
Variational Inference for Monte Carlo Objectives

Andriy Mnih, Danilo Rezende

June 21, 2016

1 / 18

Introduction

I Variational training of directed generative models has been widely
adopted.

I Results depend heavily on the choice of the variational posterior.
I A variational posterior that is too simple can prevent the model from

using much of its capacity.
I Making it more expressive is one way to avoid this (see e.g. DRAW,

normalizing flows).

I Simpler (orthogonal) alternative: optimize a tighter lower bound on the
log-likelihood by throwing more computation at the problem.

I Burda et al. (2016) used the reparameterization trick to implement
this approach in variational autoencoders.

I We develop a more general version than can also handle the harder
case of models with discrete latent variables.

I We use the availability of multiple samples to implement highly
effective variance reduction at virtually no additional cost.

2 / 18

Motivation

I Continuous latent variables are not always appropriate.

I Some properties of the world, such as absence/presence, number
of objects, are fundamentally discrete.

I Dependencies between between discrete latent variables can be
easier to capture (e.g. DARN).

I Inference-based learning provides a principled way of training deep
models without backpropagation.

I Inferring the latent variable values effectively makes them
observed, breaking the flow of gradients through them.

I An inference network propagates the information contained in the
target/output, which is captured by the backpropagated gradient in
differentiable/reparameterized models.

3 / 18

Multi-sample objective for variational inference

I The standard variational lower bound on log Pθ(x) with a variational
posterior Q(h|x):

L(x) = EQ(h|x)

[
log

P(x ,h)
Q(h|x)

]
= log P(x) + EQ(h|x)

[
log

P(h|x)
Q(h|x)

]
.

I There is a big penalty for having regions with Q(h|x)� P(h|x).
I As a result, the learned Q(h|x) provides very incomplete coverage

of P(h|x).
I A tighter lower bound on log Pθ(x) (IWAE, Burda et al., 2016):

LK (x) = EQ(h1:K |x)

[
log

1
K

K∑
k=1

P(x ,hk)

Q(hk |x)

]

I Now we have K shots at hitting a high-probability region of P(h|x).
I The learned Q(h|x) is now less conservative.

4 / 18

Monte-Carlo objectives

I Generalization: Objectives of the form

LK (x) = EQ(h1:K |x)

[
log

1
K

K∑
k=1

f (x ,hk)

]
,

where h1, ...,hK are independent samples from some distribution Q(h|x).
I Special case: If f (x ,h) is an unbiased Monte Carlo estimator of P(x),

then so is Î(h1:K) = 1
K

∑K
k=1 f (x ,hk).

I EQ(h1:K |x)

[
log Î(h1:K)

]
is a lower bound on log P(x).

I Can think of log Î(h1:K) as a stochastic lower bound on log P(x).
I The bound becomes tighter as K increases, converging to log P(x)

in the limit.

I Q(h|x) can be thought of as a proposal distribution as opposed to a
variational posterior.

5 / 18

Examples of Monte Carlo objectives

I The simplest case involves Monte Carlo sampling from the prior:

LK (x) = EP

[
log

1
K

∑K

k=1
P(x |hk)

]
with hk ∼ P(h).

I Importance sampling with a learned proposal is usually much more
efficient:

LK (x) = EQ(h1:K |x)

[
log

1
K

∑K

k=1

P(x ,hk)

Q(hk |x)

]
.

I Many other possibilities:

I Can incorporate variance reduction techniques from IS such as
control variates.

I Can use α-divergence based objectives.

6 / 18

Gradients of the lower bound

I We would like to maximize the objective

LK (x) = EQ(h1:K |x)

[
log

1
K

K∑
k=1

f (x ,hk)

]
= EQ(h1:K |x)

[
log Î(h1:K)

]
.

I Its gradient can be expressed as

∂

∂θ
LK (x) =EQ(h1:K |x)

[∑
j
log Î(h1:K)

∂

∂θ
log Q(hj |x)

]
+

EQ(h1:K |x)

[∑
j
w̃ j ∂

∂θ
log f (x ,hj)

]
where w̃ j ≡ f (x,hj)∑K

k=1 f (x,hk)
.

I The second term is easy to estimate.
I The first term is much harder.

7 / 18

Estimating the gradients (NVIL-style)

I Can use the Neural Variational Inference and Learning (NVIL) estimator
developed for the single-sample variational objective.

I Applying it to the multi-sample objective gives:

∂

∂θ
LK (x) '

∑
j(log Î(h1:K)− b(x)) ∂∂θ log Q(hj |x)

+
∑

j w̃ j ∂
∂θ log f (x ,hj),

with hk ∼ Q(h|x)
I b(x) is a predictor/baseline trained to predict log Î(h1:K).

I Drawback: uses the same learning signal for all hk , even though some
samples will be much better than others.

I There is no credit assignment within a set of K samples.

8 / 18

Disentangling the learning signals

I Would like to have a different learning signal for each sample.

I Key observation: since the K samples are independent, when
considering the learning signal for one of the samples, can treat all other
samples as constant.

I Can “subtract-out” the effect of the other samples to isolate the
effect of the sample of interest.

I What to subtract from log Î(h1:K)?

I Something very close to it that does not depend on the sample of
interest.

I One idea: train a baseline-like predictor for f (x ,hj) .

I This introduces additional complexity.
I Can we avoid learning an extra mapping?

9 / 18

VIMCO: simple local learning signals

I Better idea: estimate f (x ,hj) from the other K − 1 f (x ,hk).

I Two natural choices for estimating f (x ,hj) are:

I the arithmetic mean: f̂ (x ,h−j) = 1
K−1

∑
k 6=j f (x ,hk)

I the geometric mean: f̂ (x ,h−j) = exp
(

1
K−1

∑
k 6=j log f (x ,hk)

)
I This gives the following local learning signals:

L̂(hj |h−j) = log
1
K

K∑
k=1

f (x ,hk)− log
1
K

∑
k 6=j

f (x ,hk) + f̂ (x ,h−j)

 .

I The second term can be seen as a hand-crafted sample-dependent
baseline with no free parameters.

I VIMCO local learning signals work well without any additional variance
reduction.

10 / 18

Variance reduction: VIMCO vs. NVIL
The magnitude (root mean square) of the learning signal for VIMCO and
NVIL as a function of the number of samples used in the objective and the
number of parameter updates.

0.0

2.5

5.0

7.5

10.0

0 500000 1000000 1500000
Steps

R
M

S

VIMCO(2)
VIMCO(5)
VIMCO(10)
NVIL(1)
NVIL(2)
NVIL(5)
NVIL(10)

11 / 18

Generative modelling: 200-200-200 SBN on MNIST

Estimates of the negative log-likelihood (in nats) for generative modelling on
MNIST. The model is an SBN with three latent layers of 200 binary units.

NUMBER OF TRAINING ALG.
SAMPLES VIMCO NVIL RWS

1 — 95.2 —
2 93.5 93.6 94.6
5 92.8 93.7 93.4

10 92.6 93.4 93.0
50 91.9 96.2 92.5

12 / 18

Structured prediction with inference (MNIST)

−90

−80

−70

−60

−50

−40

0e+00 1e+06 2e+06 3e+06 4e+06
Steps

B
ou

nd
 (

na
ts

)

VIMCO(2)
VIMCO(5)
VIMCO(20)
VIMCO(50)
NVIL(1)
NVIL(2)
NVIL(5)
NVIL(20)
NVIL(50)

13 / 18

Structured prediction without inference (MNIST)

−90

−80

−70

−60

−50

−40

0e+00 1e+06 2e+06 3e+06 4e+06
Steps

B
ou

nd
 (

na
ts

)

14 / 18

Conclusions

I A principled, unbiased approach to optimizing multi-sample variational
objectives that just works.

I Implements effective variance reduction essentially for free.
I Does not need a learned baseline to work well.

I Performs better than NVIL and Reweighted Wake Sleep.

I Can handle both discrete and continuous latent variables and can be
combined with the reparameterization trick.

15 / 18

Thank you!

16 / 18

Generative modelling: 200-200-200 SBN on MNIST

−120

−110

−100

−90

0e+00 1e+06 2e+06 3e+06 4e+06
Steps

B
ou

nd
 (

na
ts

)

VIMCO(2)
VIMCO(5)
VIMCO(10)
VIMCO(50)
NVIL(1)
NVIL(2)
NVIL(5)
NVIL(10)
NVIL(50)

17 / 18

Structured prediction: completion examples

18 / 18

