
Why Waste a Perfectly Good Abstraction?

Arie Gurfinkel and Marsha Chechik

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada.

Email: {arie,chechik}@cs.toronto.edu

Abstract. Software model-checking based on the CEGAR framework can be
made more precise by separating non-determinism from the lack of information
due to abstraction. The two can be modeled individually using four-valued Bel-
nap logic. In addition, this logic allows reasoning about negations effectively and
thus enables checking of full CTL. In this paper, we present YASM – a new sym-
bolic software model-checker. Preliminary experience with YASM shows that our
implementation can effectively construct and analyze Belnap models without a
substantial overhead when compared to its classical counterparts.

1 Introduction

Symbolic software model-checking, pioneered by the Microsoft’s SLAM [1] project, is
a technique that works directly on code and checks the program by combining auto-
mated predicate abstraction [13] with counterexample-guided abstraction refinement
(CEGAR) [6]. The approach is divided into three phases: abstraction, model-checking,
and refinement. During the abstraction phase, a theorem-prover is typically used to
construct, using a list of predicates, a finite model that approximates the program being
verified. The model is analyzed by the model-checker, and counterexamples generated
by it are used to find additional predicates, if necessary. The process continues until
either the property is successfully proved or disproved, or resources are exhausted.

For example, suppose our goal is to verify whether the line labelled P1 can be
reached in the (deterministic) C program shown in Figure 1(a). This can be expressed
in CTL as AG(pc 6= P1). Figure 1(c)-(e) gives a series of predicate programs which are
automatically constructed while checking this property. The abstraction in Figure 1(c)
is just the control-flow graph of the program, where the symbol ‘∗’ indicates that the
condition was abstracted away, and its value is not known. ‘∗’ is thus interpreted as
“either true or false”, and treated as a non-deterministic choice during model-checking.
Verifying AG(pc 6= P1) on this abstraction yields false. It is possible to resolve non-
determinism so as to reach the line labeled P1, i.e., by exiting the while and entering
the if statement. We then check the feasibility of this execution in the concrete pro-
gram, with the goal of replacing the undesired non-determinism. Specifically, a pred-
icate x = 2 is needed to determine whether the control flow enters the if statement.
The new abstraction is shown in Figure 1(d): x = 2 becomes true during initialization,
is not affected by the body of the loop, and is checked in the condition of the if state-
ment. Now, the analysis yields that the property is violated if the loop terminates, and
the condition y ≤ 2 of the loop is added to the list of predicates, yielding an abstraction

(a)

void main (void) {
1: int x = 2;

int y = 2;
2: while (y <= 2)
3: {y = y - 1;}
4: if (x == 2)
5: {P1:}
6:}

(d)

void main (void) {
(x=2) := T;
while (*)

{(x=2) := (x=2);}
if (x=2)

{P1:}
}

(b)

1

2

34

P1

6

x := 2
y := 2

y > 2
y := y − 1

y ≤ 2

x = 2

x 6= 2

skip

skip

(c)

void main (void) {
while (*)

{}
if (*)

{P1:}
}

(e)

void main (void) {
(x=2) := T;
(y <= 2) := T;
while (y<=2)

{(y<=2) := (y<=2)? T : *;
(x=2) := (x=2);}

if (x=2)
{P1:}

}

Fig. 1. A simple C program (a), its control-flow graph (b) and its predicate abstractions: (c): no
predicates; (d): after adding x = 2; (e): after adding y ≤ 2.

(a)

int x;
x = 0;
if (x > 0)

{x++}
else

{x--}
P1:

(b)
if (*)

{}
else

{}
P1:

(c)

int x = 0;
if (fopen (...) != NULL)
{ if (x > 0)

{x++;}
else
{x--}

P1:
}

(d)

if (NONDET)
{ if (*)

{}
else
{}

P1:
}

Fig. 2. (a): a C program where line P1 is not reachable; (b): abstraction of (a) without predicates;
(c): a non-deterministic C program; (d) abstraction of (c).

in Figure 1(e). The statement y = y− 1 is abstracted as follows: if y ≤ 2 is true, then
decrementing y leaves it as true; otherwise, its value is unknown. The predicate x = 2
is not affected. The predicate program in Figure 1(e) is sufficient to determine that the
loop does not terminate, and thus the propertyAG(pc 6= P1) holds.

Now consider an example in Figure 2(a). Here, the property ϕ = AG(pc 6= P1)
fails in the concrete program. However, existing techniques (i.e., SLAM or BLAST) will
not be able to determine this from the abstract program in Figure 2(b). To find a pos-
sible counterexample to ϕ, e.g., an execution which passes through the else part of
the if statement, these techniques need to add another predicate, x > 0, and repeat
the refinement and the model-checking phases. On the other hand, a human can easily
determine that ϕ fails just by looking at the abstract program in Figure 2(b): line P1 is
reachable along every path, regardless of which of these are feasible. Thus, the abstrac-
tion in Figure 2(b) is conclusive for ϕ, and we will use it in our analysis. Specifically,
given an abstraction and a property AG(pc 6= x) for some line x, we first attempt to
prove it directly, just like other approaches. If the proof fails, we then attempt to prove
its negation, i.e., that pc = x is always reachable, without considering which abstract
executions are possible. If this proof fails as well, we gather additional predicates and
proceed to the refinement phase.

So far, we have assumed that programs are deterministic. This assumption is unreal-
istic even for sequential programs, e.g., because of user input or other external factors,
such as presence or absence of files that the program attempts to use. For example,
consider the program in Figure 2(d) which abstracts the one in Figure 2(c). Here, the
computation not leading to P1 occurs when the file cannot be opened; since this be-
haviour is controlled by the environment, there exists a concrete execution leading to
P1. Thus, we can conclude AG(pc 6= P1) fails, without any further refinements or
analysis of the feasibility of this execution.

(a) (b)f

> ⊥

t

⊥

t f

>

Fig. 3. Belnap logic: (a) truth order; (b) information order.

In this paper, we present an approach to proving truth and falsity of reachability
properties. It is based on treating unknowns resulting from abstraction, ‘∗’, differ-
ently from unknowns resulting from the environment, non-determinism, as shown in
the above example. Our approach is similar to the one taken by Reps and Sagiv [26] in
the sense that it uses a logic with additional truth values (we use Belnap logic [4] which
is an extension of Kleene logic [22] used in [26]) enabling us to perform both checks
during a single analysis phase. The analysis yields one of the following answers: (1)
the property holds; (2) the property fails (as in the model in Figure 2(d)); (3) the value
of the property depends on the resolution of ’∗’, and thus the abstraction needs to be
further refined.

We also present an implementation of this approach via a symbolic software model-
checker YASM1. Although similar approaches have been studied theoretically, e.g. see [8,
12], we believe this to be the first efficient implementation with performance that is
comparable to SLAM and BLAST. The implementation makes use of a number of ideas
from existing CEGAR approaches, which we have generalized for our purposes. In par-
ticular, our implementation is applicable to programs with non-deterministic control-
flow, and is not restricted to reachability analysis.

The rest of this paper is organized as follows. After giving the necessary back-
ground in Section 2, we describe, in Section 3, the process of creating and interpret-
ing abstractions of programs we want to check. We discuss three abstract semantics:
over-approximation, under-approximation and exact approximation, used in YASM. In
Section 4, we describe model-checking of the models constructed via the exact approx-
imation and the use of counterexamples for conclusiveness, generated by the model-
checker, for computing refined abstractions. Exact approximations enable the use of
effective techniques for improving the speed and the precision of the analysis. We dis-
cuss a few of them in Section 5. We describe the tool and give its performance data in
Section 6, and conclude in Section 7 with a comparison of our approach with related
work, a summary of the paper, and a discussion of future research directions.

2 Background

In this section, we review multi-valued logics, define multi-valued Kripke, and a multi-
valued version of the modal µ-calculus.

Logics. Boolean logic 2 is a set {t, f} together with the truth ordering relation v, s.t.
f v t. Conjunction ∧ and disjunction ∨ represent meet and join with respect to the truth
ordering. Additionally, a negation operator is defined as ¬t , f and ¬f , t. Kleene
logic [22] 3 extends 2 with an additional element ⊥, representing “unknown” informa-
tion. In this paper, ⊥ is used to represent ‘∗’, discussed in Section 1. The truth ordering

1 YASM stands for a Yet Another Software Model-checker.

of the logic is extended as f v ⊥ and ⊥ v t, and negation as ¬⊥ = ⊥. We define
an additional ordering �, that relates values based on the amount of information; thus
⊥ � t and ⊥ � f, so that ⊥ represents the least amount of information. Belnap logic [4]
4 extends 3 with an additional element >. The truth ordering is extended so that f v >
and > v t, and negation as ¬> = >, i.e., > is equivalent to ⊥ with respect to this
ordering. Finally, the information ordering is extended by making > be the largest ele-
ment, i.e., f � > and t � >. This makes 4 into the smallest structure containing 2 that
is a complete distributive lattice under both truth and information orderings. The truth
and information orderings of 4 are shown in Figure 3.

Temporal Logic. Temporal logic properties are specified in propositional µ-calculus
Lµ(AP) [23]. Properties are often expressed in CTL, which is a subset of Lµ [7].

Definition 1. Let Var be a set of variable names, and AP be a set of atomic proposi-
tions. The logic Lµ(AP) is the set of formulas defined as:

ϕ ::=Z | p | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | µZ · ϕ(Z)

where p ∈ AP , Z ∈ Var, and ϕ(Z) is syntactically monotone in Z.

We use the following syntactic abbreviations:

ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) �ϕ = ¬♦¬ϕ νZ · ϕ(Z) = ¬µZ · ¬ϕ(¬Z)

The semantics of Lµ is defined with respect to an L-valued Kripke structures.

Definition 2. An L-valued Kripke structure over a set of atomic propositions AP is
a tuple K = 〈S,L, R, I〉, where S is a set of states, L ∈ {2,3,4} is a logic, R :
S × S → L is a transition relation, and I : AP → [S → L] is an interpretation of
atomic propositions that assigns to each atomic proposition a mapping from states to
values in L.

We often refer to L-valued Kripke structures simply as Kripke structures when L is
irrelevant or clear from the context. For a transition relation R : S × S → L, we define
the preimage of Q : S → L w.r.t. R, pre[R] : [S → L] → [S → L], as

pre[R](Q) , λs ∈ S ·
∨

t∈S R(s, t) ∧Q(t)

pre[R](Q) is a set of states that have an R-successor in Q. A dual of pre is wp:

wp[R](Q) , ¬pre[R](¬Q)

wp[R](Q) is a set of states whose R-successors are all in Q.
The semantics of Lµ formula ϕ in a Kripke structure K, written ||ϕ||Kσ , is defined

inductively on the structure of the formula, where σ : Var → LS is an object assignment
for free variables:

||p||Kσ , I(p) ||z||Kσ , σ(z)

||ϕ ∧ ψ||Kσ , ||ϕ||Kσ ∧ ||ψ||Kσ ||¬ϕ||Kσ , ¬||ϕ||Kσ

||µx · ϕ||Kσ , lfpv
(

λS · ||ϕ||K
σ[x7→S]

)

||♦ϕ||Kσ , pre[R](||ϕ||Kσ)

where lfpvf is the v-least fixpoint of f . For a closed Lµ formula ϕ, ||ϕ||Kσ = ||ϕ||Kσ′

for any σ and σ′, written as ||ϕ||K . For a Kripke structure K and a state s, we write
K, s |= ϕ to mean ||ϕ||K(s) = true. Note that when K is 4-valued,K, s 6|= ϕ does not
mean that K, s |= ¬ϕ, i.e., proving that ϕ is false is not the same as failing to prove
that ϕ is true. Finally, we define �Lµ and ♦Lµ to be subsets of Lµ, where the modal
operations are just � and ♦, respectively, and negation is allowed only at the level of
atomic propositions.

3 Program Abstraction

In this section, we show how programs are approximated by Boolean programs and
present three approximation semantics.

3.1 Programs

Operations. Let V denote the set of program variables. A program is built out of oper-
ations Ops of which there are two kinds: (1) an assignment l := e, where l is a variable
from V and e is an expression over program variables, and (2) an operation assume(e),
where e is a boolean expression. Assume operations are used to model conditional
branches. We also use an operation skip as a syntactic abbreviation for assume(t).

Programs as Control Flow Graphs. A Control Flow Graph CFG is a structure G =
〈Loc, δ〉, where Loc is a finite set of locations, and δ : Loc × Loc → 2 is a transition
relation. A program is modeled by a labeled CFG 〈G, τ〉, where τ labels each edge
of the CFG G with an operation from Ops. A CFG corresponding to the program in
Figure 1(a) is shown in Figure 1(b).

Programs as Kripke Structures. A state is a type-correct valuation of all program
variables. We use S to denote the set of all states, and s(x) to denote the value of the
variable x in s. Each operation op corresponds to a transition relation S(op) defined as:

S(op)(s, t) ⇔ t =

{

s if op is assume(e) and s |= e

s[l 7→ s.e] if op is l := e

Finally, a program Prg = 〈G, τ〉 corresponds to a Kripke structure KPrg , 〈Loc ×
S,2, RPrg, IPrg〉, where R and I are defined as:

RPrg(〈l, s〉, 〈k, t〉) , δ(l, k) ∧ (S(τ(l, k)))(s, t)

IPrg(pc = j)(〈l, s〉) , (l = j)

IPrg(e)(〈l, s〉) , s |= e

and e is a boolean expression.
The semantics of Lµ is extended to programs in the obvious way: a program Prg

satisfies ϕ iff the corresponding Kripke structure KPrg satisfies ϕ.

3.2 Boolean Programs

Boolean Operations. Let P = {p1, . . . , pn} be a set of quantifier-free first-order
boolean predicates over program variables V . A Boolean (or Predicate) program [2]
is a program constructed out of Boolean operations BOps. As before, the operations
are divided into two kinds: (1) a parallel assignment p1 := e1, . . . , pn := en, and (2)
an operation assume(e). We refer to elements of a parallel assignment as updates, e.g.,
p1 := e1, p2 := e2 consists of two updates, for predicates p1 and p2, respectively. The
expressions on the right-hand-side of the assignment and in the argument of the assume
operation are partial boolean expressions with the following grammar:

pb expr ::= ∗ | choice(bool expr, bool expr) | ¬pb expr | bool expr

Intuitively, ∗ stands for an unknown expression, and choice(a, b) – for an expression that
evaluates to true when a is true, to false when b is true, and whose value is unknown
otherwise. In Boolean programs, we use skip as a syntactic abbreviation for a parallel
assignment p1 := choice(p1,¬p1), . . . , pn := choice(pn,¬pn), and ¬choice(a, b) for
choice(b, a). As before, a Boolean program is a CFG whose edges are labeled with
operations from BOps.

Syntactic Abstraction. We now show how a Boolean program BPrg is used to approx-
imate a program Prg by describing the behavior of Prg using a finite set of predicates.
We present the approximation in a bottom-up fashion, starting with approximation of
expressions, and ending with approximation of programs.

A partial boolean expression pe approximates a boolean expression e (denoted as
pe � e), if (a) pe is a boolean expression logically equivalent to e, (b) pe is the ∗
expression, (c) pe is of the form choice(a, b) and a logically implies e, and b logically
implies ¬e. For example, y > 0 is approximated by choice(y > 1, f). Note that from
the perspective of the approximation, ∗ is equivalent to choice(f, f).

The approximation is extended to the assume operations in the obvious way: assume(pe) �
assume(e) iff pe � e, e.g., assume(y > 0) is approximated by assume(choice(y >

1, f)). A single update p:=choice(a, b) approximates an assignment l:=e if choice(a, b)
approximates the weakest pre-condition of the predicate p with respect to the assign-
ment. In other words, a approximates the condition under which p becomes true after
the assignment, and b approximates the condition under which p becomes false. For ex-
ample, a program assignment y :=y−1 is approximated by (y ≤ 2):=choice(y ≤ 2, f).
Finally, a parallel assignment A approximates an assignment l := e if all update oper-
ations of A approximate l := e. For example, y := y − 1 is approximated by (y ≤
2) := choice(y ≤ 2, f), (x = 2) := choice((x = 2),¬(x = 2)).

We say that a Boolean program BPrg = 〈G, τB〉 approximates a program Prg =
〈G, τ〉 if each operation of BPrg approximates the corresponding operation of Prg.
Since we have not yet given an operational semantics to Boolean programs, we call
this approximation a syntactic predicate abstraction. There are standard techniques to
compute such abstractions [1, 13].

3.3 Three Semantics of Boolean Programs

In order to evaluate temporal properties on Boolean programs, we must equip them with
Kripke semantics. The only difficulty is to find a proper way to model the partial expres-
sions, i.e., ∗ and choice(a, b). In this section, we describe three choices for this approx-
imation: (a) an over-approximating semantics where “unknown” is modeled as a non-
deterministic choice between true and false – this is the semantics used by most existing
model-checkers such as SLAM [2] and BLAST [20]; (b) an under-approximating seman-
tics where “unknown” is modeled by a partial assignment; and (c) the exact semantics
that uses Belnap logic to combine over- and under-approximation – this is the seman-
tics used by our model-checker YASM. The three semantics are illustrated on a parallel
assignment A : (y ≤ 2) := choice(y ≤ 2, f), (x = 2) := choice((x = 2),¬(x = 2))
that approximates y := y − 1 using predicates y ≤ 2 and x = 2.

Over-Approximation. In this case, a state is a boolean valuation of predicates, i.e., it
is an element of 2

P . Each operation bop in BOp is associated with a transition rela-
tion O(bop) ⊆ 2

P × 2
P , such that abstract states a and b are not connected if we can

conclude from the boolean operation that there is no transition between the correspond-
ing states of the concrete program. That is, if the current state a does not satisfy the
precondition for p to become false, a has a successor, b, in which p is true.

Formally, the semantics of an update operation is

O(p := choice(q, r))(a, b(p)) ⇔ (b(p) = t and a 6|= r) or (b(p) = f and a 6|= q)

and semantics of a parallel assignment is the conjunction of all of its updates:

O({pi := choice(qi, ri)}n
i=1)(a, b) ⇔

∧n

i=1(O(pi := choice(qi, ri))(a, b(pi)))

For our running example, a part of a transition relation O(A) is shown in Figure 4(a).
Note that a state a1 corresponding to concrete states where (y 6≤ 2) and x = 2 has two
outgoing transitions, to states a0 and a1, indicating that it is possible for y ≤ 2 to non-
deterministically become true or false in the next state. That is, the fact that the value of
y ≤ 2 is unknown in the next state is modeled by non-determinism.

Finally, the semantics of the assume operator is:

O(assume(e))(a, b) ⇔ a 6|= ¬e and O(skip)(a, b)

Under-Approximation. In this case, a state is a partial valuation of predicates, i.e, an
element of 3

P , or a “tri-vector” [1]. Each operation bop ∈ BOp is associated with a
transition relation U(bop) ⊆ 3

P × 3
P , such that each predicate p is true in the next

state, b, only if the current state, a, satisfies a precondition for p to become true.
Formally, the semantics of an update operation is

U(p := choice(q, r))(a, b(p)) ⇔ (b(p) = t and a |= q) or (b(p) = f and a |= r) or (b(p) = ⊥)

and semantics of a parallel assignment is the conjunction of all of its updates:

U({pi := choice(qi, ri)}n
i=1)(a, b) ⇔

∧n

i=1

(

U(pi := choice(qi, ri))(a, b(pi))
)

(a) (b) (c)

y ≤ 2
x = 2

y 6≤ 2
x = 2

a0

a1

y ≤ 2
x = 2

y 6≤ 2
x = 2

y ≤ 2

x = 2

a0

a1

a2

a3

y ≤ 2
x = 2

y 6≤ 2
x = 2

y ≤ 2

x = 2

a0

a1

a2

a3

⊥

>

>

>

t

>

>

⊥

Fig. 4. Fragment of a transition relation: (a) over-approximation, (b) under-approximation, and
(c) exact approximation.

1

2

34

P1

6

t

t

⊥⊥

t t

t

t

1

2

34 3,4

P1

6

t

t

⊥⊥

t t

t

t

>

t

int x;
INIT:
x = 10;
P1:while(x > 0)
x = x - 1;

END:

int x = 4;
if(x > 0){
x=(int)(sqrt(x)+xˆ3);
if(x < 212){

x=(int)((3*x)/13);
if(x*x > 100){

; }}}
END:

(a) (b) (c) (d)

Fig. 5. (a) a Kripke structure corresponding to the Boolean program in Figure 2(d); (b) improving
precision of if; (c) and (d) two example programs.

For our running example, a part of a transition relation U(A) is shown in Figure 4(b).
Here, state a1 has a single outgoing transition to state a3 indicating that in the next state
the value of y ≤ 2 is unknown, and x = 2 remains true.

Finally, the semantics of the assume operator is:

U(assume(e))(a, b) ⇔ a |= e and U(skip)(a, b)

Exact Approximation. This approximation combines the over- and under-approximating
semantics in a single 4-valued model. Thus, the states are partial valuations of predi-
cates, i.e., elements of 3

P . Each operation bop in BOp is associated with a 4-valued
transition relation E(bop) : 3

P × 3
P → 4. Intuitively, a transition is t if it appears both

in the over- and the under-approximations,⊥ if it appears only in the over-approximation,
and > if it appears only in the under-approximation. For our running example, a part of
a transition relation E(A) is shown in Figure 4(c).

To define the semantics formally, we first introduce a function eval():

eval(ϕ, a) ,

t if a |= ϕ

f if a |= ¬ϕ

⊥ if a 6|= ϕ and a 6|= ¬ϕ

Then, the semantics of an update is

E(p := choice(q, r))(a, b(p)) =

eval(choice(q, r), a) if b(p) = t

eval(¬choice(q, r), a) if b(p) = f

> if b(p) = ⊥

and the semantics of a parallel assignment is the conjunction of all of its updates:

E({pi := choice(qi, ri)}n
i=1)(a, b) ⇔

∧n

i=1

(

E(pi := choice(qi, ri))(a, b(pi))
)

Finally, the semantics of the assume operation is:

E(assume(e))(a, b) , eval(e, a) ∧ E(skip)(a, b)

The semantics of operations is extended to Boolean programs in an obvious way.
Thus, each semantics associates a Boolean program with a Kripke structure. For exam-
ple, the Kripke structure corresponding to the boolean program in Figure 2(d) is shown
in Figure 5(a). The following theorem shows that over- and under-approximating se-
mantics preserve universal and existential fragments of Lµ, respectively, whereas the
exact semantics preserves full Lµ.

Theorem 1. Let Prg and BPrg be a program and its Boolean abstraction, respec-
tively. Then, for an abstract state, a, and a corresponding concrete state, s, the follow-
ing holds:

1. ∀ϕ ∈ �Lµ · O(BPrg), a |= ϕ ⇒ Prg, s |= ϕ

2. ∀ϕ ∈ ♦Lµ · U(BPrg), a |= ϕ ⇒ Prg, s |= ϕ

3. ∀ϕ ∈ Lµ · E(BPrg), a |= ϕ ⇒ Prg, s |= ϕ

The over-approximating semantics has been used in standard software model-checking
tools to prove truth ofAG properties. Our approach uses the exact semantics, which en-
ables us to prove truth and falsity of such properties. We discuss it in the next section.

4 Abstract Model-Checking

To model-check a temporal logic formula ϕ in a state s and location l of a Boolean pro-
gram BPrg, we use the techniques of Section 3 to construct a 4-valued Kripke structure
KBPrg and then compute the value of ||ϕ||KBPrg (〈l, s〉). The latter step involves multi-
valued model-checking, e.g., using the algorithm implemented in χChek [5]. In Sec-
tion 4.1, we describe how to perform model-checking with Belnap logic using standard
BDD packages.In Section 4.2, we show how to find additional predicates to refine the
abstraction if the result of model-checking a formula ϕ is inconclusive.

4.1 Model-Checking

A symbolic multi-valued model-checking algorithm depends on an efficient represen-
tation and manipulation of Belnap functions, i.e., functions from some set S into 4.
These functions are represented in YASM as BDDs using the ideas below. First, any set
S can be encoded by r boolean variables v1, . . . , vr, for a sufficiently large r. Thus, we
only need to find a representation for Belnap functions whose domain is 2

r. Second,
any Belnap function f : 2

r → 4 can be represented by a pair of boolean functions
〈f>, f⊥〉 over 2

r [16], where f> is λx · f(x) w > and f⊥ is λx · f(x) w ⊥. With
this decomposition, f(x) is equivalent to (f>(x) ∧ >) ∨ (f⊥(x) ∧ ⊥). The following
equivalences enable the direct computation of conjunction and disjunction of Belnap

functions: (a) f ∧ g = 〈f> ∧ g>, f⊥ ∧ g⊥〉; (b) f ∨ g = 〈f> ∨ g>, f⊥ ∨ g⊥〉; (c)
¬f = ¬〈f>, f⊥〉 = 〈¬f⊥,¬f>〉. Thus, we can represent each Belnap function by a
pair of BDDs, one for each boolean function in the decomposition. Third, a pair of
boolean functions 〈f, g〉 over variables v1, . . . , vr is represented by a single boolean
function h with a new boolean variable z, using the encoding h = z ∧ f ∨ ¬z ∧ g. So,
Belnap functions can be represented and manipulated as standard BDDs at the expense
of one additional variable. Furthermore, as many other symbolic model-checkers, we
use the control-flow graph to partition the transition relation and its pre-image compu-
tation.

4.2 Abstraction Refinement

Whenever model-checking ϕ is inconclusive, our model-checker produces a behaviour
of the system explaining why this is the case [15, 14]. So, we can use any of the existing
techniques, e.g., [21], to determine whether this trace is feasible and use it to obtain
additional predicates to refine the abstraction. However, in the multi-valued framework,
checking feasibility of the trace is not necessary: we know exactly which part is incon-
clusive, and concentrate the refinement on it.

For example, consider the program in Figure 2(c), its abstraction in Figure 2(d), and
the corresponding Kripke structure in Figure 5(a). Since the abstraction is built without
any predicates, the Kripke structure is essentially equivalent to the CFG of the program.
In this abstraction, ||EF (pc = P1)||(1) is inconclusive, i.e., ⊥, which is exemplified
by a path 1, 2, 4, P1 with an ⊥-transition between states 2 and 4. In this example, the
⊥-transition is the result of executing a boolean operation assume(∗) that syntactically
abstracts assume(x > 0) in the concrete program. Thus, the value of the predicatex > 0
is required to make the proof conclusive, which is done by refining the abstraction with
this predicate, and repeating model-checking on the refined program.

In general, a path exemplifying why the result of model-checking is inconclusive
always contains at least one ⊥-transition. Suppose such a transition is between states
〈k, a〉 and 〈l, b〉, where k and l are program locations, and a and b are boolean valuations
of predicates. By construction, this transition corresponds to a boolean operation bop
such that E(bop)(a, b) = ⊥. If bop is a parallel assignment, then by the definition of the
exact semantics there exists a predicate p and an update of the form p := choice(q, r)
in bop such that a 6|= q and a 6|= r. The idea is to refine the update, by strengthening
the expressions q and r by the precondition for p to become true after execution of
the concrete operation op corresponding to bop. This is done by refining the Boolean
program with the predicate corresponding to the weakest precondition of p with respect
to op, i.e., wp[op](p).

For example, suppose we have model-checked a Boolean program with two pred-
icates y ≤ 2 and x = 2, and the cause of inconclusiveness is a ⊥-transition between
states a = {(y ≤ 2) 7→ f, (x = 2) 7→ t} and b = {(y ≤ 2) 7→ t, (x = 2) 7→ t} Further,
assume that the corresponding boolean operation is (y ≤ 2) := choice(y ≤ 2, f), (x =
2) := choice(x = 2, x 6= 2), which is the result of abstracting the concrete operation
y :=y− 1. The transition is unknown since the prestate a does not guarantee that y ≤ 2
is true or false in the next state, i.e., a 6|= y ≤ 2 and a 6|= f. We can then refine the
Boolean program by adding the predicate wp[y := y − 1](y ≤ 2) = (y ≤ 3).

The above approach to abstraction-refinement is not limited to reachability prop-
erties. Our multi-valued model-checker can provide explanations to inconclusiveness
of arbitrary CTL properties in the form of proofs [15], which we mine for additional
predicates.

5 Exploiting Exact Approximations

The use of precise (Belnap) abstractions, described in Section 3, opens way to creating
a number of techniques for improving the speed and the precision of the analysis. In
this section, we discuss two of them.

Reusing Results of Previous Abstractions. One of the obvious limitations of the CE-
GAR framework is the fact that intermediate results are not shared between succes-
sive abstraction-refinement iterations. For example, consider applying the framework
to check whether the propertyEF (pc = END) holds in location INIT in the program in
Figure 5(c).

In the first iteration, we conclude that reachability of END depends on the value of
x > 0, which is added to the list of predicates. During the model-checking phase of the
second iteration, it is proved that END is reachable from P1 if x ≤ 0, i.e., ||EF (pc =
END)||(〈P1, {(x > 0) 7→ f}〉) holds in the corresponding Kripke structure. Additionally,
during the refinement phase, a new predicate x > 1 is added. The third iteration once
again reproves that END is reachable from P1 provided that x ≤ 0 or x ≤ 1, adding
a predicate x > 2. The process continues, repeating the work done at the previous
iterations, until all predicates of the form x > i, where 0 ≤ i ≤ 10, are added, and
termination of the loop is established.

To reuse results of previous computations, we must first identify which results are
preserved between iterations. For a program Prg, let KP be a Kripke structure ab-
stracting Prg using predicates P = {p1, . . . , pn}, constructed during an iteration i,
and let KP ′ be a Kripke structure constructed during the i + 1 iteration using predi-
cates P ′ = P ∪ {pn+1}. From the construction of the abstractions, ||ϕ||KP (〈l, u〉) �
||ϕ||KP ′ (〈l, v〉) for a formula ϕ and those states 〈l, v〉 of KP and 〈l, u〉 of KP ′ , where
v(pi) = u(pi) for all i ≤ n (i.e., v and u agree on the values of the first n predicates).
In particular, if the concretization of v is not empty, then, if ϕ is either t or f in 〈l, u〉,
it is correspondingly t or f in 〈l, v〉. This allows us to use ||ϕ||KP , the result of model-
checking ϕ on KP , to help compute ||ϕ||KP ′ Formally, we define DP as follows:

DP (〈l, 〈u1, . . . , un+1〉〉) =

(

t if ||ϕ||KP (〈l, 〈u1, . . . , un〉〉) = t

f otherwise

The function DP is an under-approximation of ||ϕ||KP ′ : for any state s of KP ′ with
a non-empty concretization, DP (s) v ||ϕ||KP ′ (s). If ϕ is computed using a least fix-
point, e.g., ϕ = EFψ, DP can be used as the starting point in computing ϕ on KP ′ .
For formulas that are computed using a greatest fixpoint, an over-approximation with
respect to the truth ordering can be constructed and used in a similar manner. For a
formula ϕ = EFψ, the above optimization computes, at iteration i + 1, reachability
of states proved to satisfy EFψ at iteration i. In our example, this results in EF (pc =

END) during the first and the second iteration, EF (pc = END ∨ (pc = P1 ∧ x ≤ 0))
during the third, EF (pc = END ∨ (pc = P1 ∧ x ≤ 1)) during the fourth, etc. In the
standard approach, we would have been checking EF (pc = END) from scratch after
each refinement.

Handling Conditional Statements. In this paper, every abstract state corresponds to
a unique control flow location, which simplifies construction of the abstract model but
limits its precision. Recall that the goal of checking our program in Figure 2(d) and
its corresponding Kripke structure in Figure 5(a) was to establish whether the location
pc = P1 is reachable. Intuitively, model-checking begins by labeling node P1 by t, i.e.,
P1 is reachable from itself, and then propagates this labeling along the edges of the
Kripke structure. Thus, in the second iteration, nodes pc = 4 and pc = 3 are labeled
by t, i.e., pc = P1 is definitely reachable from these nodes. In the third iteration, we
run into a problem. We would like to conclude that pc = P1 is reachable from the node
pc = 2 – it is reachable from both branches of the if-statement. However, according to
our algorithm, the value at pc = 2 is obtained by (a) propagating the labeling of pc = 3
through the (2, 3)-edge, (b) propagating the labeling of pc = 4 through the (2, 4)-edge,
and (c) taking a disjunction of (a) and (b). Thus, after the third iteration, the node pc = 2
is labeled with (⊥ ∧ t) ∨ (⊥ ∧ t) = ⊥, allowing us to conclude only that pc = P1 is
⊥-reachable from pc = 2.

The cause of this problem is that in our abstract domain, we cannot express that
one of the branches of the if-statements is taken, although we do not know which. One
solution is to increase the abstract domain to include a state corresponding to several
control flow locations. Figure 5(b) shows a possible abstraction with an additional ab-
stract state pc = (3, 4), corresponding to the set of program states in which the control
location is either 3 or 4. It has a t-transition to pc = P1 since all states corresponding
to it have a transition there, and has a >-transition from pc = 2, indicating that the
execution of the if-statement definitely results in the control passing to either location
3 or 4. In this case, after the second iteration of the model-checking algorithm, nodes
P1, 3, 4, and (3, 4) are labeled with t, and the third iteration results in the desired result:
(⊥ ∧ t) ∨ (> ∧ t) ∨ (⊥ ∧ t) = t.

Additional abstract states solve our problem; however, they can significantly in-
crease the size of the abstract model and complicate the abstraction process. In YASM,
we take a different approach, similar in spirit to “hyper-transitions” (e.g., [24, 27, 9]).
Instead of increasing the abstract domain, we use the fact that for any concrete (2-
valued) left-total transition relation R, wp[R](Q) ⊆ pre[R](Q) – if all successors of
a state s are in Q, then at least one successor is in Q. Thus, the pre-image com-
putation of an abstract transition relation Ra can be augmented from pre[Ra](Q) to
pre[Ra](Q)∨(wp[Ra](Q) � t), i.e., a state is assigned t if either it has a definite succes-
sor in Q, or all of its non-f successors are definitely in Q. In our example, this changes
the third iteration of model-checking of the Kripke structure in Figure 5(a) as follows:
in addition to computing pre along the edges (2, 3) and (2, 4), wp along each edge is
computed to be ¬⊥ ∨ t = t, and the node pc = 2 is marked with t as desired. Thus, we
can obtain a conclusive abstraction without the need to add the predicate x > 0.

Our approach also enables us to give definite results for certain programs with non-
linear predicates. Consider the program in Figure 5(d). If the goal of a successful model-

Name LOC YASM Result BLAST

Iterations # of Pred Time (sec) Time (sec) # of Pred

tlan 6885 4 3 15.4 t 52 9
qpmouse 4065 3 2 2.5 t 1 2
qpmouse err 4065 12 20 5.7 f – –
s3 srvr 2261 3 30 2.9 t 16.6 15
s3 srvr.3 2240 3 38 25.1 t 152 20

Table 1. Experimental results.

checking run is to examplify the path to END (as is the case in standard software model-
checking approaches), the presence of complex mathematical operations will make the
theorem-proving quite difficult, if not impossible. Our approach enables us to avoid
these problems: we simply conclude that the path to END exists, whether it goes through
the nested if statement or not. For such cases, we effectively perform context-sensitive
slicing, removing parts of the abstraction which are not necessary to achieve a conclu-
sive answer.

6 Experiments

The techniques described in this paper have been implemented in a software model-
checker YASM. YASM is written in JAVA and uses theorem prover CVC Lite [3] to
approximate program statements, and CUDD [28] library as a decision diagram engine.

Table 1 summarizes the performance of YASM on several programs based on the
examples distributed with BLAST [20]. The experiments were performed on a Pentium
4 2.4 GHz machine running Linux 2.4.20. For each experiment, we list the number of
iterations required by the abstraction-refinement phase, the final number of predicates,
the overall model-checking time, and the final analysis result. For example, running
YASM on a 4065-line qpmouse program took three iterations and yielded two predi-
cates, in 2.5 seconds, whereas BLAST solved this problem in 1 second, also using two
predicates. For every example, we checked whether an error condition is unreachable,
which holds everywhere except qpmouse err.

For these experiments, YASM was configured to prefer adding new predicates in-
stead of computing a more precise abstraction. Our results clearly show that the running
time of YASM is comparable to that of BLAST. We ran the latter as a baseline, to deter-
mine a reasonable performance for a software model-checker: a more direct comparison
is not possible because the techniques used in the two model-checkers are significantly
different. We do not report the results of running BLAST on qpmouse err because
the answer it gives when error is reachable is unsound: the paths reported by the tool
are often infeasible.

7 Conclusion and Related Work

In this paper, we have presented YASM – a BDD-based software model-checker that
combines automatic predicate abstraction-refinement with reasoning over Belnap logic.
Our experience indicates that the CEGAR framework can be successfully extended to

do proofs of reachability and proofs of unreachability, using the same abstraction. This
approach allows us to shorten the abstraction-refinement cycle, is applicable to pro-
grams with non-deterministic control-flow, and provides support for model-checking of
arbitrary CTL formulas.

There has been a lot of progress in applying automatic predicate abstraction of Graf
and Saı̈di [13] to software model-checking. The approach closest to ours is the one
taken by SLAM [1] – YASM simply reinterprets SLAM’s boolean programs using 4-
valued semantics. Like our work, [25] makes a distinction between “non-deterministic”
and “unknown” transitions and shows that performance of an explicit-state software
model-checker is improved by guiding it towards the former. In our terminology, this
would mean guiding the search to prefer non-⊥ transition, which happens automatically
in our (symbolic) approach.

4-valued Kripke structures and their application to abstraction are equivalent to
Mixed Transition Systems [8, 18]. They can also be seen as an extension of Modal
Transition Systems [11] that are defined using Kleene logic.

We are not the first to use multi-valued logic to model abstraction in model-checking.
Specifically, Kleene logic has been previously applied to reason about abstractions [26],
and suggested as a basis for abstract model-checking [11]. Belnap logic has also been
used to model abstraction in the context of (G)STEs [19] in a manner similar to ours.

Models based on Kleene logic have been used in [10] to separate handling of “un-
known” and “non-determinism”. Unlike our work or that of [8], it does not account
for the relationship between abstract states, i.e., the case where γ(a) ⊆ γ(b) for some
abstract states a and b. It uses a (rather expensive [10, 17]) generalized model-checking
approach and does not address the issue of generating counterexamples which are es-
sential for an application of the CEGAR framework.

We are currently working on an implementation of YASM that combines exact ap-
proximations with function summaries for handling recursive functions. This is subject
of a forthcoming paper.

Acknowledgments

We are grateful to Xin Ma, Kelvin Ku and Shiva Nejati for their help implementing,
evaluating and improving YASM, and to Ou Wei for thoroughly reading an earlier draft
of this paper and for many interesting discussions. We would like to acknowledge the
financial support provided by NSERC. The first author has also been partially supported
by an IBM Ph.D. Fellowship.

References

1. T. Ball, A. Podelski, and S. Rajamani. “Boolean and Cartesian Abstraction for Model Check-
ing C Programs”. STTT, 5(1):49–58, 2003.

2. T. Ball and S. Rajamani. “The SLAM Toolkit”. In Proceedings of CAV’01, volume 2102 of
LNCS, pages 260–264, 2001.

3. C. Barrett and S. Berezin. “CVC Lite: A New Implementation of the Cooperating Validity
Checker”. In Proceedings of CAV’04, volume 3114 of LNCS, pages 515–518, 2004.

4. N.D. Belnap. “A Useful Four-Valued Logic”. In Dunn and Epstein, editors, Modern Uses of
Multiple-Valued Logic, pages 30–56. Reidel, 1977.

5. M. Chechik, B. Devereux, and A. Gurfinkel. “χChek: A Multi-Valued Model-Checker”. In
Proceedings of CAV’02, volume 2404 of LNCS, pages 505–509, 2002.

6. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. “Counterexample-Guided Abstraction
Refinement for Symbolic Model Checking”. Journal of the ACM, 50(5):752–794, 2003.

7. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
8. D. Dams, R. Gerth, and O. Grumberg. “Abstract Interpretation of Reactive Systems”. ACM

TOPLAS, 2(19):253–291, 1997.
9. L. de Alfaro, P. Godefroid, and R. Jagadeesan. “Three-Valued Abstractions of Games: Un-

certainty, but with Precision”. In Proceedings of LICS’04, pages 170–179, 2004.
10. P. Godefroid. “Reasoning about Abstract Open Systems with Generalized Module Check-

ing”. In Proceedings of EMSOFT’2003, volume 2855 of LNCS, pages 223–240, 2003.
11. P. Godefroid, M. Huth, and R. Jagadeesan. “Abstraction-based Model Checking using Modal

Transition Systems”. In Proceedings of CONCUR’01, volume 2154 of LNCS, pages 426–
440, 2001.

12. P. Godefroid and R. Jagadeesan. “Automatic Abstraction Using Generalized Model-
Checking”. In Proceedings of CAV’02, volume 2404 of LNCS, pages 137–150, 2002.

13. S. Graf and H. Saı̈di. “Construction of Abstract State Graphs with PVS”. In Proceedings of
CAV’97, volume 1254 of LNCS, pages 72–83, 1997.

14. O. Grumberg, M. Lange, M. Leucker, and S. Shoham. “Don’t Know in the µ-Calculus”. In
Proceedings of CAV’05, volume 3385 of LNCS, pages 233–249, 2005.

15. A. Gurfinkel and M. Chechik. “Generating Counterexamples for Multi-Valued Model-
Checking”. In Proceedings of FME’03, volume 2805 of LNCS, 2003.

16. A. Gurfinkel and M. Chechik. “Multi-Valued Model-Checking via Classical Model-
Checking”. In Proceedings of CONCUR’03, volume 2761 of LNCS, pages 263–277, 2003.

17. A. Gurfinkel and M. Chechik. “How Thorough is Thorough Enough”. In Proceedings of
CHARME’05, volume 3725 of LNCS, pages 65–80, 2005.

18. A. Gurfinkel, O. Wei, and M. Chechik. “Systematic Construction of Abstractions for Model-
Checking”. In Proceedings of VMCAI’06, volume 3855 of LNCS, pages 381–397, 2006.

19. S. Hazelhurst and C. H. Seger. “Model Checking Lattices: Using and Reasoning about
Information Orders for Abstraction”. Logic Journal of the IGPL, 7(3):375–411, May 1999.

20. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. “Lazy Abstraction”. In Proceedings of
POPL’02, pages 58–70, 2002.

21. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. “Abstractions from Proofs”.
In Proceedings of POPL’04, pages 232–244, 2004.

22. S. C. Kleene. Introduction to Metamathematics. New York: Van Nostrand, 1952.
23. D Kozen. “Results on the Propositional µ-calculus”. Theoretical Computer Science, 27:334–

354, 1983.
24. K.G. Larsen and L. Xinxin. “Equation Solving Using Modal Transition Systems”. In Pro-

ceedings of LICS’90, 1990.
25. C. Pasareanu, M. Dwyer, and W. Visser. “Finding Feasible Counter-examples when Model

Checking Abstracted Java Programs”. In Proceedings of TACAS’03, volume 2031 of LNCS,
pages 284–298, 2003.

26. T.W. Reps, M. Sagiv, and R. Wilhelm. “Static Program Analysis via 3-Valued Logic”. In
Proceedings of CAV’04, volume 3114 of LNCS, pages 15–30, 2004.

27. S. Shoham and O. Grumberg. “Monotonic Abstraction-Refinement for CTL”. In Proceedings
of TACAS’04, volume 2988 of LNCS, 2004.

28. F. Somenzi. “CUDD: CU Decision Diagram Package Release”, 2001.

