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1 Properties of v,

Recall that v2(A) is defined for A € R™*™ as follows:
Yo(A) = min{r(U) - ¢(V) : UV = A,U e R™F V e R¥*" | e N} |

where 7(U) is the maximum row norm of U, and ¢(V) is the maximum column norm of V. We
showed in the previous lecture that there exists a constant C' such that

Y2(A)

— < < . .
Clogrk 4 herdisc(A) < C'y/logm - y2(A) (1)

We give some other useful properties of vs.

1. Monotonicity. v2(Asr) < 72(A), where Agr is the submatrix of A whose rows are indexed
by S C [m] and whose columns are indexed by T C [n].
2. Transpose. vo(A) = y2(AT), where AT is the matrix transpose of A.

3. Diagonal block matrices. v <( 61 g >> = max(y2(4),72(B)).

4. Triangle inequality. v2(A + B) < ’)/Q(A) +72(B).

5. Union. v2 (( A B)) < /72(A4)? +72(B)2.

Most of these properties follow straightforwardly from the definitions. We give a detailed proof of
Property 4.

Proof of triangle inequality. Let Ua, V4 be such that UgVy = A, and 7(Ux) = ¢(V4) = /72(A4).
This can always be achieved simply by scaling the matrices appropriately. We take Up, Vp similarly.

Let U:=(Ua Up ),and V := < ‘KA ) Then clearly UV = A + B. Moreover
B

r(U)? = max ||Us3 = max (|| (Ua)isll3 + [|(Us)is3)

< Iﬁf 1(Ua)isll3 + max 1(UB)icll3 = 7(Ua)? +7(Up)* = 72(A) +72(B) .

The same inequality holds for C(V)z, S0
72(A+ B) < /r(A)? - o(V)? < 72(A) +72(B) - H

Remark 1. Using the bounds in (1), we can obtain approximate versions of the above properties
for herdisc.



1.1 Kronecker products

For matrices A € RP*?, B € R™** the Kronecker (tensor) product A ® B € RP"*9% is given by the

block matrix

Ao B=| Aaz-B Axn-B

Lemma 2 (Property 6). 72(A ® B) = y2(A)y2(B).

Remark 3. This property does not hold for the combinatorial discrepancy disc(A).

Proof. We make use of a basic property of the tensor product: (A ® B)(C ® D) = (AC) ® (BD).
Applying this property to the singular value decompositions of A and B, we see that if A has
singular values o01,...,0, and B has singular values 7i,...,7, then A ® B has singular values
O1Tl ooy O1Try e ooy OpTly -« OpTr.

First we prove that (A ® B) < v2(A)y2(B). We take Ug, V4 such that A = UyVy and
r(Ua)e(Va) = 72(A); similarly we have Ug,Vp. Let U := Uy @ Ug and V := V4 ® V. Then
UV = A® B, by the basic property of tensor products. Moreover we have that r(U) = r(Ua)r(Up),
since the rows of U have the form u4 ® up where uy is a row of A and up is a row of B, and for

any two vectors up, ua, ||[ur ® uz|l2 = [Ju1]|2 - ||uz|l2- The same property holds of the columns of V'
and hence of ¢(V'), and so

12(A® B) <r(U)e(V) = (r(Ua)e(Va)) - (r(Us)e(Va)) = 12(A)y2(B)

It remains to show that y2(A®B) > v2(A)y2(B). For this we make use of the dual of the semidefinite
program for computing 7,. By strong duality, it holds that (cf. last lecture)

Yo(A) = max{||PAQ||;; : P,Q nonnegative diagonal matrices s.t. tr(P?) = tr(Q?*) =1} .

Let P4,Qa be such that [|[P4AQalltr = 72(A), and Pp,Qp likewise. Let P := P4 ® Pp and
Q = Q4 ®Qp. Note that tr((Pa ® Pg)?) = tr(P3 ® P3) = tr(P3) tr(P%) = 1 by easy properties of
the Kronecker product, and the same holds for ), hence P,(Q is a feasible solution. Finally from
the properties of the singular values of Kronecker products, we get

IP(A® B)Qlir = [(PAAQA) ® (PeBQp)|le =YY aimj = (> _o)(O_ 7))
i

i i
= [PaAQallr - |1PBBQslltxr = 72(A) - 72(B) - O

2 Discrepancy of corners

Recall from Lecture 1 that for y € R? we define the corner
Cly) ={zeR¥:0<z <y i=1,....d} .

For d € N the set Cyq := {C(y) : y € [0,1]¢}. Let P be a finite subset of [0,1]%; then Cq4|p is the set
of subsets of P of the form C(y) N P for some y € [0, 1]%. We define the combinatorial discrepancy



of Cg, disc(n,Cq) := supp disc(Cq | p), where the supremum is taken over subsets P C [0, 1]¢ of size
n. Recall also that the continuous discrepancy D(n,Cq) < O(1) - disc(n,Cq).

Open problem. We know that (approximately) log@=1/2p < D(n,Cq) <log?'n. Can we get a
tighter bound?

The following theorem suggests that better bounds for D(n,Cy) are unlikely to come from better
bounds for disc(n,Cq).

Theorem 4. For d € N, it holds that
Q(log? 1 n) < disc(n, Cq) < O(log?t/%n) .

Proof sketch. Let Q := [n]¢ C [0,n]? be the set of d-vectors whose coordinates are positive integers
at most n. (Note: we can scale this set into [0,1]¢ so that it fits the definitions above.) Let
S :=Cqlg. Then S := {[y1] x ... X [ya] : Y1,-..,ya € [n]}, and the incidence matrix A of S is
T2 the d-wise Kronecker product of the n x n lower triangular matrix with 1s below (and on) the
diagonal.

Proposition 5. v(7,) = O(logn).

Given the proposition, it is not too difficult to show that the upper and lower bounds hold.

Lower bound. By Lemma 2, 72(A) = O(log?n). Then inequality (1) gives that herdisc(A4) >
Q(v2(A)/logrk A) = Q(log? 1 n). By the definition of hereditary discrepancy, there exists a subset
P C Q, |P| = n, such that the discrepancy disc(S|p) = Q(log? ! n). Since S = C4lg, and P C Q,
clearly S|p = Cq4|p, so disc(n,Cq) > disc(S|p) = Q(log? 1 n).

Upper bound. We may assume P C [n]?, since for any P C [0,n]? we can transform it into
P’ C [n]? such that |P'| = |P| and disc(Cq4|p) < disc(Cq|pr). Then disc(n,Cq) < herdisc(S).
The 72 upper bound gives herdisc(S) = O(y/lognd)y2(4) = O(log?*/?n), which concludes the
proof. O

Proof of Proposition 5. We show the upper and lower bounds separately.

1. 72(T;,) = O(logn). Notice that we can decompose T}, as follows:

Or, written as a sum of block matrices,

(00 T.o O
= (Vo) (0, )

Note that 7 (< (1) 8 )) = 1. From Property 3 of 7o, ¥o << T%/2 T0/2 )) = 72(T52)-

Thus v9(T,) < 1+ 2(T,/2) by the triangle inequality, and solving the recurrence gives the
upper bound.



2. y(T,) = Q(logn). Here we once again make use of the dual. By the normality conditions on

P and Q, for any matrix A € R¥*¥ we have that P = Q = ﬁ[ % is a feasible solution, and so

T
Y2(4) > ||[PAQ||tr = £||Alltr. Let B := ( 11:95 71:” ) It is not difficult to see that this is a
n n

circulant matrix, i.e. each column is the previous column rotated by one row. The eigenvalues
of such a matrix are the DFT coefficients of its first column, and so the i-th singular value of
B is approximately n/i, so || Bl = ©(nlogn). Then finally

1 1
12(Tn) 2 ;72(B) 2 ¢ [IBl = Qlogn)

which proves the claim. ]

3 Data structure lower bounds

3.1 Range counting

Let d € N, point set P C R? and weight function w : P — Z. We are interested in designing a
data structure which supports two operations:
Update. Given a pair (p,x) € P X Z, set w(p) := w(p) + x.

Query. Given z € R? return 2pec(x)|p WD)

3.2 The oblivious group model

We define a restricted model of a data structure. In this model, the data structure retains s values
y := (y1,...,ys) where each y; € R is a linear combination of the w(p) for p € P. Let U,V be
such that UV = A, where A is the incidence matrix of C4|p. V encodes the linear combinations
of group elements which are used to compute y: y = Vw. U encodes the linear combinations of
y; which are used to answer queries; the condition UV = A is necessary for correctness. Then our
operations are constrained to be of the following form:

Update. Given a pair (p,z), y := y + xV,yp, where V,, is the p-th column of V.

Query. Given z, return (Ui, y), where the i-th row of A is the indicator vector of the set C(z)N P.
The time complexity of updates, t,, := max, nnz(V,,), where for a vector u, nnz(u) is defined as
the number of non-zero entries in w. Similarly the time complexity of queries ¢, := max, nnz(U.).
The one-dimensional case is well-understood.

Theorem 6 (Fredman ’82 [1]). For d =1, t, +t, = Q(logn).

For higher dimensions, we require an additional parameter A, a bound on the absolute values of

entries in U, V.

Theorem 7 (Larsen ’11 [2]). For d € N, t,t, > d’Q(log?n)/A%.



Proof sketch. It is not hard to see that r(U) < A/%,, and ¢(V) < Ay/%,. Then y2(A) < A%\ /T2,

d
50 /Ity > 2ognt), O

For many natural data structures, A = 1. Indeed for any d € N there exists a data structure with
A = 1 which matches the lower bound. In the case d = 1, the Fredman bound shows that the
dependence on A is not required, but for d > 1 it remains open whether larger values of A allow
for more efficient data structures.
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