialized as T.

Therefore, the abstract domain looks like

A: {0} T {i}? T {A.Length}?
i : T





Chapter 5

Strategy Iteration for Array Domain

Max-strategy iteration(SS13; GS07) is a method for computing the least solution
of a system of equations M of the form δ = F (δ) where δ are the template bounds,
and Fi, 0 ≤ i ≤ n is a finite maximum of monotonic and concave operatorsRn −→
R; in our case they are affine functions. Themax-strategy improvement algorithm
for affine programs is guaranteed to compute the least fixed point of F , and it has
to perform at most exponentially many improvement steps, each of which takes
polynomial time.

5.1 Algorithm

Semantic equations. The equation system M is constructed from the abstract
semantics of the program’s transitions:

for each l′ ∈ L : δl′ = max

(
{d0l } ∪ {R(δl)|(l, R, l′) ∈ R}

)
Exmample for Semantic Equations.

19



20 5.1. Algorithm

i = i + 1

if (i < A.length)
A[i] = 0

i = i + 1

if (i > A.length)

l0

l1

l2

The abstract domain looks like:

A : {0}dA1{i}?dA2{A.Length}?, i :

Where we denote the variables at different segments like dA1 and dA2

Consider the CFG above. The equations for this will look like following:

δ1,1 =

{
−∞
sup{dA′

1 |dA1 ≤ δ1,1 ∧ −dA1 ≤ δ1,2 ∧ i < A.length ∧ dA1 = 0}

δ1,2 =

{
−∞
sup{−dA′

1 |dA1 ≤ δ1,1 ∧ −dA1 ≤ δ1,2 ∧ i < A.length ∧ dA1 = 0}

Strategies. A strategy µ induces a ”subsystem” δ = F (δ) ofM in the sense that ex-
actly one argument Fi of themax operator on the right-hand side of each equation
δi = max(. . . , Fi(δ), . . . ) is chosen. Intuitively, this means that a strategy selects
exactly one ”incoming transition” for each variable or array segment in each loca-
tion l′.

Max-strategy improvement. lfp(M) is computedwith the help of themax-strategy
improvement algorithmwhich iteratively improves strategiesµuntil the least fixed
point lfp(µ) of a strategy equals lfp(M).

Algorithm 1Max-strategy iteration algorithm
while not d is a solution ofM do
µ := max_improveM(µ, d)
d := lfp(µ)

end while
return d
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The least fixed point lfp(µ) of a strategy µ can be computed by solving the LP /
SAT problem with the constraint system :

for each δl′ = R(δl) in µ : δl′ ≤ Tl′x
′ ∧ Tlx ∧R(x, x′)

where x and x’ are auxiliary variables and the objective function max i d i , i.e. the
sum of all bounds d.

µ := max_improveM(µ, d) iff:

– µ′ is “at least as good” as µ

– µ′ is ”strictly better for the changed equations”

These definitions and algorithms are taken from (SS13).

5.2 An Worked-out Example

We’ll show for the array initializatiion example once again.

i = 0

if(i<A.length)
A[i] = 0
i = i + 1

if(i>=A.length)

After initialization:



22 5.2. An Worked-out Example

A: {0}T{i}?T{A.Length}?

i = 0

if(i<A.length)
A[i]= 0
i = i + 1

if(i>=A.length)

A: {0}T{i}?T{A.Length}?

A: {0}T{i}?T{A.Length}?

Choose a strategy: The strategy is shown in red.

A: {0}T{i}?T{A.Length}?

i = 0

if(i<A.length)
A[i]= 0
i = i + 1

if(i>=A.length)

A: {0}T{i}?T{A.Length}?
i : [0 0]

Choose a different strategy.

A: {0}T{i}?T{A.Length}?

i = 0

if(i<A.length)
A[i]= 0
i = i + 1

if(i>=A.length)

A: {0}[0 0]{i}?T{A.Length}?
i : [0 0]

A: {0}[0 0]{A.Length}?
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This is how our algorithm works well in the problem.

5.3 Properties

Theorem 5.3.1 (Termination). The max-strategy algorithm for arrays terminates after
a finite number of iterations.

Proof. There is a finite number of strategies and each strategy is visited at most
once. Therefore, max-strategy iteration terminates after a finite number of im-
provement steps. At this point max-SI has no more strategy to visit and returns a
fixed-point.

Proof is contributed to (SS13). �

Theorem 5.3.2 (Soundness). The max-strategy algorithm for arrays computes a fixed
point.

Proof. Each abstract domain is an over-approximation of the concrete domain, and
fixedpoint computed using theMax SI enumerates all program paths. And till we
reach a fixedpoint, we find an strategy to improve. Therefore, if termination is
guaranteed, then soundness is also guaranteed. �





Chapter 6

Implementaion

Max Strategy iteration is smartly implemented in a tool called 2LS(SK16). To check
the effectiveness of our method in real cases, we have chosen to pick the tool and
implement the proposed method within that.

6.1 Components of 2LS

2ls takes a C program as input and send to SSAgenerator. SSA generator generates
SSA of the entire function and stores into a local_SSAt object. Now SSA goes to
template generator, where the guarded templates(see general technique section)
for those queries are generated. Guarded templates are then goes to strategy it-
eration module. Here the queries are formed. Here the queries are solved. To
improve d-constants(bounds) modified binary search is used to search over the
domain. This module outputs invariants. Now property checker module checks
desiredproperties by replacing functions. If the property satisfies, then return yes.
If not satisfied, then returns no. If the generated invariant is not strong enough to
prove the property, then returns unknown.

C code

SSA generator Templere generator

Strategy Iterator Invariants

Property Checker

Result
Yes | No | Unknown

The shaded modules are modified to make 2ls handle the array segmentation.

25



26 6.2. Contribution

We need to modify the template generator to generate templates for input and
output invariants. We also need to generate queries differently from loops. Thats
why strategy iteration module needs modification. Also, the solving techniques
of those techniques are different.

6.2 Contribution

6.2.1 Defining a new Domain Data Structure

We were needed to define an data structure for this domain of arrays. And made
the procedure to perform the strategy iteration over the domain.

The Abstract domain base classes are defined in domain.h header and classes in-
heriting that class are made to create specific domains. We have created a new
domain called array_segment_domain.cpp that uses some classes from Template
polyhedra domain tpolyhedrea_domain.cpp to represent things inside the array
segments.

6.2.2 Performing Max-SI

We modified the code that does the max strategy iterator part.



Chapter 7

Experiments and Conclusion

7.1 Theoretical Experiments

In this section, we would like to take some examples from SV-COMP benchmarks,
and some other sources and test whether they are provable within our proposed
domain and running an strategy iteration over it.

7.1.1 Array Copy Programs

#define N 100000
int main( ) {

int a1[N], a2[N], a, i, x;
for ( i = 0 ; i < N ; i++ ) {

a2[i] = a1[i];
}
for ( x = 0 ; x < N ; x++ ) {

__VERIFIER_assert(a1[x] == a2[x]);
}
return 0;

}

Generating an invariant over A - B, e.g., A - B : {0}[0,0]{i}>{A.len} would
have sufficed to prove the assertion. Using template domain would have helped
with this.

7.1.2 Initialization Modified

27



28 7.2. Conclusion

int n = 10, i = 0;
int[] A = new int[n];

while (i < n-i) {
A[i] = 0;
A[n-i] = 1;
i = i + 1:

}

Generating an invariant over A, e.g., A : {0}[0,0]{i}>{n-i-1}[1,1]{A.len}would
have sufficed to prove the assertion. This shows a more class of program, that
would have been solved with more than two domains, and is not solvable by less
than that.

7.2 Conclusion

This thesis proposes a technique for generating array invariant for array-manipulating
programs. For this purpose we have done a the following.

1. We followed an work by Cousot et. al.that defines an abstract domain for
abstract interpretation (CCL11). Anddefined adomain toworkwith inMax-
SI.

2. We demonstrated a process for generating invariant using Max-SI. The pro-
posedmethodsworkswellwith programs in a subclass of array-manipulating
programswhere the array is beingmanipulatedwithin an loop and the loop
counter has some relation with the index.

3. We finally proposed a design architecture for implementing our proposed
scheme within 2LS.

7.3 Future Work

There are a few parts that we have skipped and assumed to be given. If these parts
can be generated by some algorithm, then this would have been given optimal
invariant for more set of programs.

Within the array segment domain, we are unable to generate the number of bounds
or the expressions to be used in segment bounds. Any method in this area would
come in great help.

In our belief, Syntax Guided Synthesis (SyGuS) may help us in this purpose.
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