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1 Computing Discrepancy

Last lecture: We showed that given A 2 [�1, 1]m⇥n, we can compute x 2 {±1}m such that kAxk1 =
O(

p
n log (2m/n)). This leads to further questions:

• Assume disc(A) is small (e.g. disc(A) = 0), can we compute x that does better than Spencer’s
bound (that is, o(

p
n log (2m/n)) in polylog(m,n) time?

• More generally, can we e�ciently approximate combinatorial discrepancy?

Unfortunately, the answer to both these questions is that we cannot (unless P = NP ).

Theorem ([CNN11]). For A 2 {0, 1}O(n)⇥n
, it is NP�hard to distinguish between the cases:

1. disc(A) = 0

2. disc(A) = ⌦(
p
n) (Spencer’s bound)

Note: The same holds for set systems, where A is the incidence matrix.

Here we prove the above for A 2 {�4,�3, ..., 4}O(n)⇥n.

Theorem ([Gur03]). [2-2 Set Splitting]

For S = {S1, ..., Sm} with m = O(n), if 8i |Si| = 4 and Si ✓ [n], where each j ✓ [n] appears in at

most 4 sets, it is NP�hard to distinguish between the cases:

1. disc (S) = 0

2. 8x 2 {±1}n, |{i : |
P

j2Si
xj | 6= 0}| � ↵m, where ↵ ⇡ 1/22 a small constant

Su�ces to reduce from this to our problem.

Reduction: Set B 2 {0, 1}m⇥n the incidence matrix of S. This has dimension m⇥ n, with 4 1s in
each row/column, by construction of S. Set H 2 {±1}m⇥m, the Hadamard matrix, which has the
property that HTH = mI. We denote the ith row of H as hi and the jth column of B as bj .

Define A = HB, where Aij = hi · bj . Note that since there are at most 4 non-zero entries in bj and
hi 2 {±1}m, we have that Aij 2 {�4, ..., 4}.

We now prove that this reduction is su�cient for our purposes.
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Claim. disc (S) = 0 ) disc (A) = 0.

Proof. For disc (S) = 0, by definition 9x 2 {±1}n s.t. Bx = 0. This implies that Ax = HBx =
H0 = 0 and so disc (A) = 0.

Claim. 8x 2 {±1}n, |{i : |
P

j2Si
xj | 6= 0}| � ↵m ) disc(A) = ⌦(

p
n)

Proof. By assumption we know that the number of sets Si for which |
P

j2Si
xj | 6= 0 is bounded

below by ↵m. Since the total number of such sets is an integer and thus at least 1, we have that:

kBxk22 =
mX

i=1

0

@
X

j2Si

xj

1

A
2

� ↵m

By comparing maximum to average discrepancy, we get that:

kHBxk21 � 1

m
kHBxk22 =

1

m
xTBTHTHBx = xTBTBx = kBxk22 � ↵m

) disc(A) = disc(HB) �
p
↵m = ⌦(

p
n)

2 Hereditary Discrepancy

We can define the (stronger) notion of hereditary discrepancy as follows:

herdisc (A) = max
S✓[n]

disc(AS)

where A 2 Rm⇥n and AS the matrix which consists of the columns of A which are indexed by S.

For hereditary discrepancy, there are a number of things that we can say about its approximations.

Theorem ([AGH13]). 8✏ > 0, it is NP�hard to obtain a (2 � ✏) approximation to herdisc (A)
better than a factor of 2.

Theorem ([NT15]). There exists a polytime computable function f such that 8A 2 Rm⇥n
:

f(A)

C log (m)3/2
 herdisc (A)  f(A)

We begin by looking at upper bounds for hereditary discrepancy:

Norms of Rows: For ai⇤ the i-th row of A, we can define:

r(A) =
m

max
i=1

kai⇤k2
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For x 2 {±1}n chosen uniformly at random )w.h.p kAxk1 = O(
p
log 2m) · r(A)

) disc(A) = r(A) ·O(
p

log 2m) (1)

We notice that (Ax)i = hai⇤, xi and since the projection of Euclidian distance never increases, this
implies that r(AS)  r(A). Thus:

herdisc (A) = max
S

disc (AS) = max
S

r(AS) ·O(
p

log 2m) = r(A) ·O(
p
log 2m)

Norms of Columns: For a⇤i the i-th column of A, we can similarly define:

c(A) =
n

max
i=1

ka⇤ik2

Some relevant results and conjectures pertaining to this definition are shown below.

Beck-Fiala Theorem: For A 2 {0, 1}m⇥n, we have disc (A)  2maxj #{1’s in a⇤j} = 2 · c(A)2

Beck-Fiala Conjecture: For A 2 {0, 1}m⇥n, disc (A) = O(1) · c(A)

Komlós Conjecture: 8A 2 Rm⇥n, disc (A) = O(1) · c(A)

Banaszczyk: 8A 2 Rm⇥n, disc (A) = O(
p
log 2m) · c(A)

Finally, since c(AS)  c(A), the above result implies:

herdisc (A)  c(A) ·O(
p
log 2m)

Combining with (1), the above also yields:

disc (A)  min {c(A), r(A)} · polylog(m)

3 Factorization

Theorem ([Ban98]). Let K ✓ Rm
be convex and closed, with:

P(g 2 K) � 1/2 where g ⇠ N(0, I)

Then for A 2 Rm⇥n
, 9x 2 {±1}n s.t. Ax 2 5 · c(A) ·K

Theorem ([Lar14]). For A 2 Rm⇥n
with A = UV , where U, V arbitrary, we have that:

disc (A)  r(U) · c(V ) ·O(
p
log 2m)

Proof. Define K as follows:
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K = {y : kUyk1  2 · r(U) ·
p

log (2m)}

We will denote ui as the ith row of U .

Theorem (Gaussian Concentration Inequality). h ⇠ N(0,�2) ) P(|h| > t�)  e�t2/2

For g ⇠ N(0, I), we can bound P(g 2 K) as follows:

P(g 2 K) = P
⇣
|hui, gi|  2 · r(U) ·

p
log (2m), 8i 2 [m]

⌘

� 1�
mX

i=1

P
⇣
|hui, gi| � 2 · r(U) ·

p
log (2m)

⌘

� 1�
mX

i=1

1

2m
� 1/2

The last inequality follows by the property that for g ⇠ N(0, I), we have hui, gi ⇠ N(0, kuik22). By
setting t = 2

p
log (2m) and noticing that by definition 8i, kuik22  r(U)2, applying the Gaussian

concentration inequality above yields the lower bound.

Now, the above result means we can apply the result of [Ban98] to K with matrix V :

9x 2 {±1}n s.t. V x 2 5 · c(V ) ·K

, kUV xk1 = disc(A)  10 · c(V ) · r(U) ·
p
log 2m

Definition (�2 norm). We can define the �2 norm of a matrix A 2 Rn⇥m
as:

�2(A) = min {r(U) · c(V ) : UV = A}

The above result then becomes:

disc (A) = �2(A) ·O
⇣p

log (2m)
⌘

We additionally note that since AS = UVS , then c(VS)  c(V ) ) �2(AS)  �2(A).

E�cient computation of �2

Definition. A vector program is an optimization problem with vector variables {vi}ni=1 2 Rn
, whose

objective function and constraints are linear in hvi, vji where i, j 2 [n].
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It is known that every vector program can be approximated e�ciently by a semidefinite program
(SDP). Thus, if we can show that �2(A) can be written as a vector program, this su�ces in showing
that it is e�ciently computable.

Claim. For A 2 Rm⇥n
, �2(A) can be written as the following vector program:

minimize t

subject to hui, vji = Aij

hui, uii  t

hvj , vji  t

ui, vj 2 Rm+n

where (i, j) 2 [m]⇥ [n],

Proof. Denote t⇤ the optimal solution, with u⇤i , v
⇤
j corresponding vectors.

We first show �2(A)  t⇤.

If we define U as having u⇤i as its ith row and V as having v⇤j as its jth column, then (UV )ij =
hu⇤i , v⇤j i = Aij . Thus, we get that UV = A.

Since 8i, hu⇤i , u⇤i i  t⇤, this implies that 8i, ku⇤i k22  t⇤, or that r(U)2  t⇤. Similarly, c(V )2  t⇤.

As U and V satisfy A = UV , we have that:

) �2(A)  r(U) · c(V )  t⇤

We now show that t⇤  �2(A).

Pick U , V , the optimal matrices for which r(U) · c(V ) = �2(A).

Setting ↵ =
q

c(V )
r(U) , we have that A = (↵U)( 1↵V ).

Now define ui the ith row of ↵U and vj the jth row of (1/↵)V .

r(↵U) =

s
c(V )

r(U)
r(U) =

p
c(V ) · r(U)

c((1/↵)V ) =

s
r(U)

c(V )
c(V ) =

p
c(V ) · r(U)

The two equalities above imply that:

hui, uii = kuik22  r(↵U)2 =
c(V )

r(U)
r(U)2 = c(V ) · r(U) = �2(A)

A similar argument shows this for hvj , vji. However, since t⇤ is the minimum t for which hui, uii  t,
this implies that t⇤  �2(A). Thus, t⇤ = �2(A).
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