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1 Properties of γ2

Recall that γ2(A) is defined for A ∈ Rm×n as follows:

γ2(A) = min{r(U) · c(V ) : UV = A,U ∈ Rm×k, V ∈ Rk×n, k ∈ N} ,

where r(U) is the maximum row norm of U , and c(V ) is the maximum column norm of V . We
showed in the previous lecture that there exists a constant C such that

γ2(A)

C log rkA
≤ herdisc(A) ≤ C

√
logm · γ2(A) . (1)

We give some other useful properties of γ2.

1. Monotonicity. γ2(AS,T ) ≤ γ2(A), where AS,T is the submatrix of A whose rows are indexed
by S ⊆ [m] and whose columns are indexed by T ⊆ [n].

2. Transpose. γ2(A) = γ2(AT ), where AT is the matrix transpose of A.

3. Diagonal block matrices. γ2

((
A 0
0 B

))
= max(γ2(A), γ2(B)).

4. Triangle inequality. γ2(A+B) ≤ γ2(A) + γ2(B).

5. Union. γ2

((
A B

))
≤
√
γ2(A)2 + γ2(B)2.

Most of these properties follow straightforwardly from the definitions. We give a detailed proof of
Property 4.

Proof of triangle inequality. Let UA, VA be such that UAVA = A, and r(UA) = c(VA) =
√
γ2(A).

This can always be achieved simply by scaling the matrices appropriately. We take UB, VB similarly.

Let U :=
(
UA UB

)
, and V :=

(
VA
VB

)
. Then clearly UV = A+B. Moreover

r(U)2 =
m

max
i=1
‖Ui∗‖22 =

m
max
i=1

(
‖(UA)i∗‖22 + ‖(UB)i∗‖22

)
≤ m

max
i=1
‖(UA)i∗‖22 +

m
max
i=1
‖(UB)i∗‖22 = r(UA)2 + r(UB)2 = γ2(A) + γ2(B) .

The same inequality holds for c(V )2, so

γ2(A+B) ≤
√
r(A)2 · c(V )2 ≤ γ2(A) + γ2(B) .

Remark 1. Using the bounds in (1), we can obtain approximate versions of the above properties
for herdisc.
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1.1 Kronecker products

For matrices A ∈ Rp×q, B ∈ Rr×s, the Kronecker (tensor) product A⊗B ∈ Rpr×qs is given by the
block matrix

A⊗B =

 A11 ·B A12 ·B · · ·
A21 ·B A22 ·B

...
. . .

 .

Lemma 2 (Property 6). γ2(A⊗B) = γ2(A)γ2(B).

Remark 3. This property does not hold for the combinatorial discrepancy disc(A).

Proof. We make use of a basic property of the tensor product: (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD).
Applying this property to the singular value decompositions of A and B, we see that if A has
singular values σ1, . . . , σp and B has singular values τ1, . . . , τr then A ⊗ B has singular values
σ1τ1, . . . , σ1τr, . . . , σpτ1, . . . , σpτr.

First we prove that γ2(A ⊗ B) ≤ γ2(A)γ2(B). We take UA, VA such that A = UAVA and
r(UA)c(VA) = γ2(A); similarly we have UB, VB. Let U := UA ⊗ UB and V := VA ⊗ VB. Then
UV = A⊗B, by the basic property of tensor products. Moreover we have that r(U) = r(UA)r(UB),
since the rows of U have the form uA ⊗ uB where uA is a row of A and uB is a row of B, and for
any two vectors u1, u2, ‖u1 ⊗ u2‖2 = ‖u1‖2 · ‖u2‖2. The same property holds of the columns of V
and hence of c(V ), and so

γ2(A⊗B) ≤ r(U)c(V ) = (r(UA)c(VA)) · (r(UB)c(VB)) = γ2(A)γ2(B) .

It remains to show that γ2(A⊗B) ≥ γ2(A)γ2(B). For this we make use of the dual of the semidefinite
program for computing γ2. By strong duality, it holds that (cf. last lecture)

γ2(A) = max{‖PAQ‖tr : P,Q nonnegative diagonal matrices s.t. tr(P 2) = tr(Q2) = 1} .

Let PA, QA be such that ‖PAAQA‖tr = γ2(A), and PB, QB likewise. Let P := PA ⊗ PB and
Q = QA⊗QB. Note that tr((PA⊗PB)2) = tr(P 2

A⊗P 2
B) = tr(P 2

A) tr(P 2
B) = 1 by easy properties of

the Kronecker product, and the same holds for Q, hence P,Q is a feasible solution. Finally from
the properties of the singular values of Kronecker products, we get

‖P (A⊗B)Q‖tr = ‖(PAAQA)⊗ (PBBQB)‖tr =
∑
i

∑
j

σiτj = (
∑
i

σi)(
∑
j

τj)

= ‖PAAQA‖tr · ‖PBBQB‖tr = γ2(A) · γ2(B) .

2 Discrepancy of corners

Recall from Lecture 1 that for y ∈ Rd we define the corner

C(y) := {x ∈ Rd : 0 ≤ xi ≤ yi, i = 1, . . . , d} .

For d ∈ N the set Cd := {C(y) : y ∈ [0, 1]d}. Let P be a finite subset of [0, 1]d; then Cd |P is the set
of subsets of P of the form C(y) ∩ P for some y ∈ [0, 1]d. We define the combinatorial discrepancy
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of Cd, disc(n, Cd) := supP disc(Cd |P ), where the supremum is taken over subsets P ⊆ [0, 1]d of size
n. Recall also that the continuous discrepancy D(n, Cd) ≤ O(1) · disc(n, Cd).

Open problem. We know that (approximately) log(d−1)/2 n ≤ D(n, Cd) ≤ logd−1 n. Can we get a
tighter bound?

The following theorem suggests that better bounds for D(n, Cd) are unlikely to come from better
bounds for disc(n, Cd).

Theorem 4. For d ∈ N, it holds that

Ω(logd−1 n) ≤ disc(n, Cd) ≤ O(logd+1/2 n) .

Proof sketch. Let Q := [n]d ⊆ [0, n]d be the set of d-vectors whose coordinates are positive integers
at most n. (Note: we can scale this set into [0, 1]d so that it fits the definitions above.) Let
S := Cd |Q. Then S := {[y1] × . . . × [yd] : y1, . . . , yd ∈ [n]}, and the incidence matrix A of S is
T⊗dn , the d-wise Kronecker product of the n×n lower triangular matrix with 1s below (and on) the
diagonal.

Proposition 5. γ2(Tn) = Θ(log n).

Given the proposition, it is not too difficult to show that the upper and lower bounds hold.

Lower bound. By Lemma 2, γ2(A) = Θ(logd n). Then inequality (1) gives that herdisc(A) ≥
Ω(γ2(A)/ log rkA) = Ω(logd−1 n). By the definition of hereditary discrepancy, there exists a subset
P ⊆ Q, |P | = n, such that the discrepancy disc(S|P ) = Ω(logd−1 n). Since S = Cd |Q, and P ⊆ Q,
clearly S|P = Cd |P , so disc(n, Cd) ≥ disc(S|P ) = Ω(logd−1 n).

Upper bound. We may assume P ⊆ [n]d, since for any P ⊆ [0, n]d we can transform it into
P ′ ⊆ [n]d such that |P ′| = |P | and disc(Cd |P ) ≤ disc(Cd |P ′). Then disc(n, Cd) ≤ herdisc(S).
The γ2 upper bound gives herdisc(S) = O(

√
log nd)γ2(A) = O(logd+1/2 n), which concludes the

proof.

Proof of Proposition 5. We show the upper and lower bounds separately.

1. γ2(Tn) = O(log n). Notice that we can decompose Tn as follows:

0

1

0

0
1

0

1
0

0
0

0

0
1

+=

Or, written as a sum of block matrices,

Tn =

(
0 0
1 0

)
+

(
Tn/2 0

0 Tn/2

)
.

Note that γ2

((
0 0
1 0

))
= 1. From Property 3 of γ2, γ2

((
Tn/2 0

0 Tn/2

))
= γ2(Tn/2).

Thus γ2(Tn) ≤ 1 + γ2(Tn/2) by the triangle inequality, and solving the recurrence gives the
upper bound.
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2. γ2(Tn) = Ω(log n). Here we once again make use of the dual. By the normality conditions on
P and Q, for any matrix A ∈ Rk×k we have that P = Q = 1√

k
Ik is a feasible solution, and so

γ2(A) ≥ ‖PAQ‖tr = 1
k‖A‖tr. Let B :=

(
Tn T T

n

T T
n Tn

)
. It is not difficult to see that this is a

circulant matrix, i.e. each column is the previous column rotated by one row. The eigenvalues
of such a matrix are the DFT coefficients of its first column, and so the i-th singular value of
B is approximately n/i, so ‖B‖tr = Θ(n log n). Then finally

γ2(Tn) ≥ 1

4
γ2(B) ≥ 1

8n
‖B‖tr = Ω(log n) ,

which proves the claim.

3 Data structure lower bounds

3.1 Range counting

Let d ∈ N, point set P ⊆ Rd, and weight function w : P → Z. We are interested in designing a
data structure which supports two operations:

Update. Given a pair (p, x) ∈ P × Z, set w(p) := w(p) + x.

Query. Given z ∈ Rd, return
∑

p∈C(z)|P w(p).

3.2 The oblivious group model

We define a restricted model of a data structure. In this model, the data structure retains s values
y := (y1, . . . , ys) where each yi ∈ R is a linear combination of the w(p) for p ∈ P . Let U, V be
such that UV = A, where A is the incidence matrix of Cd |P . V encodes the linear combinations
of group elements which are used to compute y: y = V w. U encodes the linear combinations of
yi which are used to answer queries; the condition UV = A is necessary for correctness. Then our
operations are constrained to be of the following form:

Update. Given a pair (p, x), y := y + xV∗p, where V∗p is the p-th column of V .

Query. Given z, return 〈Ui∗, y〉, where the i-th row of A is the indicator vector of the set C(z)∩P .

The time complexity of updates, tu := maxp nnz(V∗p), where for a vector u, nnz(u) is defined as
the number of non-zero entries in u. Similarly the time complexity of queries tq := maxz nnz(Uz∗).

The one-dimensional case is well-understood.

Theorem 6 (Fredman ’82 [1]). For d = 1, tu + tq = Ω(log n).

For higher dimensions, we require an additional parameter ∆, a bound on the absolute values of
entries in U, V .

Theorem 7 (Larsen ’11 [2]). For d ∈ N, tutq ≥ d2Ω(log2 n)/∆4.
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Proof sketch. It is not hard to see that r(U) ≤ ∆
√
tq, and c(V ) ≤ ∆

√
tu. Then γ2(A) ≤ ∆2√tutq,

so
√
tutq ≥ Ω(lognd)

∆2 .

For many natural data structures, ∆ = 1. Indeed for any d ∈ N there exists a data structure with
∆ = 1 which matches the lower bound. In the case d = 1, the Fredman bound shows that the
dependence on ∆ is not required, but for d > 1 it remains open whether larger values of ∆ allow
for more efficient data structures.
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