

Takeaways

TL;DR we study RL agents' ability to follow instructions in text-based games (TextWorld) and outperform the SoTA by leveraging formal language.

- **A** State-of-the-art Reinforcement Learning (RL) agents for text-based games are impervious to instructions.
- $\mathbf{\Phi}_{\mathbf{A}}^{\mathbf{A}}$ We equip RL agents with a structured representation of instructions using the formal language, **linear temporal logic (LTL)**.
- LTL expresses complex instructions compactly, offers compositional syntax and semantics, and supports progress monitoring towards instruction completion.
- ✓ We achieve superior performance on 500+ TextWorld games.

Observations and actions are in natural language. Challenges include partial observability, long-term memory, and language understanding.

Can SoTA agents follow instructions?

GATA (Adhikari et al., 2020) augments transformer-based agents with dynamic longterm memory.

A Largely ignores instructions critical to success. Performance does not change when instructions (e.g. the cookbook recipe) are removed from observations, or

forcibly given to the agent.

Learning to Follow Instructions in Text-Based Games

Mathieu Tuli¹² Andrew C. Li¹² Pashootan Vaezipoor¹² Toryn Q. Klassen¹²³ Scott Sanner¹² Sheila A. McIlraith¹²³

¹Department of Computer Science, University of Toronto ²Vector Institute ³Schwartz Reisman Institute {mathieutuli, andrewli, pashootan, toryn, sheila}@cs.toronto.edu, ssaner@mie.utoronto.ca

- 2. Prepare Recipe
- Grab the red potato
- Chop the red potato
- Fry the red potato

- LTL is a temporal logic classically used for verification, program synthesis, and recently, for non-Markovian reward specification in RL.
- ✓ **Temporal patterns** are defined via (nested) modalities such as EVENTUALLY, UNTIL, ALWAYS applied to propositions p, composed together using logical connectives.
- **Unambiguous semantics** allow us to automatically monitor progress towards instruction completion, unlike natural language.

$$arphi$$
 := $p \mid \neg arphi \mid arphi \wedge \psi \mid \bigcirc arphi$ Unti

- **1. Translate natural language observations to LTL**
- **\\$** We build a natural-language-to-LTL translator that extracts instruction info.
- ✓ We show that GPT-3 can automatically perform this translation using as few as six examples.
- 2. Track satisfaction of instruction steps with LTL progression
 - time as parts of the task are solved.
- $\mathbf{\Phi}_{\mathbf{A}}^{\mathbf{A}}$ We evaluate the truth/falsity of propositions using GATA's learned belief graph, in support of LTL progression.
- $\mathbf{\Phi}_{\mathbf{A}}^{\mathbf{A}}$ We reward or penalize the agent for satisfying or violating instructions (resp.).
- **3. Condition policy on Transformer-encoded LTL**
- $\mathbf{A}_{\mathbf{A}}^{\mathbf{A}}$ LTL-GATA selects actions $a_t \in C_t$ conditioned on observations o_t , belief graph (memory) g_t , and the generated LTL instructions φ_t .
- **C** Belief graph is encoded using graph convolutional neural networks, while text

Key Results

- ✓ **Superior performance** over previous SOTA.
- Progression matters. Ablations show that the use of LTL and its progression operator is a critical mechanism for success.
- ✓ **Strong generalization performance** by LTL-GATA when given sufficient data.
- Code at https://github.com/MathieuTuli/LTL-GATA.

Linear Temporal Logic (LTL)

ventually $|\varphi U \psi | \Diamond \varphi | \Box \varphi$ Always--

Instructions Steps Single

Ordered

Unordered

Disjunctive

Safety

More complex instructions are also supported.

LTL-GATA

LTL Progression (Bacchus and Kabanza, 2000) is a formally defined, semantics-preserving rewriting operation that simplifies instructions over

observations, actions and LTL instructions are encoded using Transformers.

0+ **---**

Experiments

LTL	Natural Language
\Diamond red-potato-in-player	"Get the red potato"
<pre>(red-potato-in-player ^</pre>	"Get the red potato then chop the red potato"
<pre>◇ red-potato-in-player ∧</pre> ◇ carrot-in-player	"Get red potato and carrot in any order"
\Diamond red-potato-is-fried \lor \Diamond red-potato-is-baked	"Fry or bake the red potato"
<pre>◇ red-potato-in-player ∧</pre> □ ¬ knife-in-player	"Get the red potato while not holding the knife"