Variational Inference for Monte Carlo Objectives

Andriy Mnih, Danilo Rezende

June 21, 2016

Introduction

- Variational training of directed generative models has been widely adopted.
 - Results depend heavily on the choice of the variational posterior.
 - A variational posterior that is too simple can prevent the model from using much of its capacity.
 - Making it more expressive is one way to avoid this (see e.g. DRAW, normalizing flows).
- Simpler (orthogonal) alternative: optimize a tighter lower bound on the log-likelihood by throwing more computation at the problem.
 - Burda et al. (2016) used the reparameterization trick to implement this approach in variational autoencoders.
- We develop a more general version than can also handle the harder case of models with discrete latent variables.
 - ► We use the availability of multiple samples to implement highly effective variance reduction at virtually no additional cost.

Motivation

Continuous latent variables are not always appropriate.

- Some properties of the world, such as absence/presence, number of objects, are fundamentally discrete.
- Dependencies between between discrete latent variables can be easier to capture (e.g. DARN).
- Inference-based learning provides a principled way of training deep models without backpropagation.
 - Inferring the latent variable values effectively makes them observed, breaking the flow of gradients through them.
 - An inference network propagates the information contained in the target/output, which is captured by the backpropagated gradient in differentiable/reparameterized models.

Multi-sample objective for variational inference

► The standard variational lower bound on log P_θ(x) with a variational posterior Q(h|x):

$$\mathcal{L}(x) = E_{Q(h|x)} \left[\log \frac{P(x,h)}{Q(h|x)} \right] = \log P(x) + E_{Q(h|x)} \left[\log \frac{P(h|x)}{Q(h|x)} \right].$$

- There is a big penalty for having regions with $Q(h|x) \gg P(h|x)$.
- ► As a result, the learned Q(h|x) provides very incomplete coverage of P(h|x).
- A tighter lower bound on $\log P_{\theta}(x)$ (IWAE, Burda et al., 2016):

$$\mathcal{L}^{K}(x) = E_{Q(h^{1:K}|x)} \left[\log \frac{1}{K} \sum_{k=1}^{K} \frac{P(x, h^{k})}{Q(h^{k}|x)} \right]$$

- Now we have K shots at hitting a high-probability region of P(h|x).
- The learned Q(h|x) is now less conservative.

Monte-Carlo objectives

Generalization: Objectives of the form

$$\mathcal{L}^{K}(x) = E_{Q(h^{1:K}|x)}\left[\log\frac{1}{K}\sum_{k=1}^{K}f(x,h^{k})\right],$$

where $h^1, ..., h^K$ are independent samples from some distribution Q(h|x).

- ► Special case: If f(x, h) is an unbiased Monte Carlo estimator of P(x), then so is $\hat{l}(h^{1:K}) = \frac{1}{K} \sum_{k=1}^{K} f(x, h^k)$.
 - $E_{Q(h^{1:K}|x)} \left[\log \hat{I}(h^{1:K}) \right]$ is a lower bound on $\log P(x)$.
 - Can think of $\log \hat{l}(h^{1:K})$ as a *stochastic* lower bound on $\log P(x)$.
 - The bound becomes tighter as K increases, converging to log P(x) in the limit.
- Q(h|x) can be thought of as a proposal distribution as opposed to a variational posterior.

Examples of Monte Carlo objectives

The simplest case involves Monte Carlo sampling from the prior:

$$\mathcal{L}^{K}(x) = E_{P}\left[\log\frac{1}{K}\sum_{k=1}^{K}P(x|h^{k})\right] \text{ with } h^{k} \sim P(h).$$

Importance sampling with a learned proposal is usually much more efficient:

$$\mathcal{L}^{K}(x) = E_{Q(h^{1:K}|x)}\left[\log\frac{1}{K}\sum_{k=1}^{K}\frac{P(x,h^{k})}{Q(h^{k}|x)}\right].$$

- Many other possibilities:
 - Can incorporate variance reduction techniques from IS such as control variates.
 - Can use α -divergence based objectives.

Gradients of the lower bound

We would like to maximize the objective

$$\mathcal{L}^{K}(x) = E_{Q(h^{1:K}|x)} \left[\log \frac{1}{K} \sum_{k=1}^{K} f(x, h^{k}) \right] = E_{Q(h^{1:K}|x)} \left[\log \hat{I}(h^{1:K}) \right].$$

Its gradient can be expressed as

$$\begin{split} \frac{\partial}{\partial \theta} \mathcal{L}^{\mathcal{K}}(x) = & E_{Q(h^{1:\mathcal{K}}|x)} \left[\sum_{j} \log \hat{l}(h^{1:\mathcal{K}}) \frac{\partial}{\partial \theta} \log Q(h^{j}|x) \right] + \\ & E_{Q(h^{1:\mathcal{K}}|x)} \left[\sum_{j} \tilde{w}^{j} \frac{\partial}{\partial \theta} \log f(x, h^{j}) \right] \end{split}$$

where $\tilde{w}^{j} \equiv \frac{f(x,h^{j})}{\sum_{k=1}^{K} f(x,h^{k})}$.

- The second term is easy to estimate.
- The first term is much harder.

Estimating the gradients (NVIL-style)

- Can use the Neural Variational Inference and Learning (NVIL) estimator developed for the single-sample variational objective.
- Applying it to the multi-sample objective gives:

$$\begin{split} \frac{\partial}{\partial \theta} \mathcal{L}^{\mathcal{K}}(x) &\simeq \sum_{j} (\log \hat{l}(h^{1:\mathcal{K}}) - b(x)) \frac{\partial}{\partial \theta} \log Q(h^{j}|x) \\ &+ \sum_{j} \tilde{w}^{j} \frac{\partial}{\partial \theta} \log f(x, h^{j}), \end{split}$$

with $h^k \sim Q(h|x)$

- b(x) is a predictor/baseline trained to predict $\log \hat{l}(h^{1:K})$.
- Drawback: uses the same learning signal for all h^k, even though some samples will be much better than others.
 - ► There is no credit assignment within a set of *K* samples.

Disentangling the learning signals

- Would like to have a different learning signal for each sample.
- Key observation: since the K samples are independent, when considering the learning signal for one of the samples, can treat all other samples as constant.
 - Can "subtract-out" the effect of the other samples to isolate the effect of the sample of interest.
- What to subtract from $\log \hat{l}(h^{1:K})$?
 - Something very close to it that does not depend on the sample of interest.
- One idea: train a baseline-like predictor for $f(x, h^{i})$.
 - This introduces additional complexity.
 - Can we avoid learning an extra mapping?

VIMCO: simple local learning signals

- ▶ Better idea: estimate $f(x, h^i)$ from the other $K 1 f(x, h^k)$.
- Two natural choices for estimating $f(x, h^{i})$ are:
 - the arithmetic mean: $\hat{f}(x, h^{-j}) = \frac{1}{K-1} \sum_{k \neq j} f(x, h^k)$
 - the geometric mean: $\hat{f}(x, h^{-j}) = \exp\left(\frac{1}{K-1}\sum_{k\neq j}\log f(x, h^k)\right)$
- This gives the following local learning signals:

$$\hat{L}(h^j|h^{-j}) = \log rac{1}{K} \sum_{k=1}^K f(x,h^k) - \log rac{1}{K} \left(\sum_{k
eq j} f(x,h^k) + \hat{f}(x,h^{-j})
ight).$$

- The second term can be seen as a hand-crafted sample-dependent baseline with no free parameters.
- VIMCO local learning signals work well without any additional variance reduction.

Variance reduction: VIMCO vs. NVIL

The magnitude (root mean square) of the learning signal for VIMCO and NVIL as a function of the number of samples used in the objective and the number of parameter updates.

Generative modelling: 200-200-200 SBN on MNIST

Estimates of the negative log-likelihood (in nats) for generative modelling on MNIST. The model is an SBN with three latent layers of 200 binary units.

NUMBER OF	TRAINING ALG.		
SAMPLES	VIMCO	NVIL	RWS
1		95.2	_
2	93.5	93.6	94.6
5	92.8	93.7	93.4
10	92.6	93.4	93.0
50	91.9	96.2	92.5

Structured prediction with inference (MNIST)

Structured prediction without inference (MNIST)

Conclusions

- A principled, unbiased approach to optimizing multi-sample variational objectives that just works.
 - Implements effective variance reduction essentially for free.
 - Does not need a learned baseline to work well.
- Performs better than NVIL and Reweighted Wake Sleep.
- Can handle both discrete and continuous latent variables and can be combined with the reparameterization trick.

Thank you!

Generative modelling: 200-200-200 SBN on MNIST

Structured prediction: completion examples

