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1 Set up

Assume we are given some unknown distribution D on X . We want to know what fraction of the population
defined by D has some property. Formally, we define,

q1, . . . , qm : X → {0, 1}

We want to estimate,

qi(D) := Ex∼D[qi(x)], ∀i

The classical solution to this problem is as follows. Let X = (x1, . . . , xn), where every xi is drawn indepen-
dently from D. We estimate the true mean qi(D) by the empirical mean,

qi(X) =
1

n

n∑
j=1

qi(xj)

.

To make sure that these are good estimates, we need to know how close the empirical means are to the true
means, qi(D). Note that E[qi(X)] = qi(D). We can compute a bound using Hoeffding’s inequality:

∀i : P(|qi(X)− qi(D)| > α) ≤ 2 exp

(
−2α2

n

)
⇒ P(∃i : |qi(X)− qi(D)| > α) ≤ 2m exp

(
−2α2

n

)
≤ β

To satisfy this, we need

n ≥ log(2m/β)

2α2

This reasoning is, however, no longer valid if qi is based on q1(X), . . . , qi−1(X)? (We refer to these as
adaptive queries). In Hoeffding’s inequality, we assume that each element of the sum (in the empirical mean)
is independent and lies in the interval [0,1]. Moreover, if qi depends on the data, we may no longer have an
unbiased estimator for the mean. In short: things can break!
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2 Artificial example

When m � n, then, under some assumptions on the qi, we can recover X from q1(X), . . . , qm−1(X). Then
we can define our next query in the following way,

qm(x′) =

{
1, if xi = x′ for some i,

0, otherwise.

Note that qm(X) = 1. If D is uniform on X , then, for |X | = n100, we have qm(D) = 1
n99 ≈ 0. This can be

thought of as an example of catastrophic overfitting to the data!

3 Naive solution and Improvement

A simple way to handle adaptive queries is to partition X into X1, . . . , Xm and use Xi to compute qi(X) ≈
qi(D). For this naive solution, we would need,

n ≥ m log(1/β)

α2
.

This is a lot more data then before. Can we do better? We will show that using differential privacy we can!
In particular, we will show that we can use,

n &

√
m log (2m/β)

α2
.

Roughly speaking, this is the best possible bound. It is achieved via the following Transfer Theorem.

Theorem 1 (Transfer Theorem) Suppose that the mechanism M takes n iid samples X from D, and
answers m (adaptive) queries q1, . . . , qm on X such that,

i) ∀X ∈ Xn,PM(∃i : |qi(X) −M(X)i| > α) ≤ β, where M(X)i is the answer given by M to the i-th
query;

ii) M is (α, αβ)-DP.

Then,

PD,M(∃i : |qi(X)− qi(D)| > Cα) ≤ Cβ, (1)

for some constant C.

Proof: See, e.g. Bassily et al. [2016]. We prove a slightly weaker version below.

By adaptive, we mean that qi can depend onM’s answers to q1, . . . , qi−1. Intuitively, adaptive data queries
may be able to overfit to the data. Differential privacy corrects this as queries are only allowed to receive
aggregate information on the data - making overfitting more difficult. By instantiating the Transfer Theorem
with mechanisms we have seen in this class, we can get different sample bounds that improve on the naive
soluion.
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Gaussian noise mechanism: We can directly plug this in to get the bound from Equation 1.

Online PMW: For this mechanism, we need:

n &

√
log |X | log(m/β) log(1/αβ)

α3
.

4 Main Lemma and Generalization in Machine Learning

The proof of the Transfer Theorem relies on the following lemma.

Lemma 2 Suppose W is (ε, δ)-DP and on input X ∈ Xn, it outputs a counting query q. Let X ∼ Dn
(independent rows). Then,

|EX,W [q(D)|q =W(X)]− EX,W [q(X)|q =W(X)]| ≤ eε − 1 + δ.

Note that the conditioning above simply defines the random query q. We use it only for clarity. In words,
the lemma states that a differentially private algorithm cannot do what we saw in the artificial example
before, i.e. cannot find a query which distinguishes the data from the underlying distribution.

Before we prove the lemma, let us see how it immediately implies that differentially private empirical risk
minimization generalizes to unseen samples. Let us recall the basic set up for supervised learning. We define
the 0-1 loss as,

l(y′, y) =

{
1, y′ 6= y,

0, otherwise.
(2)

We also define the loss on D as,

L(θ,D) = E(x,y)∼D[l(fθ(xi), yi)],

and the empirical loss as

L(θ,X) =
1

n

n∑
i=1

l(fθ(xi), yi).

Here {ftheta : θ ∈ Θ} is the hypothesis class, defined as functions parametrized by some parameter vector
θ.

Notice that the empirical loss is a counting query for every θ. Then Lemma 2 implies that if θ is computed
on X by an (ε, δ)-DP algorithm M, then,

EX,M[L(θ,D)] ≤ EX,M[L(θ,X)] + eε − 1 + δ.

3



In fact, you can check that our proof of the lemma actually shows that for any non-negative loss l, with
values in [0, L],

EX,M[L(θ,D)] ≤ eεEX,M[L(θ,X)] + δL.

Thus the loss achieved by differentially private empirical risk minimization on the data is never much more
than the loss achieved on the true distribution.

Next we prove the lemma.

Proof: For brevity we will not include the X,M subscript from the expectations, with the understanding
that all expectations and probabilities are with respect to the randomness of both X and M. By linearity
of expectation, and because q(xi) ∈ {0, 1}

E[q(X)|q =W(X)] =
1

n

n∑
i=1

E[q(xi)|q =W(X)]

=
1

n

n∑
i=1

P(q(xi) = 1|q =W(X)).

We now apply differential privacy. Take x′i ∼ D independent of all else. Then define X ′ = (x1, . . . , x
′
i, . . . , xn)

such that X and X ′ are neighboring. Then, by the definitions of differential privacy,

P(q(xi) = 1|q =W(X)) ≤ eεP(q(xi) = 1|q =W(X ′)). (3)

Notice that the joint distribution of (xi, X
′) is identical to the joint distribution of (x′i, X): in either case we

have an item sampled from D and n other items, independently sampled from D. Then we must have,

P(q(xi) = 1|q =W(X ′)) = P(q(x′i) = 1|q =W(X))

= E[q(D)|q =W(X)]

Substituting this back in, we get,

E[q(x)|q =W(X)] ≤ eεE[q(D)|q =W(X)] + δ

This is not quite what we wanted to prove. Notice that A−B ≤ (eε−1)B+δ ≤ eε−1+δ. We can repeat the
previous argument from Equation 3 in reverse and combine the bounds in this way to recover the original
statement (left as an easy exercise).

5 A Transfer Theorem

We show the following, somewhat easier, transfer theorem.

Theorem 3 (Easier Transfer Theorem) Let X ∼ Dn and letM be (ε, δ)-DP such that for every adaptive
q1, . . . , qm and for all X ∈ Xn,
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EM,X [max
i
|qi(X)−M(X)i|] ≤ α.

Then,

EM,X [max
i
|qi(D)−M(X)i|] ≤ α+ eε − 1 + δ.

Proof: Take W which simulates M on q1, . . . , qm and outputs qi that maximizes |qi(D) −M(X)i|. Then
W is (ε, δ)-DP, as we can think of it as a post-processing of M that does not use the dataset X.

We use the following trick: let us change the queries and the mechanism so that, whenever qi is asked, then
1− qi is also asked, and is answered by 1−M(X)i. Then,

max
i
|qi(D)−M(X)i| = max

i
qi(D)−M(X)i,

which leads to,

EX,M[max
j
qj(D)−M(X)j ] = E[qi(D)−M(X)i|qi =W(X)]

= E[qi(D)− qi(X)|qi =W(X)] + E[qi(X)−M(X)i|qi =W(X)]

The first expectation is at most eε − 1 + δ and the second is at most α (by assumption).

The only difference with the first transfer theorem is that this one does not give high-probability bounds on
the errors, but rather gives a bound on the expected worst-case error.
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