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1 Computing Discrepancy

Last lecture: We showed that given A € [—1, 1]™*" we can compute z € {£1}" such that [|Az|« =
O(y/nlog(2m/n)). This leads to further questions:

e Assume disc(A) is small (e.g. disc(A) = 0), can we compute = that does better than Spencer’s
bound (that is, o(y/nlog (2m/n)) in polylog(m,n) time?

e More generally, can we efficiently approximate combinatorial discrepancy?

Unfortunately, the answer to both these questions is that we cannot (unless P = N P).

Theorem ([CNN11]). For A € {0,1}°0)*" it s NP—hard to distinguish between the cases:

1. disc(A) =0
2. disc(A) = Q(y/n) (Spencer’s bound)

Note: The same holds for set systems, where A is the incidence matriz.

Here we prove the above for A € {—4, -3, ...,4}0(”)X".

Theorem ([Gur03]). [2-2 Set Splitting]

For S = {S1,...,Sm} with m = O(n), if Vi |S;| =4 and S; C [n], where each j C [n] appears in at
most 4 sets, it 1s NP—hard to distinguish between the cases:

1. disc (S) =0

2. Vo e {£1}", [{i 1| X, zjl # 0} = am, where a ~ 1/22 a small constant

Suffices to reduce from this to our problem.

Reduction: Set B € {0,1}"*™ the incidence matrix of S. This has dimension m X n, with 4 1s in
each row/column, by construction of S. Set H € {£1}™*™ the Hadamard matrix, which has the
property that HT H = mI. We denote the ith row of H as h; and the jth column of B as b;.

Define A = HB, where A;; = h; - b;. Note that since there are at most 4 non-zero entries in b; and
hi € {£1}™, we have that A;; € {—4,...,4}.

We now prove that this reduction is sufficient for our purposes.



Claim. disc(S5) =0 = disc (4) = 0.

Proof. For disc (S) = 0, by definition 3z € {£1}" s.t. Bz = 0. This implies that Avx = HBz =
HO = 0 and so disc (4) = 0. O
Claim. Vz € {£1}", {i:|> ,cq, 7;] # 0} > am = disc(A) = Q(y/n)

Proof. By assumption we know that the number of sets S; for which |3 ;¢ x| # 0 is bounded
below by am. Since the total number of such sets is an integer and thus at least 1, we have that:

2
m

1Bel3= (D aj| >am
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By comparing maximum to average discrepancy, we get that:

1 1
|HBz|%, > —||HBz||? = —2"B"HTHBz = " BT Bx = || Bz||3 > am
m m

- disc(A) = disc(HB) > vam = Q(y/n)

2 Hereditary Discrepancy

We can define the (stronger) notion of hereditary discrepancy as follows:

herdisc (4) = ;nczix] disc(Ag)

where A € R™*™ and Ag the matrix which consists of the columns of A which are indexed by S.

For hereditary discrepancy, there are a number of things that we can say about its approximations.

Theorem ([AGH13]). Ve > 0, it is NP—hard to obtain a (2 — €) approzimation to herdisc (A)
better than a factor of 2.

Theorem ([NT15]). There exists a polytime computable function f such that VA € R™*":

C%J;;((I:z)?’/? < herdisc (A) < f(A)

We begin by looking at upper bounds for hereditary discrepancy:

Norms of Rows: For a;, the i-th row of A, we can define:

r(4) = nfax i3



For x € {£1}" chosen uniformly at random =, 4. [|A%||cc = O(v/10g2m) - r(A)
codisc(A) = r(A) - O(y/log2m) (1)

We notice that (Az); = (a;, z) and since the projection of Euclidian distance never increases, this
implies that r(Ag) < r(A). Thus:

herdisc (4) = max disc (Ag) = max r(Ag) - O(y/log2m) = r(A) - O(y/log 2m)

Norms of Columns: For a,; the i-th column of A, we can similarly define:

(A) = i il

Some relevant results and conjectures pertaining to this definition are shown below.
Beck-Fiala Theorem: For A € {0,1}™*" we have disc (A) < 2max; #{1’s in a.;} = 2 - c(A)?
Beck-Fiala Conjecture: For A € {0,1}™*" disc(A) = O(1) - ¢(A)

Komlés Conjecture: VA € R™*™ disc (A) = O(1) - ¢(A)

Banaszczyk: VA € R™*" disc (A) = O(y/log2m) - ¢(A)

Finally, since ¢(Ag) < ¢(A), the above result implies:

herdisc (4) < ¢(A) - O(y/log 2m)

Combining with (1), the above also yields:

disc (A) < min{c(A),r(A)} - polylog(m)

3 Factorization
Theorem ([Ban98]). Let K C R™ be convex and closed, with:

P(g € K) > 1/2 where g ~ N(0,1)

Then for A € R™*" Jr € {£1}" s.t. Az €b-c(A) - K

Theorem ([Larl4]). For A € R™*" with A = UV, where U,V arbitrary, we have that:

disc (A) < r(U) - c¢(V) - O(y/log2m)

Proof. Define K as follows:



K ={y: Uyl <2-(U) - /log @m)}

We will denote u; as the ith row of U.

Theorem (Gaussian Concentration Inequality). h ~ N(0,02) = P(|h| > to) < e~ /2

For g ~ N(0,I), we can bound P(g € K) as follows:

P(g € K) =P (|{ui, )] <2 r(U) - v/log (2m), ¥i € [m))

>1—ZIF’( wig)| > 2 r(U) - 1og(2m))

LR |
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The last inequality follows by the property that for g ~ N (0, I), we have (u;,g) ~ N(0, ||u;||3). By
setting ¢t = 2y/log (2m) and noticing that by definition Vi, |lu;||3 < 7(U)?, applying the Gaussian
concentration inequality above yields the lower bound.

Now, the above result means we can apply the result of [Ban98] to K with matrix V:

dr e {£1}"st. Ve eb-¢(V) - K
& || UVz|oo = disc(A) <10-¢(V) - r(U) - v/log2m

Definition (72 norm). We can define the v2 norm of a matrix A € R™*™ qs:
Y2(A) = min{r(U) - c¢(V): UV = A}
The above result then becomes:

disc (A) = y(4) - O ( log (2m))

We additionally note that since Ag = UVg, then ¢(Vg) < ¢(V) = 72(Ag) < 12 (A4).

Efficient computation of

Definition. A vector program is an optimization problem with vector variables {v;}I*; € R™, whose
objective function and constraints are linear in (v;,v;) where i,j € [n].



It is known that every vector program can be approximated efficiently by a semidefinite program

(SDP). Thus, if we can show that v2(A) can be written as a vector program, this suffices in showing
that it is efficiently computable.

Claim. For A € R™*" ~9(A) can be written as the following vector program:

minimize t

where (,7)

Proof. Denote t* the optimal solution, with u], v} corresponding vectors.

J
We first show v2(A) < ¢*.

If we define U as having u; as its ith row and V' as having v;f as its jth column, then (UV)Z-]- =
<Uf7?1;-<> = A;j. Thus, we get that UV = A.
Since Vi, (uf,u;) < t*, this implies that Vi, [|u}||3 < ¢*, or that r(U)? < t*. Similarly, ¢(V)? < t*.

As U and V satisfy A = UV, we have that:

Sy(A) < r(U) - ¢(V) < tF

We now show that t* < y2(A).

Pick U, V, the optimal matrices for which 7(U) - ¢(V) = v2(A4).

Setting a = i%;, we have that A = (aU)(éV).

Now define u; the ith row of aU and v; the jth row of (1/a)V.

r(al) = jg;rw) = (V) (0
(1/a)V) =[5 eV) = VolTT-+(0)
The two equalities above imply that:
(1) = sl < @V = SN0 = V) 1U) = (4)

A similar argument shows this for (v;, v;). However, since t* is the minimum ¢ for which (u;, u;) <'t,
this implies that t* < ~2(A). Thus, t* = v,(A). O
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