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ancestral constraints.

Expert Knowledge Constraints
* Express expert knowledge as a set of the

 We compared our method, MINOB Sx
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= are more general than directed arc

" x<Yy (topological ordering)

* These constraints can indirectly specify
causal tiers, root/leaf nodes.
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" |f x w» vy, Il is a parent set of y, and for
all p €11, p < x, then Il can be pruned.
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