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TL;DR We propose MuJoCo tasks based on NP-hard optimization problems (e.g. TSP) to challenge the long-term reasoning ability of RL agents.
We find that state-of-the-art RL and hierarchical RL approaches perform poorly and motivate two new approaches based on their weaknesses.

Overview

Motivation
 Many real-world tasks involve high-level combinatorial

reasoning and low-level complex control over long horizons.

 Standard benchmark tasks mostly involve simple high-level
structure (e.g. reaching a goal location, opening a door).

 Challenge: Complex tasks often lead to sparse rewards.

Our tasks
Ë Contain combinatorial structure.

Ë Require long-term reasoning for the best performance.

Ë Decompose into dense rewards — no specialized exploration
required!

Can PPO reason over long horizons?

The paradox of discounting
 Discounting (γ< 1) leads to a myopic policy that fails to

consider long-term effects.

 No discounting (γ= 1) is known to cause instability.

A simple fix for undiscounted (γ= 1) PPO
? Hypothesis: Value estimation is significantly harder with long

horizons and γ= 1 due to increased variance.

3 Proposal (PPOVD): Model the mean and variance of the value
function rather than a point estimate.

Result
Ë PPO(γ=1)

VD (our approach) performed equal to or better than
PPO at any discount factor.

 Discounting with PPO led to myopic behaviour.
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PointTSP: Visit all the zones as quickly as possible.
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TimedTSP: Visit all the zones as quickly as possible
without letting any unvisited zone reach its timeout.
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ColourMatch: Make all zones the same colour as fast as
possible. Visiting a zone cycles it to the next colour.

Undiscounted PPO(γ=1)
VD (ours) immediately visits the

two zones in danger of timing out. Discounted
PPO(γ=0.99)myopically optimizes for dense reward and
quickly fails.
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Does hierarchy improve long-term

reasoning?

Most work in learning hierarchy focuses on improving exploration
under sparse rewards.

Motivating Problem
? Can HRL exploit high-level task structure to improve long-term

reasoning in our dense-reward tasks?

Zone-goals (Ours)

3 We design a domain-specific hierarchy for these tasks.

• High-level policy selects the next zone to visit (trained via task
rewards).

• Low-level policy aims to navigate to the target zone
(trained via shaped xy-rewards).

Result
Ë A handcrafted hierarchy (Zone-goals) significantly outperformed all

other methods.

 State-of-the-art general-purpose HRL methods showed no
improvement over flat PPO.

 Skill-based approaches were prone to collapsing into a single skill.


