LTL2Action: Generalizing LTL Instructions for Multi-Task RL

Pishootan Vaheziipoor†∗, Andrew C. Li†*, Rodrigo Toro Icarte†, Sheila McLeaith†
†Department of Computer Science, University of Toronto ‡Vector Institute

Abstract

We address the problem of teaching a deep reinforcement learning (RL) agent to follow instructions in multi-task environments. Instructions are expressed in a well-known formal language - linear temporal logic (LTL) - and can specify a diversity of complex, temporally extended behaviours, including conditionals and alternative realizations. Our proposed learning approach exploits the compositional syntax and the semantics of LTL, enabling our RL agent to learn task-conditioned policies that generalize to new instructions, not observed during training. To reduce the overhead of learning LTL semantics, we introduce an environment-agnostic LTL pretraining scheme which improves sample-efficiency in downstream environments. Experiments on discrete and continuous domains target combinatorial task sets of up to ~10^6 unique tasks and demonstrate the strength of our approach in learning to solve (unseen) tasks, given LTL instructions.

Background

Multi-Task Reinforcement Learning

Goal: Train a single task-conditioned policy to generalize to a wide array of tasks. Tasks are specified in the formal language linear temporal logic (LTL).

Linear Temporal Logic (LTL)

LTL is an expressive language with desirable properties for RL.

- **Temporal patterns** can be specified with modalities like eventually, until, always together with event predicates (i.e., propositions p).
- **Compositional syntax** allows us to procedurally sample diverse, meaningful tasks for training (over 10^9 tasks, in our experiments).
- **Unambiguous semantics** allow us to automatically determine task completion, unlike natural language. We don’t rely on manually labelled data.

\[
R = \begin{cases}
1 & \text{if } \varphi \text{ is satisfied} \\
-1 & \text{if } \varphi \text{ is falsified} \\
0 & \text{otherwise}
\end{cases}
\]

Challenges

- **Non-Markovian Reward:** Some LTL tasks require memory with respect to the state (see table above).
- **Myopia:** Standard techniques for decomposing tasks into sequential subtasks are sub-optimal (see example below).
- **Generalization:** Most work on LTL+RL does not generalize to unseen tasks.

LTL2Action

Neural Encodings of LTL Formulas

We encode the LTL instructions with a neural network to enable generalization to unseen tasks. We considered encoding the syntax as a sequence of tokens (GRU, LSTM) or the abstract syntax tree (GNN).

LTL Progression

LTL Progression (Bacchus & Kabanza, 2000) is a formal method for simplifying instructions over time as parts of the task are solved (example in bottom left Figure). We show the following guarantees:

- **Theorem:** For LTL tasks, there exists an optimal policy that is Markovian when the instructions are updated via LTL progression.
- **Standard Markov RL can be applied**
- **Non-myopic Pretraining**

As LTL syntax and semantics are environment-agnostic, we propose to pretrain encodings of LTL without interacting with any physical environment.

Pretraining Task

Pretraining Task: Given an LTL formula \(\varphi \), satisfy \(\varphi \) as quickly as possible, choosing one proposition to be true per step.

Experiments

We conducted experiments on diverse, procedurally-generated LTL tasks, and across Gridworld and MuJoCo environments.

Key Results

- **Performance:** LTL2Action outperforms other approaches which do not use LTL progression or are myopic.
- **Architecture:** Compositional architectures (GNN) encode LTL formulas better than sequence models (LSTM, GRU).
- **Pretraining:** Pretraining LTL encodings results in more rapid convergence in novel downstream environments.
- **Upward Generalization:** Our approach robustly generalizes to instructions up to 3× larger than those in training.