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Introduction

I Training directed latent variable models is difficult because inference in
them is intractable.

I Both MCMC and traditional variational methods involve iterative
procedures for each datapoint.

I A promising new way to train directed latent variable models:

I Use feedforward approximation to inference to implement efficient
sampling from the variational posterior.

I We propose a general version of this approach that

1. Can handle both discrete and continuous latent variables.
2. Does not require any model-specific derivations beyond computing

gradients w.r.t. parameters.
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High-level overview

I A general approach to variational inference based on three ideas:

1. Approximating the posterior using highly expressive feed-forward
inference networks (e.g. neural nets).

I These have to be efficient to evaluate and sample from.

2. Using gradient-based updates to improve the variational bound.
3. Computing the gradients using samples from the inference net.

I Key: The inference net implements efficient sampling from the
approximate posterior.
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Variational inference (I)

I Given a directed latent variable model that naturally factorizes as

Pθ(x ,h) = Pθ(x |h)Pθ(h),

I We can lower-bound the contribution of x to the log-likelihood as follows:

log Pθ(x) ≥ EQ [log Pθ(x ,h)− log Qφ(h|x)]
= Lθ,φ(x),

where Qφ(h|x) is an arbitrary distribution.

I In the context of variational inference, Qφ(h|x) is called the variational
posterior.
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Variational inference (II)

I Variational learning involves alternating between maximizing the lower
bound Lθ,φ(x) w.r.t. the variational distribution Qφ(h|x) and model
parameters θ.

I Typically variational inference requires:

I Variational distributions Q with simple factored form and no
parameter sharing between distributions for different x .

I Simple models Pθ(x ,h) yielding tractable expectations.
I Iterative optimization to compute Q for each x .

I We would like to avoid iterative inference, while allowing expressive,
potentially multimodal, posteriors, and highly expressive models.
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Neural variational inference and learning (NVIL)

I We achieve these goals by using a feed-forward model for Qφ(h|x),
making the dependence of the approximate posterior on the input x
parametric.

I This allows us to sample from Qφ(h|x) very efficiently.
I We will refer to Q as the inference network because it implements

approximate inference for the model being trained.

I We train the model by (locally) maximizing the variational bound Lθ,φ(x)
w.r.t. θ and φ.

I We compute all the required expectations using samples from Q.
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Gradients of the variational bound

I The gradients of the bound w.r.t. to the model and inference net
parameters are:

∂

∂θ
Lθ,φ(x) = EQ

[
∂

∂θ
log Pθ(x ,h)

]
,

∂

∂φ
Lθ,φ(x) = EQ

[
(log Pθ(x ,h)− log Qφ(h|x))

∂

∂φ
log Qφ(h|x)

]
.

I Note that the learning signal for the inference net is
lφ(x ,h) = log Pθ(x ,h)− log Qφ(h|x).

I This signal is effectively the same as log Pθ(h|x)− log Qφ(h|x) (up to a
constant w.r.t. h), but is tractable to compute.

I The price to pay for tractability is the high variance of the resulting
estimates.
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Parameter updates

I Given an observation x , we can estimate the gradients using
Monte Carlo:

1. Sample h ∼ Qφ(h|x)
2. Compute

∂

∂θ
Lθ,φ(x) ≈

∂

∂θ
log Pθ(x ,h)

∂

∂φ
Lθ,φ(x) ≈ (log Pθ(x ,h)− log Qφ(h|x))

∂

∂φ
log Qφ(h|x)

I Problem: The resulting estimator of the inference network gradient is too
high-variance to be useful in practice.

I It can be made practical, however, using several simple
model-independent variance reduction techniques.
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Reducing variance (I)

I Key observation: if h is sampled from Qφ(h|x),

(log Pθ(x ,h)− log Qφ(h|x)− b)
∂

∂φ
log Qφ(h|x)

is an unbiased estimator of ∂
∂φLθ,φ(x) for any b independent of h.

I However, the variance of the estimator does depend on b, which allows
us to obtain lower-variance estimators by choosing b carefully.

I Our strategy is to choose b so that the resulting learning signal
log Pθ(x ,h)− log Qφ(h|x)− b is close to zero.

I Borrowing terminology from reinforcement learning, we call b a baseline.
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Reducing variance (II)
Techniques for reducing estimator variance:

1. Constant baseline: b = a running estimate of the mean of
lφ(x ,h) = log Pθ(x ,h)− log Qφ(h|x).

I Makes the learning signal zero-mean.
I Enough to obtain reasonable models on MNIST.

2. Input-dependent baseline: bψ(x).

I Can be seen as capturing log Pθ(x).
I An MLP with a single real-valued output.
I Makes learning considerably faster and leads to better results.

3. Variance normalization: scale the learning signal to unit variance.

I Can be seen as simple global learning rate adaptation.
I Makes learning faster and more robust.

4. Local learning signals:

I Take advantage of the Markov properties of the models.
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Effects of variance reduction
Sigmoid belief network with two hidden layers of 200 units on MNIST.
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Document modelling results
I Task: model the joint distribution of word counts in bags of words

describing documents.

I Models: SBN and fDARN models with one hidden layer

I Datasets:
I 20 Newsgroups: 11K documents, 2K vocabulary
I Reuters RCV1: 800K documents, 10K vocabulary

I Performance metric: perplexity

MODEL DIM 20 NEWS REUTERS

SBN 50 909 784
FDARN 50 917 724
FDARN 200 598
LDA 50 1091 1437
LDA 200 1058 1142
REPSOFTMAX 50 953 988
DOCNADE 50 896 742
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Conclusions

I NVIL is a simple and general training method for directed latent variable
models.

I Can handle both continuous and discrete latent variables.
I Easy to apply, requiring no model-specific derivations beyond

gradient computation.

I Promising document modelling results with DARN and SBN models.
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Thank you!

14 / 14


