Technical Appendix

Table of Contents
A Learning DFAs from Training Data 11
A.1 From Training Datato Prefix Trees 11
A.2 FromPrefix Trees to DFAs e 11
A.3 Derivation of the Posterior Probability Distribution over the Set of Class Labels 13
B Interpretability 13
B.1 Natural Language Generation for Counterfactual Explanation 13
B.2 Samples of Learned DFA Classifiers e 13
B.3 Linear Temporal Logic e 15
C Experimental Evaluation 17
C.1 Experimental SEtup L e e e e 17
C.2 Datasets o i e e e e e e e e e e e 18
C3 Additional Results 19
C.4 Early Classification e e e 19
C.5 Multi-label Classification L e e e e 23

In Appendix A, we provide further details concering our procedure to learn a DFA-based classifier from a training set. In
Appendix B, we outline a simple natural language generation approach for counterfactual explanation, present samples of
learned DFA classifiers from our experiments, and provide exposition of Linear Temporal Logic. In Appendix C, we provide
additional details of our experimental setup and our datasets and present additional experimental results (including results from
early and multi-label classification experiments).

A Learning DFAs from Training Data

In this appendix, we provide further details concerning our procedure to learn a DFA-based classifier from a training set
T = {(r1,¢1),...,(Tn,cn)}. Recall that, for each possible label ¢ € C, we train a separate DFA, M., responsible for
recognizing traces with label c. We then use those DFAs to compute a probability distribution for online classification of partial
traces.

A.1 From Training Data to Prefix Trees

The first step to learning a DFA is to construct a Prefix Tree (PT). Algorithm 1 shows the pseudo-code to do so. It receives the
training set 7 and the label ¢ of the positive class. It returns the PT for that training set and class label. It also labels each PT
node with the costs associated with classifying that node as positive and negative, respectively. That cost depends on the length
of the trace and its label, and it is computed using the function add_cost().

A.2 From Prefix Trees to DFAs

We now discuss the MILP model we use to learn a DFA given a PT. The complete MILP model follows.
min Z Cn + Ae Z Z €q0 + Mt Z tn (MILP)
neN qgeEQ oeX neN

sty apg=1 Vn e N (1)
q€Q
Tro=1 2)

Algorithm 1 Converting Training Data into Prefix Trees
1: function GET_PREFIX_TREE(T, cT)

2: r <— create_root_node()

3: for (1,¢) € T do

4: n<r

5: add_cost(n, ¢ = ¢, |7|)

6: for o € T do

7: if not has_child(n,o) then
8: add_child(n,o)

9: end if
10: n < get_child(n,0)
11: add_cost(n, ¢ = c*, |7])
12: end for
13: end for
14: return r

15: end function

Z Ogoq =1 VgeQ, o€l 3)
q7'eQ

0gog =1 VgeT,ceX “4)
Tpm)g + Tng =1 < Ogs(n)g’ Vne N\{r}¢eQ.¢d €Q (5)
cn = A" Z ct()ang + A~ Z ¢ (N)xn,q Vn e N (6)

qeF qEQ\F
€q0 = Z Og,0,q" VgeQ,oex (7N
a’€Q\{q}
tn = Z Tn,q VneN (8)
qEQ\T

Tn,q € {0,1} VYne N,geQ 9)
dq.0.0 € {0, 1} VgeQ,0€X,q €Q (10)
cn €R Yn e N an
eq0 €R Vg€ Q,0€X (12)
tn, € R Vn € N (13)

This model learns a DFA over a vocabulary 3 with at most g, states. From those potential states (), we set state 0 to be
the initial state gy and predefine a set of accepting states /' C () and a set of terminal states 7" C (). We also use the following
notation to refer to nodes in the PT: r is the root node, p(n) is the parent of node n, s(n) is the symbol that caused node p(n) to
transition to node n, ¢* (n) is the cost associated with predicting node n as positive, ¢ (n) is the cost associated with predicting
node n as negative, and N is the set of all PT nodes. The model also has hyperparameters . and)\; to weight our regularizers
and hyperparameters A and A\~ to penalize misclassifications of positive and negative examples differently (in the case where
the training data is imbalanced).

The idea behind our model is to assign DFA states to each node in the tree. Then, we look for an assignment that is feasible
(i.e., it can be produced by a deterministic DFA) and optimizes a particular objective function—which we describe later. The
main decision variables are x,, 4 and 04, 4, both binary. Variable x,, 4 is 1 iff node n € NV is assigned the DFA state ¢ € ().
Variable d4,5, is 1 iff the DFA transitions from state ¢ € () to state ¢’ € () given symbol o € X. Note that ¢,,, e, », and ¢,, are
auxiliary (continuous) variables used to compute the cost of the DFAs.

Constraint (1) ensures that only one DFA state is assigned to every PT node and constraint (2) forces the root node to be
assigned to go. Constraint (3) ensures that the DFA is deterministic and constraint (4) makes the terminal nodes sink nodes.
Finally, constraint (5) ensures that the assignment can be emulated by the DFA. The rest of the constraints compute the cost of
solutions and the domain of the variables. In particular, note that the objective function minimizes the prediction error using c,,,
the number of transitions between different DFA states using e, ., and the occupancy of non-terminal states using ¢,,.

This model has O(|N||Q| + |2|Q|?) decision variables and O(|N||Q|? + |X||Q|) constraints.

A.3 Derivation of the Posterior Probability Distribution over the Set of Class Labels

Recall the following assumptions: (1) the classification decisions D, for ¢ € C are conditionally independent, given the true
label ¢* and (2) p(D.|c*) only depends on whether ¢ = ¢*.
For each ¢/, we compute the posterior probability of ¢* = ¢ to be

p(c* = |{D.:ceC})
xp(c* =c)*p({D.:c €C}c* =¢) (using Bayes’ rule)
=p(c* =) * Hp(DC|c* =) (using (1))

ceC
— ol =) p(Dole =) e [p(Dule” £¢) (using 2)
ceC\{c'}

p(c* =)« p(Delc* =)

(dividing through by the constant | | p(D.|c* # ¢))
p(Dele) L pDiker 2

ceC

B Interpretability

B.1 Natural Language Generation for Counterfactual Explanation

In Section 4 of our paper, we discussed counterfactual explanations, which are useful in cases where a classifier does not return a
positive classification for a trace. Here we describe a simple algorithm that transforms a counterfactual explanation (comprising
a sequence of edit operations - see Definition 4.1 for details) to an English sentence. We define three edit operations over
strings: REPLACE(s, c1, c2) replaces the first occurrence of the character c; in the string s with the character co; INSERT(s,
c1, c2) inserts the character c; after the first occurrence of the character c; in the string s; DELETE(s, ¢;) removes the first
occurrence of the character ¢; from the string s.

Algorithm 2 accepts as input a sequence of edit operations ey, ea, ..., e, (Where e; is either a replace, insert, or delete
operation), and returns a string representing an English sentence encoding the counterfactual explanation for some trace 7.
Redundant “and”’s are removed from the resulting string. We do not consider multiple occurrences of the same character in a
single string but this can be easily handled. e;.args[i] is assumed to return the ¢ + 1th argument of an edit operation e; and
e;.type is assumed to return the type of the edit operation (e.g., REPLACE). CONCATENATE(s1, S2) appends the string s, to the
suffix of the string s;. We further assume that connectives (e.g., ‘and’) are added between the substrings representing the edit
operations.

Algorithm 2 Natural Language Generation for Counterfactual Explanation

Require: A sequence of edit operations £ = e, ez, ..., e,
1: s < “The binary classifier would have accepted the trace”
2: For einE:
3: If e.type == REPLACE

4 CONCATENATE(s, “ had e.args(2] been observed instead of e.args[1]”)

5 If e;.type == INSERT

6: CONCATENATE(s, “ had e.args[2] been observed following the observation of e.args[1]”)
7 If e.type == DELETE

8 CONCATENATE(s, “ had e.args[1] been removed from the trace”)

9: RETURN s

For example, using the DFA depicted in Figure 1, if 7 = (A, H2, H1, %) then a possible counterfactual explanation is the
edit operation REPLACE(T, ¥, #) which transforms (A, H2, H1, %) to (A, H2, H1,). Given the edit operation REPLACE(T,
P, =), Algorithm 2 returns the string “The binary classifier would have accepted the trace had % been observed instead of [

B.2 Samples of Learned DFA Classifiers

In this appendix we present a number of examples of DFAs learned by DISC from our experimental evaluation in Section 5 of
our paper. As discussed in Section 4, our purpose in this work is to highlight the breadth of interpretability services afforded
by DFA classifiers via their relationship to formal language theory. The effectiveness of a particular interpretability service is
user-, domain-, and even task-specific and is best evaluated in the context of individual domains. Moreover, the DFAs presented
in this appendix require familiarity with the domain in question and are therefore best suited for domain experts.

Malware

We present two DFAs learned via DISC from the real-world malware datasets. Figure 4 depicts a DFA classifier for Battery-
Low that detects whether a trace of Android system calls was issued by the malware family DroidKungFu4. The maximum
number of states is limited to 10. The trace 7 = (sendto, epoll_wait, recvfrom, gettid, getpid, read) is rejected by the depicted
DroidKungFu4 DFA classifier. This can be seen by starting at the initial state of the DFA, qo, and mentally following the DFA
transitions corresponding to the symbols in the trace. The exercise of following the symbols of the trace transition through
the DFA can be done by anyone. For the domain expert, the symbols have meaning (and can be replaced by natural language
words that are even more evocative, as necessary). In this trace we see that rather than stopping at accepting state gg, the trace
transitions in the DFA to g5, a non-accepting state. One counterfactual explanation that our system generates to address what
changes could result in a positive classification is: “The binary classifier would have accepted the trace had read been removed

from the trace” (per the algorithm in Appendix B.1).
always

Sfutex
recvfrom

o/w o/w o/W

clock_gettime
@ @ @ clock_gettime

clock_gettime ‘
read ‘ ‘

Getpid read or

l_wait
clock_gettime epoli_wai

clock_gettime

o/w @ @

read ofw

clock_gettime

o/w always
epoll_wait

clock_gettime

gettid or sendto

Figure 4: A DFA learned in our experiments from the BatteryLow dataset by limiting the maximum number of states to 10.
A decision is provided after each new observation based on the current state: yes for the blue accepting state, and no for the
red, non-accepting states. “o/w” (otherwise) stands for all symbols that do not appear on outgoing edges from a state. “always”
stands for all symbols.

For comparison, Figure 5 presents a smaller DFA for BootCompleted, learned with the maximum number of states limited to
5. (This DFA was not used in our experiments.) The DFA detects whether a trace was issued by the malware family DroidDream.
The trace (here truncated, as subsequent observations do not affect the classification decision) 7 = (clock_gettime, epoll_wait,
clock_gettime, clock_gettime, getpid, writev, ...) is rejected by the DFA. One counterfactual explanation that our system generates

to address what changes could result in a positive classification is: “The binary classifier would have accepted the trace had
getuid32 been observed instead of writev”.

always always

getuid32

ell

o/w o/w

clock_gettim

Figure 5: A DFA learned from the BootCompleted dataset by limiting the maximum number of states to 5. A decision is
provided after each new observation based on the current state: yes for the blue accepting state, and no for the red, non-
accepting states. “o/w” (otherwise) stands for all symbols that do not appear on outgoing edges from a state. “always” stands
for all symbols.

Note that while the 5-state DFA may be more interpretable to humans than the 10-state DFA, the 10-state DFA can model
more complex patterns in the data. Indeed, during the course of our experiments with the malware datasets, we found that
setting ¢max = 10 achieved superior performance to ¢y ax = 5.

Crystal Island

Figure 6 depicts a DFA classifier learned from the Crystal Island dataset that detects whether a trace of player actions was
performed in order to achieve the goal Talked-to-Ford. The maximum number of states is limited to 5.

Consider the trace 7 = (pickup banana, move outdoors (2a), move outdoors (2b), open door infirmary bathroom, move
outdoors (3a), move hall), which is rejected by the depicted Talked-to-Ford DFA classifier. One possible counterfactual expla-
nation to result in a positive trace is: “The binary classifier would have accepted the trace had move sittingarea been observed
following the observation of move hall”. Additionally, a necessary condition for this DFA to accept is that either talk ford or
move sittingarea is observed — or equivalently, the LTL property ¢ (talk ford \V move sittingarea). This LTL formula is entailed
by the DFA.

StarCraft

Figure 7 depicts a DFA classifier learned from the StarCraft dataset that detects whether a trace of actions was generated by the
StarCraft-playing agent EconomyMilitaryRush. The maximum number of states is limited to 10.

The trace 7 = (move produce, produce, move produce, move, move, move, harvest, harvest, harvest, move produce, move
produce, attack move move) is rejected by the depicted EconomyMilitaryRush DFA classifier. A counterfactual explanation to
result in a positive trace is: “The binary classifier would have accepted the trace had harvest move been observed instead of
attack move move”. A necessary condition for the DFA to accept is that either move produce or harvest produce is observed in
the trace. Furthermore, every trace starting with harvest produce will be accepted. As discussed in Section 4, these properties
can be automatically extracted from the DFAs.

B.3 Linear Temporal Logic

In Section 4 of our paper, we proposed Linear Temporal Logic (LTL) as a candidate language for conveying explanations o
humans or other agents, and for use by humans or other agents to express temporal properties that the agent might wish to add
to the classifier or have verified. In what follows we review the basic syntax and semantics of LTL (Pnueli 1977). Note that
LTL formulae can be interpreted over either infinite or finite traces, with the finite interpretation requiring a small variation in
the interpretation of formulae in the final state of the finite trace. Here we describe LTL interpreted over infinite traces noting
differences as relevant.

LTL is a propositional logic language augmented with modal temporal operators next (O) and until (U), from which it is
possible to define the well-known operators always (), eventually ({), and release (‘'R). When interpreted over finite traces, a
weak next (@) operator is also utilized, and is equivalent to O when 7 is infinite. An LTL formula over a set of propositions P

move
sittingarea

open door mensquarters front

move hall

o/w always

Figure 6: A DFA learned from the Crystal Island dataset, limiting the maximum number of states to 5. A decision is provided
after each new observation based on the current state: yes for the blue accepting state, and no for the red, non-accepting states.
“o/w” (otherwise) stands for all symbols that do not appear on outgoing edges from a state. “always” stands for all symbols.

harvest move produce

produce

move
produce

harvest
move

produce

o/w always

o/w

Figure 7: A DFA learned from the StarCraft dataset by limiting the maximum number of states to 10. A decision is provided
after each new observation based on the current state: yes for the blue accepting state, and no for the red, non-accepting states.
“o/w” (otherwise) stands for all symbols that do not appear on outgoing edges from a state. “always” stands for all symbols.

is defined inductively: a proposition in P is a formula, and if) and x are formulae, then so are =), (¥ A X), (YU x), O, and
oy.

The semantics of LTL is defined as follows. A trace 7 is a sequence of states, where each state is an element in 2P We denote
the first state of 7 as s1 and the i-th state of 7 as s;; || is the length of 7 (which is oo if 7 is infinite). We say that 7 satisfies ¢
(7 |= o, for short) iff 7,1 |= ¢, where for every ¢ > 1:

* 7,1 |= p, for a propositional variable p € P, iff p € s;,

o 7,1 = — iff it is not the case that 7,7 |= 1,

e mibE (YA iffr,i =y and iy,

e milEOpiffi <|rland 7, i+ 1= ¢,

o m,i = (¢1U o) iff for some jin {i,..., ||}, it holds that 7, j = o and forall k € {i,...,j — 1}, m, k |= ¢1,
e miEepiffi=|rlormi+1E e

Q¢ is defined as (trueld), Op as =O—p, and (¢ R x) as =(—yp U —x).

Given an LTL formula ¢ there exists an automaton A, that accepts a trace 7 iff m = . It follows that, given a set of
consistent LTL formulae, {¢1,..., ¢y}, there exists an automaton, .Ag,,where p = /\Z i, that accepts a trace 7 iff 7 = .
As noted in Section 2 an automaton defines a language—a set of words that are accepted by the automaton. We say that an
automaton .4 satisfies an LTL formula, ¢, A |= ¢ iff for every accepting trace, 7; of A, m; = ¢. Such satisfying LTL formulae
provide another means of explaining the behaviour of a DFA classifier.

Depending on whether LTL formula, ¢, is interpreted over finite or infinite traces, different types of automata are needed
to capture . For the purposes of this paper, it is sufficient to know that DFAs are sufficiently expressive to capture any LTL
formulae interpreted over finite traces, but only a subset (a large and useful subset) of LTL formulae interpreted over infinite
traces.

C Experimental Evaluation

C.1 Experimental Setup

We first provide experimental details for each method used in our main set of experiments in Section 5. DISC, LSTM, and
HMM used a validation set consisting of 20% of the training traces per class on all domains except MIT-AR. This was since
MIT-AR consisted of very limited training data, and using a validation set worsened performance in all cases. We describe
the specific modifications for each method below. Additionally, minor changes were made for our experiments on multi-label
classification (described in C.5).

DISC (our approach) used Gurobi optimizer to solve the MILP formulation for learning DFAs. We set ¢yax, the maximum
possible number of states in a DFA, to 5 for Crystal Island and MIT-AR and 10 for all other domains along with a time limit
of 15 minutes to learn each DFA. DISC also uses two regularization terms to prevent overfitting: a term penalizing the number
of transitions between different states, with coefficient \;; and a term penalizing nodes not assigned to an absorbing state, with
coefficient \,. We set A, = 0.001, and use a validation procedure to choose \; from 11 approximately evenly-spaced values
(on a logarithmic scale) between 0.0001 and 10, inclusive. The model with maximum F7-score on the validation set is selected.
For MIT-AR, instead of using a validation set, we choose \; from a small set of evenly-spaced values ({3, 5.47,10}) and select
the model with highest training F-score.

The DFA-FT baseline utilized the full tree of observations (rather than the prefix tree used in DISC) and learned one DFA
per label. A single positive and negative DFA state were designated, and any node in the tree whose suffixes were all positive
or negative were assigned to the positive or negative state, respectively. Every other node of the tree was assigned to a unique
DFA state and attached with the empirical (training) probability of a trace being positive, given that it transitions through that
DFA state. To classify a trace in the presence of multiple classes, all |C| DFAs were run in parallel, and the class of the DFA
with highest probability was returned.

Our LSTM model consisted of two LSTM layers, a linear layer mapping the final hidden state to labels, and a log-softmax
layer. The LSTM optimized a negative log-likelihood objective using Adam optimizer (Kingma and Ba 2014), with equal
weight assigned to each prefix of the trace (to encourage early prediction). We observed inferior performance overall when
using one or four LSTM layers. The batch size was selected from {8, 32}, the size of the hidden state from {25, 50}, and the
number of training epochs from [1, 300] by choosing the model with the highest validation accuracy given full traces. For the
MIT-AR dataset, the hyperparameters were hand-tuned to 8 for batch size, 25 for hidden dimension, and 75 epoches.

Our HMM model was based on an open-source Python implementation for unsupervised HMMs from Pomegranate®. We
trained a separate HMM for each class, and classify a trace by choosing the HMM with highest probability. Each HMM was
trained with the Baum-Welch algorithm using a stopping threshold of 0.001 and a maximum of 10 iterations. The validation
set was used to select the number of discrete hidden states from {5, 10} and a pseudocount (for smoothing) from {0,0.1, 1}.
For MIT-AR we hand-tuned these hyperparameters to 10 for the number of hidden states and 1 for the pseudocount.

*https://pomegranate.readthedocs.io/en/latest/

The n-gram models did not require validation. We used a smoothing constant & = 0.5 to prevent estimating a probability of
0 for unseen sequences of observations.

C.2 Datasets

The StarCraft and Crystal Island datasets were obtained thanks to the authors (Ha et al. 2011; Kantharaju, Ontafién, and Geib
2019), while the malware datasets, ALFRED, and MIT-AR are publicly available34°.

Malware

The two malware datasets (BootCompleted, BatteryLow) were generated by Bernardi et al. (2019) by downloading and in-
stalling various malware applications with various intents (e.g., wiretapping, selling user information, advertisement, spam,
stealing user credentials, ransom) on an Android phone. Each dataset reflects an Android operating system event (e.g., the
phone’s battery is at 50%) that is broadcasted system-wide (such that the broadcast also reaches every active application, in-
cluding the running malware). Each family of malware is designed to react to a system event in a certain way, which can help
distinguish it from the other families of malware (see Table 4 in (Bernardi et al. 2019) for the list of malware families used in
the dataset).

A single trace in the dataset comprises a sequence of ‘actions’ performed by the malware application (e.g., the system
call clock_gettime) in response to the Android system call in question, and labelled with the class label corresponding to the
particular malware family.

StarCraft

The StarCraft dataset was constructed by Kantharaju, Ontafién, and Geib (2019) by using replay data of StarCraft games where
various scripted agents were playing against one another. To this end, the real-time strategy testbed MicroRTS® was used. The
scripted agents played in a 5-iterations round-robin tournament with the following agent types: POLightRush, POHeavyRush,
PORangedRush, POWorkerRush, EconomyMilitaryRush, EconomyRush, HeavyDefense, LightDefense, RangedDefense, Work-
erDefense, WorkerRushPlusPlus. Each agent competed against all other agents on various maps.

A replay for a particular game comprises a sequence of both players’ actions, from which the authors extracted one labelled
trace for each player. We label each trace with the agent type (e.g. WorkerRushPlusPlus) that generated the behaviour.

Crystal Island

Crystal Island is an educational adventure game designed for middle-school science students (Ha et al. 2011; Min et al. 2016),
with the dataset comprising in-game action sequences logged from students playing the game. “In Crystal Island, players
are assigned a single high-level objective: solve a science mystery. Players interleave periods of exploration and deliberate
problem solving in order to identify a spreading illness that is afflicting residents on the island. In this setting, goal recognition
involves predicting the next narrative sub-goal that the player will complete as part of investigating the mystery” (Ha et al.
2011). Crystal Island is a particularly challenging dataset due to players interleaving exploration and problem solving which
leads to noisy observation sequences.

A single trace in the dataset comprises a sequence of player actions, labelled with a single narrative sub-goal (e.g., speaking
with the camp’s virus expert and see Table 2 in (Ha et al. 2011)). Each observation in the trace includes one of 19 player
action-types (e.g., testing an object using the laboratory’s testing equipment) and one of 39 player locations. Each unique pair
of action-type and location is treated as a distinct observation token.

ALFRED

ALFRED (Action Learning From Realistic Environments and Directives) is a benchmark for learning a mapping from natural
language instructions and egocentric vision to sequences of actions for household tasks. We generate our training set from the set
of expert demonstrations in the ALFRED dataset which were produced by a classical planner given the high-level environment
dynamics, encoded in PDDL (McDermott et al. 1998). Task-specific PDDL goal conditions (e.g., rinsing off a mug and placing
it in the coffee maker) were then specified and given to the planner, which generated sequences of actions (plans) to achieve
these goals. There are 7 different task types which we cast as the set of class labels C (see Figure 2 in (Shridhar et al. 2020)):
Pick & Place; Stack & Place; Pick Two & Place; Examine in Light; Heat & Place; Cool & Place; Clean & Place.

3https://github.com/mlbresearch/syscall-traces-dataset
*https://github.com/askforalfred/alfred/tree/master/data
Shttps://courses.media.mit.edu/2004fall/mas622j/04.projects/home/
Shttps://github.com/santiontanon/microrts

(# DFA states, # state transitions)

Dataset DISC DFA-FT
StarCraft 8.8,37.2 1704, 196.0
MIT-AR 3.0,1.83 18.3,103.4
Crystal Island [3.9,26.2 166.6,451.4
ALFRED 5.1,9.0 26.8,53.2

BootCompleted |9.7,42.7 321.3,391.5
BatteryLow 8.9,27.2 325.1,365.7

Table 2: The average number of DFA states (first), and the average number of state transitions (second) in learned models for
DISC (ours) and DFA-FT over twenty runs, using the experimental procedure in Section C.1.

A single trace in the dataset comprises a sequence of actions taken by the agent in the virtual home environment, labelled
with one of the class labels described above (e.g., Heat & Place).

MIT Activity Recognition (MIT-AR)

MIT-AR was generated by Tapia, Intille, and Larson (2004) by collecting sensor data over a two week period from multiple
sensors installed in a myriad of everyday objects such as drawers, refrigerators and containers. The sensors recorded opening
and closing events related to these objects while the human subject carried out everyday activities. The resulting noisy sensor
sequence data was manually labelled with various high-level daily activities in which the human subject was engaged. The
activities in this dataset (which serve as the class labels in our experiments) include preparing dinner, listening to music, taking
medication and washing dishes, and are listed in Table 5.3 in (Tapia, Intille, and Larson 2004). In total there are 14 activities.

A single trace in the dataset comprises a sequence of sensor recordings (e.g., kitchen drawer interacted with or kitchen
washing machine interacted with), labelled with one of the class labels described above (e.g., washing dishes).

C.3 Additional Results

We display the extensive results from the main paper in Figures 8, 9, 10. For each domain, we present a line plot displaying the
Cumulative Convergence Accuracy (CCA) up to the maximum length of any trace and a bar plot displaying the PCA at 20%,
40%, 60%, 80%, and 100% of observations. Error bars report a 90% confidence interval over 30 runs.

We further report in Table 2 the average number of states and transitions in learned DFAs for DISC and DFA-FT. DFAs
learned using DISC were generally an order of magnitude smaller than DFAs learned using DFA-FT.

C.4 Early Classification

The two key problems in early prediction are: (1) to maximize accuracy given only a prefix of the sequence and (2) to determine
a stopping rule for when to make a classification decision. (1) is not significantly different from vanilla sequence classification,
thus, most work in early prediction focuses on (2). While many different stopping rules have been proposed in the literature,
the correct choice should be task-dependent as it requires making a trade-off between accuracy and earliness. Furthermore, it
is difficult to objectively compare early prediction models that may make decisions at different times. Our early classification
experiment is designed to evaluate two essential criteria: the accuracy of early classification, and the accuracy of classifier
confidence, while remaining independent of choice of stopping rule.

Thus, we expand upon the early classification setting briefly mentioned in Section 5.2 where an agent can make an irrevocable
classification decision after any number of observations, but prefers to make a correct decision as early as possible. This is
captured by a non-increasing utility function U (t) for a correct classification. Note the agent can usually improve its chance
of a correct prediction by waiting to see more observations. If the agent’s predictive accuracy after ¢ observations is p(t), then
to maximize expected utility, the agent should make a decision at time ¢t* = argmax,{U(t)p(t)}. However, the agent only
has access to its estimated confidence measures conf(¢) = p(t). Thus, success in this task requires not only high classification
accuracy, but also accurate confidence in one’s own predictions.

We test this setting on a subset of domains, with utility function U(¢) = max{1 — J5,0}. We make the assumption that at
time ¢, the classifier only has access to the first ¢ observations, but has full access to the values of conf(¢’) for all ¢’ and can
therefore choose the optimal decision time. We only consider baselines which produce a probability distribution over labels
(DISC, LSTM, n-gram), defining the classifier’s confidence to be the probability assigned to the predicted label (i.e. the most
probable goal).

Results are shown in Table 3. DISC has a strong performance on each domain, only comparable by LSTM. This suggests the
confidence produced by DISC accurately approximates its true predictive accuracy.

Accuracy

Accuracy

Crystal Island

0.8 1

o
o
L

=}
i
L

0.2

0.0

2 8 32 128 512 20% 40% 60% 80% 100%
Number of observations Percentage of observations

StarCraft

0.8

o
o
L

=]
IS
L

0.2

0.0

2 4 8 16 20% 40% 60% 80% 100%
Number of observations Percentage of observations
—=—-=- DISC (ours) — LSTM One-gram I DISC (ours) N 1 STM One-gram
—— DFA-FT —— HMM —— Two-gram Il DFA-FT s HMM I Two-gram

Figure 8: Results for the Crystal Island and StarCraft domains.

Accuracy

Accuracy

ALFRED

0.8 1

o
o
1

=)
IS
1

0.2

0.0

4 8 16 20% 40% 60% 80% 100%

Number of observations Percentage of observations

MIT-AR

0.8

o
o
L

=]
IS
L

0.2

0.0

2 4 8 16 32 64 128 20% 40% 60% 80% 100%
Number of observations Percentage of observations
—=—-=- DISC (ours) — LSTM One-gram I DISC (ours) N 1 STM One-gram
—— DFA-FT - HMM —— Two-gram HEl DFA-FT s HMM Bl Two-gram

Figure 9: Results for the Alfred and MIT-AR domains.

BootCompleted

0.8 1

Accuracy
o
(=}
I

=)
'S
L

0.2

0.0

2 8 32 128 512

Number of observations

20% 40% 60% 80% 100%
Percentage of observations

BatteryLow

0.8 1

Accuracy
o
[=2)
)

=)
IS
1

0.2 1

0.0

2 8 32 128 512
Number of observations

—=—-+ DISC (ours) — LSTM One-gram
—— DFA-FT -~ HMM —— Two-gram

20% 40% 60% 80% 100%
Percentage of observations
I DISC (ours) N LSTM One-gram
I DFA-FT B HMM I Two-gram

Figure 10: Results for the BootCompleted and BatteryLow domains.

Average utility

Dataset DISC LSTM I-gram 2-gram
ALFRED 0.840(£0.014) 0.855(+0.003) 0.703(£0.002) 0.792(+0.003)
StarCraft 0.337(+0.005) 0.341(+0.005) 0.194(£0.004) 0.273(40.006)

BootCompleted | 0.203(+0.014) 0.218(+0.018) 0.113(+0.003) 0.157(-0.006)

Table 3: Results for the early classification experiment. Average utility per trace over twenty runs is reported with 90% confi-
dence error, with the best mean performance in each row in bold.

C.5 Multi-label Classification

In the goal recognition datasets used in our work we assume agents pursue a single goal achieved by the sequence of actions
encoded in the sequence of observations. However, often times an agent will pursue multiple goals concurrently, interleaving
actions such that each action in a trace is aimed at achieving any one of multiple goals. For instance, if an agent is trying to
make toast and coffee, the first action in their plan may be to fill the kettle with water, the second action may be to put the
kettle on the stove, their third action might be to take bread out of the cabinet, and so on. We cast this generalization of the
goal recognition task as a multi-label classification problem where each trace may have one or more class labels (e.g., foast and
coffee).

We experiment with a synthetic kitchen dataset (Harman and Simoens 2020) where an agent is pursuing multiple goals and
non-deterministically switching between plans to achieve them. A single trace in this dataset comprises actions performed by
the agent in the kitchen environment in pursuit of multiple goals drawn from the set of possible goals. Each trace is labelled
with multiple class labels corresponding to the goals achieved by the interleaved plans encoded in the trace. In total there are 7
goals the agent may be pursuing (|C| = 7) and 25 unique observations (|X| = 25). The multi-goal kitchen dataset was obtained
with thanks to the authors (Harman and Simoens 2020).

We modify DISC for this setting by directly using the independent outputs of the binary one-vs-rest classifiers—Bayesian
inference is no longer necessary since we do not need to discriminate a single label. Precisely, for a given trace 7, we in-
dependently run all |C| DFA classifiers and return all classes for which the corresponding DFA accepts. We also disable the
reweighting technique described in A.2 (i.e. by setting AT = A~ = 1) to focus on optimizing accuracy. We set DISC’s hyper-
parameters t0 ¢max = 5, Aq = 0.001, \; = 0.0003. The LSTM baseline is modified to return a |C|-dimensional output vector
containing an independent probability for each class and is trained with a cross-entropy loss averaged over all dimensions. At
test time, we predict all classes ¢ € C with probability greater than 0.5. We set the LSTM’s hyperparameters to 8 for batch
size, 25 for hidden dimension size, and 250 for number of epoches. Results are shown in Figure 11, where we report the mean
accuracy, averaged over all goals, over 30 runs. DISC achieves similar performance to LSTM (c) on this task.

Accuracy

Kitchen Multigoal

1.0
084 __ - o
0.6 1
0.4 1
0.2
0.0 ; ; . . .
1 2 4 8 16

Number of observations

=== DISC (ours) m— L STM

Figure 11: CCA for the Kitchen domain. Error bars represent a 90% confidence interval over 30 runs.

