

¹University of Toronto ²Vector Institute ³Schwartz Reisman Institute ⁴Pontificia Universidad Católica de Chile ⁵Centro Nacional de Inteligencia Artificial

TL;DR

We propose MuJoCo tasks based on NP-hard optimization problems (e.g. TSP) to challenge the long-term reasoning ability of RL agents.

Overview

Motivation

- Many real-world tasks involve high-level combinatorial **reasoning** and low-level **complex control** over long horizons.
- **A** Standard benchmark tasks mostly involve simple high-level structure (e.g. reaching a goal location, opening a door).
- **Challenge:** Complex tasks often lead to sparse rewards.

Our tasks

- Contain combinatorial structure.
- Require long-term reasoning for the best performance.
- Decompose into dense rewards no specialized exploration required!

Can PPO reason over long horizons?

The paradox of discounting

- A Discounting ($\gamma < 1$) leads to a myopic policy that fails to consider long-term effects.
- A No discounting ($\gamma = 1$) is known to cause instability.

A simple fix for undiscounted ($\gamma = 1$) PPO

- **Hypothesis:** Value estimation is significantly harder with long horizons and $\gamma = 1$ due to increased variance.
- **Proposal (PPO**_{\mathcal{VD}}): Model the mean and variance of the value function rather than a point estimate.

Result

- **PPO** $_{\mathcal{VD}}^{(\gamma=1)}$ (our approach) performed equal to or better than PPO at any discount factor.
- **A** Discounting with PPO led to myopic behaviour.

Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks

Pashootan Vaezipoor¹² Rodrigo Toro Icarte²⁴⁵ Sheila A. McIlraith¹²³ Andrew C. Li¹²

PointTSP: Visit all the zones as quickly as possible.

TimedTSP

Undiscounted PPO $_{\mathcal{VD}}^{(\gamma=1)}$ (ours) immediately visits the two zones in danger of timing out. Discounted ^{.99)} myopically optimizes for dense reward and $PPO^{(\gamma=0)}$ quickly fails.

We find that state-of-the-art RL and hierarchical RL approaches perform poorly and motivate two new approaches based on their weaknesses.

TimedTSP: Visit all the zones as quickly as possible without letting any unvisited zone reach its timeout.

Does hierarchy improve long-term reasoning?

Most work in learning hierarchy focuses on improving exploration under sparse rewards.

Motivating Problem

reasoning in our **dense-reward** tasks?

Zone-goals (Ours)

- rewards).
- (trained via shaped *xy*-rewards).

Result

- other methods.
- improvement over flat PPO.

ColourMatch: Make all zones the same colour as fast as possible. Visiting a zone cycles it to the next colour.

• Can HRL exploit high-level task structure to improve long-term

We design a domain-specific hierarchy for these tasks. • High-level policy selects the next zone to visit (trained via task

• Low-level policy aims to navigate to the target zone

✓ A handcrafted hierarchy (**Zone-goals**) significantly outperformed all

State-of-the-art general-purpose HRL methods showed no A Skill-based approaches were prone to collapsing into a single skill.