
CSC2419:Algorithms and Complexity in Private Data Analysis Winter 2018

Lecture 9: Differentially Private Empirical Risk Minimization
Aleksandar Nikolov Scribe: Patricia Thaine

1 Set up

Today we will talk about differentially private machine learning, and specifically, about supervised learning.
Our dataset X will be labeled, and will define it as X = {(x1, y1), ..., (xn, yn)} ⊆ X×Y, where xi ∈ X , yi ∈ Y.
Here X is the set of possible data points, and Y is the set of possible labels. We will focus on d-dimensional
data, i.e. X = [0, 1]d or {0, 1}d, and binary labels, i.e. Y = {±1}.

Given a family of functions {fθ : θ ∈ Θ}, our goal will be to find the function fθ (or, equivalently, the
parameter θ ∈ Θ) that best fits our labels. This will be modeled as minimizing a loss function l : Y×Y → R.
Let’s consider the following example:

l(y′, y) =

{
1, if y′ 6= y

0, if y′ = y

Then if fθ(xi) = yi, i.e. fθ correctly predicts the label of xi, the loss l(fθ(xi), yi) is 0, and otherwise it is 1.
A classical example of a family of functions are linear predictors

fθ(x) = sign
(∑

xjθj + θ0

)
, θ ∈ Rd+1

Then
∑
xjθj + θ0 = 0 is the equation of a hyperplane, and fθ(x) = +1 “above” the hyperplane, and

fθ(x) = −1 below it. We have the following picture when d = 2:

+1

-1
(x, y) =

{
y = +1, loss is 0

y = −1, loss is 1

2 Empirical Risk minimization

In supervised machine learning, we have some fixed but unknown distribution D, and our goal is to find the
function fθ in our family that best predicts the labels of points sampled from this distribution. Formally, we
want to find

θ∗ = arg min
θ∈Θ

E
(x,y)∼D

l(fθ(x), y) (1)

where D is a distribution on X × Y. This is the risk minimization problem. E(x,y)∼D l(fθ(x), y) is denoted
L(θ,D). With the example loss function from the previous section, L(θ,D) = P(x,y)∼D(fθ(x) 6= y)), i.e. just
the probability that fθ misclassifies a labeled point drawn fro D.

Of course, this problem is unsolvable, unless we are given some form of access to D. The usual assumption
then is that we are given a labeled dataset X = {(x1, y1)...(xn, yn)} of IID samples from D. Then, instead
of directly solving (1), we solve the empirical risk minimization problem (ERM) of finding

θn = arg min
θ∈Θ

1

n

n∑
i=1

l(fθ(xi), yi). (2)

1

This is the same as (1), except that we minimize the loss with respect to the empirical distribution induced
by the dataset. The objective 1

n

∑n
i=1 l(fθ(xi), yi) is the empirical loss, and is denoted L(θ,X). Going back

to our example, solving (2) corresponds to finding the function fθ that best classifies the given dataset.

We hope that the θn found in (2) generalizes to the whole distribution. I.e. we would like that, as n → ∞,
L(θn, D) → L(θ∗, D). This means that our function fθn classifies unseen examples drawn from the same
distribution as well as it does the data set points. Statistical learning theory studies conditions on the
family of functions {fθ : θ ∈ Θ}, the loss l(y′, y), and the distribution D, under which we can guarantee this
convergence. While there are many interesting questions there, they are beyond the scope of this lecture.
Instead, we will focus on how to solve the optimization problem (2) under differential privacy.

3 (Constrained) Logistic regression

While the loss from our example so far is very natural, it makes solving the optimization problem (2)
computationally hard. A way around this is to define a surrogate loss for which ERM is more tractable. We
will focus on the logistic loss function, defined as

l(y′, y) = log(1 + e−y·y),

and the class of linear functions fθ(x) =
∑d
i=1 θixi + θ0 over x ∈ X = [0, 1]d. By adding a coordinate x0 = 1

to every point x (so expanding X to [0, 1]d+1), we can simplify fθ a bit to just fθ(x) = θ>x. This set up is
motivated by a statistical model in which the label y of a point x is a random variable with a distribution

parametrized by θ, and the logarithm of the odds ratio P(y|θ)
P(−y|θ) is fθ(x). Then 1

1+e−fθ(x)y
is interpreted as

P(y|θ), and minimizing the logistic loss corresponds to finding the maximum likelihood estimate of θ given
the data.

We will solve a constrained version of this problem in which fθ varies over θ ∈ Θ = Bd+1
2 (R), where Bd+1

2 (R)
is the Euclidean ball of radius R centered at 0. This is a form of regularization: it constrains the hypothesis
fθ we find to be “simple”, thus helping with generalization. For us, this constraint will be crucial so that we
can solve the ERM problem with differential privacy.

Instead of imposing a constraint, we can instead work with the `2-regularized logistic loss l(y′, y) = log(1 +
e−z) + λ

2 · ‖θ‖
2
2. This is similar to the constrained problem, as it forces the optimal solution to be in a ball

of bounded radius. The techniques we will use adapt easily to the regularized setting as well.

While we will use logistic regression as a running example in this lecture, the methods apply much more
generally to constrained empirical risk minimization with convex loss.

4 Nosiy Gradient Descent

Unlike least squares regression, there is no closed form expression for the optimal θ in the logistic regression
problem. Instead we usually solve it (approximately) using a general purpose convex optimization algorithm.
A popular choice is gradient descent:

θ0 ← 0
for t = 1...T − 1 do
θ̃t ← θt−1 − η∇L(θt−1, X)
θt ← θ̃t/max{1, ‖θt‖2/R}

end for
output 1

T

∑T−i
t=0 θ

t

2

Above, ∇L(θ,X) is the gradient with respect to θ, i.e. it’s a vector whose i-th coordinate is the partial

derivative (∇L(θ,X))i = ∂L(θ,X)
∂θi

. At every step, the algorithm moves θ a little bit in the direction opposite
to the gradient: this is the direction in which the loss locally decreases the fastest. If θ ever leaves the ball,
it is scaled back inside. See Figure 1.

Bd+1
2 (R)

θ0

θ̃t

θt

Figure 1: Gradient Descent

Our approach will be to try to make this algorithm differentially private. Notice that, in any single step, the
only thing that depends on the database X is the gradient of the loss L. So, a natural strategy is to add
noise to the gradient. We get the following noisy variant of gradient descent:

θ0 ← 0
for t = 1...T − 1 do
θ̃t ← θt−1 − η(∇L(θt−1, X) + wt)
θt ← θ̃t/max{1, ‖θt‖2/R}

end for
output 1

T

∑T−1
t=0 θt

wt is random noise that is added to make gradient descent differentially private. The noise will be Gaussian,
and in the next section we will explore how large it needs to be.

5 Advanced composition (for Gaussian noise)

Recall the Gaussian noise mechanism: for a function f that maps databases to m-dimensional vectors, we
release MGauss(x) = f(x) + w where every wi is an independent Gaussian with mean 0 and variance σ2

ε,δ ·

∆2f
2), σ2

ε,δ ≈ θ
(
k
√

log(1/δ)

ε

)
. Here ∆2f is the `2-sensitivity of f , defined as: ∆2f = maxx∼x′ ‖f(x)−f(x′)‖2

Say we want to publish k functions f1, ..., fk such that ∆2fi ≤ C for each one of them. One thing we can do
is publish each one using the Gaussian noise mechanism with privacy parameters (ε/k, δ/k), and then use
the composition theorem to argue about privacy. Then we would publish f1(x) + w1, . . . , fk(x) + wk where
wij ∼ N (0, σ2

ε/k,δ/kC
2) for every i and j. This increases the variance of the noise by roughly k2 with respect

to only releasing a single function.

We can, however, do better: it’s enough to set wij ∼ N (0, kσ2
ε,δC

2), and, as above, output f1(x) +

3

w1, ..., fk(x) + wk. This is equivalent to running the Gaussian noise mechanism on the function

f(x) =

f1(x)
...

fk(x)

 .

The privacy guarantee follows from the privacy of the Gaussian noise mechanism and the observation

∆2f
2 = max

x∼x′
‖f(x)− f(x′)‖22

= max
x∼x′

∑
i

‖fi(x)− fi(x′)‖22

≤
∑
i

max
x∼x′
‖fi(x)− fi(x′)‖22

≤ kC2.

However, the analysis via the composition theorem still had something going for it, because it still works
even when the choise of the function fi is determined by f1(x) + w1, . . . , fk(x) + wk. Can we get privacy
with the improved variance above in this adaptive setting too? It turns that the answer is “yes”: in fact
the privacy analysis of the Gaussian noise mechanism we did in the beginning of the course can be easily
adapted to this setting. That is, outputting fi(x) + wi, wi ∼ N (0, kσ2

ε,δC
2) where fi can depend on

f1(x) + w1, ..., fi−1(x) + wi−1, is (ε, δ)-DP.

This is an instance of the advanced composition theorem: check the Dwork and Roth monograph for a
more thorough discussion of it. Here we are stating it only for Gaussian noise, but, just like the simple
composition theorem, a similar statement holds for adaptive composition of arbitrary (ε, δ)-differentially
private mechanisms. The proof is again similar to the analysis of the Gaussian noise mechanism, but the
parameters become worse, which is why we will stick to the Gaussian version.

6 Back to Noisy Gradient Descent

Let us now apply the Gaussian advanced composition theorem to the noisy gradient descent algorithm and
determine how large the noise needs to be at each step. In this case the function f1, f2, . . . are simply the
gradients ∇L(θ0, X), ∇L(θ1, X), etc. To apply the composition theorem, we need to bound the sensitivity
of these gradients, now seen as functions of X.

Suppose ‖∇l(fθ(xi), θ)‖2 ≤ C for every θ ∈ Θ and every xi ∈ X , where again we take gradients with respect
to θ.
Then, because ∇L(θ,X) = 1

n

∑n
i=1∇l(fθ(xi), θ),

∆2∇L(x, θ) = max
x∼x′
‖∇L(x, θ)−∇L(x′, θ)‖

= max
x∈X

∥∥∥∥ 1

n
∇l(fθ(xi), θ)

∥∥∥∥
2

≤ C

n
.

So, in private gradient descent, we can set wti ∼ N (0, Tσ2
ε,δ · C

2

n2), for each t and i in order to achieve
(ε, δ)-differential privacy.

For logistic regression: with the loss l(fθ(xi), yi) = log(1 + e−yiθ
>xi) we have

∇ log(1 + e−yiθ
>xi) = − 1

1 + eyiθ>xi
yixi ⇒ ‖∇ log(1 + e−yiθ

>xi)‖2 ≤ ‖xi‖2 ≤
√
d+ 1.

4

So wt ∼ N (0, Tσ2
ε,δ · d+1

n2) is enough noise to achieve (ε, δ)-differential privacy.

7 Error analysis

Finally, we want to say that the noisy gradient descent algorithm, given sufficient data, does actually come
close to the optimal parameter vector of the logistic regression problem. Luckily, gradient descent is an
incredibly robust algorithm, and it’s possible to still give convergence guarantees under a very general noise
model.

Algorithms like the noisy gradient descent algorithm above are special cases of Stochastic Gradient Descent.
In general, in stochastic gradient descent we take a step in a random direction, which ideally has expectation
equal to minus te gradient, and not too large variance. The general algorithm is

θ0 ← 0
for t = 1...T − 1 do
θ̃t ← θt−1 − ηzt
θt ← θ̃t/max{1, ‖θt‖2/R}

end for
output 1

T

∑T−1
t=0 θt

Above zt is a random variable, whose distribution may depend on z1, . . . , zt−1. In our case zt = ∇L(θt−1, X)+
wt. Another common variant of SGD is to set it equal to the gradient of a random point in the dataset, or
the average of several random points. This is often done to speed up the algorithm, since the most expensive
step in gradient descent is to compute the gradient of the entire loss function.

In the next section we will prove the following general guarantee for SGD.

Theorem 1 Let L(θ,X) be convex in θ for all X. Suppose E[zt | θt−1] = ∇L(θt−1, X) and E‖zt‖22 ≤ B2.

For η = R
BT 1/2 we have EL

(
1
T

∑T−1
t=0 θt, X

)
≤ minθ∈Bd+1

2 (R) L(θ,X) + RB
T 1/2 .

Using this theorem for private gradient descent, we have

zt = ∇L(θt−1, X) + wt

E‖zt‖22 = ‖∇L(θt+1, X)‖22 + E‖wt‖2 ≤ C2 +
Tσ2

ε,δC
2(d+ 1)

n2
= C2

(
1 +

Tσ2
ε,δ(d+ 1)

n2

)
This bounds B, and plugging the bound into Theorem 1, we get

EL
(1

T

T−1∑
t=0

θt, X
)
− min
θ∈Bd+1

2 (R)
L(θ,X) ≤ RB

T 1/2
≤ RC

T 1/2
·
(

1 +
Tσ2

ε,δ(d+ 1)

n2

)1/2

≤ RC

T 1/2
+
RCσε,δ

√
d+ 1

n

Note that this error bound decomposes into two parts: one goes to 0 with T , and would be there even if we
added no noise, i.e. just ran standard gradient descent. The second term in the error bound is due to the
noise, and goes down with n, since the variance of our noise decreases with n as well. To bound the error
by α, we set both terms to be less than α

2 and we get the following setting of parameters

T ≥ 4R2C2

α2
; n ≥ 2RCσε,δ

√
d+ 1

α
&
RC
√

log(1/δ) ·
√
d+ 1

αε
.

In the case of logistic regression, we can just plug in C ≤
√
d+ 1 in the bounds above.

5

8 Proof of Theorem 1

To be more concise, let’s define g(θ) = L(θ,X). We start with a basic fact about convex functions: the graph
of a convex function always lies above any of its tangent hyperplanes (see Figure 2) for what this looks like
in a single variable). This means that for all θ and θ′, we have

g(θ′) ≥ g(θ) + (θ′ − θ)>∇g(θ) (3)

Stated equivalently, the local linear approximation to g at θ (on the right hand side) is always an underes-
timate with respect to the actual function.

θ θ′

g(θ)

g(θ′)

g(θ) + (θ′ − θ)dg
dθ
(θ)

Figure 2: Illustration of (3)

Let θ∗ = arg minθ∈Θ g(θ) be the optimal solution. Applying (3) to θ∗ and θt−1, for any 1 ≤ t ≤ T , we get

g(θ∗) ≥ g(θt−1) + (θ∗ − θt−1)>∇g(θt−1)

or, equivalently,

g(θt−1)− g(θ∗) ≤ (θt−1 − θ∗)>∇g(θt−1)> = E[(θt−1 − θ∗)>zt | θt−1].

Taking expectations over θt−1, by the total law of expectation, we have

E[g(θt−1)− g(θ∗)] ≤ E[E[(θt−1 − θ∗)>zt | θt]] = E[(θt−1 − θ∗)>zt]

=
1

η
E[(θt−1 − θ∗)>(θt−1 − θ̃t)] = (?)

Next, we use a nice little trick, known as polarization: for any two vectors x and y in Rd+1, we have
‖x− y‖22 = ‖x‖22 + ‖y‖22 − 2x>y, so we can express their dot product as x>y = 1

2 (‖x‖22 + ‖y‖22 − ‖x− y‖22).

Applying this to x = θt−1 − θ∗ and y = θt−1 − θ̃t, on the right hand side above, we get

(?) =
1

2η
E[‖θt−1 − θ∗‖22 + ‖θt−1 − θ̃t‖22 − ‖θ̃t − θ∗‖22]

=
1

2η
E[‖θt−1 − θ∗‖22 − ‖θ̃t − θ∗‖22] +

η

2
E[‖zt‖22]

≤ 1

2η
E[‖θt−1 − θ∗‖22 − ‖θ̃t − θ∗‖22] +

ηB2

2
= (??).

Now we need one final inequality:
‖θt − θ∗‖2 ≤ ‖θ̃t − θ∗‖2. (4)

6

The argument for this is similar to the one we used in the analysis of the projection mechanism. When
‖θ̃t‖2 ≤ R the two sides above are equal. Otherwise, θt = Rθ̃t/‖θ̃t‖2 is the closest point to θ̃t inside the ball
Bd+1

2 (R). This means that θ∗, θ̃t and θt form a triangle with a non-acute (i.e. right or obtuse) angle at θt,
as in Figure 3. Therefore, the right hand side in (4) equals the length of the side of the triangle opposite the
non-acute angle, and the left hand side is the length of one of the other sides, which can be only smaller, by
the cosine law.

θ0

θ̃t

θt

Figure 3: Projection back to the ball

Plugging (4) back into our calculations, we see that

(??) ≤ 1

2η
E[‖θt−1 − θ∗‖22 − ‖θt − θ∗‖22] +

ηB2

2
.

Putting everything together, we have shown that

E[g(θt−1)− g(θ∗)] ≤ 1

2η
E[‖θt−1 − θ∗‖22 − ‖θt − θ∗‖22] +

ηB2

2
.

We have one of these inequalities for each t ∈ {1, . . . , T}, and if average them, the right hand sides telescope,
and we get

E

[
g

(
1

T

T−1∑
t=0

θt

)
− g(θ∗)

]
≤ E

[
1

T

T−1∑
t=0

g(θt)− g(θ∗)

]

= E

[
1

T

T∑
t=1

g(θt−1)− g(θ∗)

]

≤ 1

2Tη
E[‖θ0 − θ∗‖22 − ‖θT − θ∗‖22] +

ηB2

2

≤ R2

2Tη
+
ηB2

2
.

The first inequality above follows from the convexity of g. The final inequality follows because θ0 = 0 and
θ∗ ∈ Bd+1

2 (R), so ‖θ0 − θ∗‖2 ≤ R. Optimizing over the choice of η finishes the proof.

7

