

- Sequence classification is the task of predicting a class label given a sequence of observations.
- The class of problems we address are symbolic time-series classification problems that require discrimination of a set of potential classes.

Motivation:

- Recurrent neural networks are state-of-the-art sequence classifiers, but the rationale for classification is difficult for a human to discern.
- In many applications (e.g. healthcare monitoring, malware detection), early classification is crucial to prompt intervention.

Contributions:

- We outline how learned DFAs can support explanation, counterfactual reasoning, and human-in-the-loop modification.
- Experiments show that DISC achieves comparable test performance to LSTM, with the added advantage of being interpretable.

Consider a goal recognition environment where the possible goals of the agent starts at A, B, or E and takes the shortest (Manhattan distance) path to the goal. Right - a DFA classifier that detects whether or not the agent is trying to reach the goal 🖢. A decision is provided after each new observation based on the current state: yes for the blue accepting state, and no for the red, non-accepting states.

Learning DFAs for S	equen
 Learning one vs rest binary classifiers We train a separate DFA to recognize traces from each class. We specify a MILP model to find the DFA minimizing classification error. We regularize the number of non-self-loop transitions to prevent overfitting to handle noise. 	Mult V P V f
Classifier Verificati	on an
• Temporal properties of the DFA classifier such as "Neither \clubsuit nor	† 00

verified against the DFA using standard formal methods verification techniques. • Our learned classifiers are also amenable to the inclusion of additional classification criteria, and the modification to the DFA classifier can be realized via a standard product computation.

Counterfactual Explanation

- In cases where a classifier does not return a positive classification for a trace, a useful explanation can take the form of a so-called counterfactual explanation.
- Given the trace $\tau = (A, H2, H1, \dot{r})$, a possible counterfactual explanation is the edit operation (informally specified) REPLACE \dot{r} WITH 🛎 which transforms (A, H2, H1, 🛉) to (A, H2, H1, 🖢). This explanation can then be transformed into a natural language sentence: "The binary classifier would have accepted the trace had 🖢 been observed instead of 🛉".

Experimental Evaluation - Datasets

Three goal recognition datasets:

- Crystal Island, a narrative-based game
- ALFRED, a virtual-home environment
- MIT Activity Recognition (MIT-AR)

• A dataset comprising replays of different types of scripted agents in the real-time strategy game StarCraft

Interpretable Sequence Classification via Discrete Optimization

Maayan Shvo[†] Andrew C. Li Rodrigo Toro Icarte Sheila A. McIlraith[†]

Department of Computer Science, University of Toronto, Toronto, Canada Vector Institute for Artificial Intelligence, Toronto, Canada [†]Schwartz Reisman Institute for Technology and Society, Toronto, Canada

• We introduce Discrete Optimization for Interpretable Sequence Classification (DISC) which uses DFAs as interpretable sequence classifiers which favour early classification. • We propose a novel discrete optimization approach for learning DFA classifiers that are robust to noisy data and are suitable for real-world domains.

Example

ce Classification

Iticlass classification

We perform Bayesian inference over the ensemble of DFAs (one per class).

We infer a probability distribution over classes which is useful for confidence estimation.

d Modification

occur before "' can be straightforwardly specified in LTL and

Three behavior classification datasets:

Two real-world malware datasets comprising 'actions' taken by different malware applications in response to various Android system events

Cumulative Convergence Accuracy up to the maximum length of a trace. Error bars correspond to a 90% confidence interval.

DFA-F7 A D of e> Qua than DFA

Experimental Evaluation

Dise	Discussion	
	Pros	
FA-learning approach that does not perform regularization, representative kisting work in learning DFAs.	DISC often baselines.	
litatively, the DFAs learned by DISC were orders of magnitude smaller	DISC learns in	
those learned by DFA-FT.	Cons	
-FT often overfits to noise.	 DISC assumes equivalently, for a DISC cannot ended 	

achieves near LSTM performance, and outperforms other

nterpretable models.

s the traces for each label can be recognized by a DFA (or form a regular language) which does not always hold true. easily solve tasks requiring counting.