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Takeaways

TL;DR we study RL agents’ ability to follow instructions in text-based games
(TextWorld) and outperform the SoTA by leveraging formal language.

 State-of-the-art Reinforcement Learning (RL) agents for text-based games are im-
pervious to instructions.

3 We equip RL agents with a structured representation of instructions using the for-
mal language, linear temporal logic (LTL).

Ë LTL expresses complex instructions compactly, offers compositional syntax and
semantics, and supports progress monitoring towards instruction completion.

Ë We achieve superior performance on 500+ TextWorld games.

TextWorld

Observations and actions are in natural language. Challenges include partial observ-
ability, long-term memory, and language understanding.

Can SoTA agents follow instructions?

GATA (Adhikari et al., 2020) augments transformer-based agents with dynamic long-
term memory.

 Largely ignores instructions critical to success. Performance does not change
when instructions (e.g. the cookbook recipe) are removed from observations, or
forcibly given to the agent.
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Linear Temporal Logic (LTL)

LTL is a temporal logic classically used for verification, program synthe-
sis, and recently, for non-Markovian reward specification in RL.

Ë Temporal patterns are defined via (nested) modalities such as
EVENTUALLY, UNTIL, ALWAYS applied to propositions p , composed
together using logical connectives.

Ë Unambiguous semantics allow us to automatically monitor progress
towards instruction completion, unlike natural language.
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Instructions Steps LTL Natural Language

Single ◊ red-potato-in-player “Get the red potato”

Ordered ◊ (red-potato-in-player ∧
◊ red-potato-is-chopped)

“Get the red potato then
chop the red potato”

Unordered ◊ red-potato-in-player ∧
◊ carrot-in-player

“Get red potato and carrot
in any order”

Disjunctive ◊ red-potato-is-fried ∨
◊ red-potato-is-baked “Fry or bake the red potato”

Safety ◊ red-potato-in-player ∧
□ ¬ knife-in-player

“Get the red potato while
not holding the knife”

More complex instructions are also supported.

LTL-GATA

1. Translate natural language observations to LTL
3 We build a natural-language-to-LTL translator that extracts instruction info.

Ë We show that GPT-3 can automatically perform this translation using as few as
six examples.

2. Track satisfaction of instruction steps with LTL progression
 LTL Progression (Bacchus and Kabanza, 2000) is a formally defined,

semantics-preserving rewriting operation that simplifies instructions over
time as parts of the task are solved.

3 We evaluate the truth/falsity of propositions using GATA’s learned belief graph,
in support of LTL progression.

3 We reward or penalize the agent for satisfying or violating instructions (resp.).

3. Condition policy on Transformer-encoded LTL
3 LTL-GATA selects actions at ∈Ct conditioned on observations ot , belief graph

(memory) g t , and the generated LTL instructions ϕt .

3 Belief graph is encoded using graph convolutional neural networks, while text
observations, actions and LTL instructions are encoded using Transformers.

Experiments
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Key Results
Ë Superior performance over previous SOTA.

Ë Progression matters. Ablations show that the use of LTL and its
progression operator is a critical mechanism for success.

Ë Strong generalization performance by LTL-GATA when given
sufficient data.

� Code at https://github.com/MathieuTuli/LTL-GATA.

https://github.com/MathieuTuli/LTL-GATA

