
Learning word embeddings efficiently with noise-contrastive estimation
Andriy Mnih & Koray Kavukcuoglu
DeepMind Technologies

Overview
• Learning flexible word representations is the first step

towards learning semantics.
•The best current approach to learning word embed-

dings involves training a neural language model to pre-
dict each word in a sentence from its neighbours.
– Need to use a lot of data and high-dimensional em-

beddings to achieve competitive performance.
– More scalable methods translate to better results.
•We propose a simple and scalable approach

to learning word embeddings based on training
lightweight models with noise-contrastive estimation.
– It is simpler, faster, and produces better results

than the current state-of-the art method.

Neural probabilistic language models

•NPLMs quantify the compatibility between a context h
and a target word w using a scoring function sθ(w, h).
•The distribution of the target word is defined in terms

of scores: P h
θ (w) = exp(sθ(w, h))/Zθ(h), where Zθ(h) =∑

w′ exp(sθ(w
′, h)) is the normalizer for context h.

•The scoring function is parameterized in terms of word
embeddings which are treated as model parameters.
•Training an NPLM is usually slow because
1. The complexity of the ML parameter update is linear

in the vocabulary size (due to Zθ(h)).
2. sθ(w, h) is expensive to evaluate.

Learning word embeddings efficiently

We learn word embeddings efficiently by
1. Training the models using noise-contrastive estimation

instead of maximum likelihood.
2. Using simplified log-bilinear models that compute
sθ(w, h) efficiently using only vector-vector operations.

Vector log-bilinear model (vLBL)

•Predict the word in the middle of an n+1-word window
from the n-word context h = w1, ..., wn surrounding it.
•Each word has two embeddings: a conditional embed-

ding rw and a target embedding qw.
•The score is computed based on the average of the

context word representations:

sθ(w, h) =

(
1

n

∑n

i=1
rwi

)>
qw + bw.

Inverse vector log-bilinear model (ivLBL)

•Predict n words in an (n + 1)-word window from its
middle word (independently).
•The score for predicting the ith word in the window

from the middle word w is:
siθ(wi, w) = r>wqwi + bwi.

•Both vLBL and ivLBL can be extended to take into ac-
count the relative positions of words in the window.

Noise-contrastive estimation

• Idea: Fit a density model by learning to discriminate
between samples from the data distribution and sam-
ples from a known noise distribution (Gutmann and
Hyvärinen, 2010).
•Training language models with NCE makes train-

ing time effectively independent of the vocabulary
size (Mnih and Teh, 2012).
•Assuming noise samples are k times more frequent

than data samples, the posterior probability of a sam-
ple (in context h) being from the data distribution is

P h(D = 1|w) =
P h
d (w)

P h
d (w) + kPn(w)

.

•Using exp(sθ(w, h)) in place of P h
d (w), we model this as

P h(D = 1|w, θ) = σ (sθ(w, h)− log kPn(w)) ,

where σ(x) is the logistic function and ∆sθ(w, h) =
sθ(w, h) − log(kPn(w)) is the difference in the scores
of word w under the (unnormalized) model and the
(scaled) noise distribution.
•We fit the model by maximizing the log-posterior prob-

ability of the correct labels D, averaged over the data
and noise distributions:

Jh(θ) =EP h
d

[
logP h(D = 1|w, θ)

]
+

kEPn

[
logP h(D = 0|w, θ)

]
,

•The contribution of a word / context pair w, h to the
gradient of the objective is estimated using sampling:

∂

∂θ
Jh,w(θ) = (1− σ (∆sθ(w, h)))

∂

∂θ
logP h

θ (w)−
k∑
i=1

[
σ (∆sθ(xi, h))

∂

∂θ
logP h

θ (xi)

]
.

where {xi} are k samples from the noise distribution,
typically a unigram estimated from the training data.

MSR Sentence Completion Challenge

Task: given a sentence with a missing word, pick the
correct completion from a list of candidate words.
•Training set: 522 19th-century novels (47M words)
•Test set: 1,040 sentences from five Sherlock Holmes

novels
•Five candidate completions per sentence.

MODEL CONTEXT LATENT DIM. PERCENT CORRECT
SKIP-GRAM 10L+10R 640 48.0

LSA SENTENCE 300 49
LBL 10L 300 54.7

IVLBL 5L+5R 100 51.0
IVLBL 5L+5R 300 55.2
IVLBL 5L+5R 600 55.5

Word analogy-based evaluation

•Two analogy-based word similarity tasks recently re-
leased by Google and Microsoft Research.
•Questions of the form “a is to b is as c is to ”.

– For example, London : England→ Kiev : ?.
– The task is to identify the held-out fourth word.
– Only exact word matches count (synonyms not ac-

cepted).
•We answer a : b → c : ? by finding word d∗ with the

representation most similar to ~b − ~a + ~c according to
cosine similarity:

d∗ = arg max
~x

(~b− ~a + ~c)>~x

‖~b− ~a + ~c‖
,

where all representation vectors are normalized.
•Evaluation metric: accuracy (percent correct).

NCE vs. tree-based training

•Training data: Wikipedia from April 2013
– 1.5B words, 870K-word vocabulary
•Experimental setup (unless stated otherwise):

– Models: 100D word embeddings, predict 5 words on
both sides, no position-dependent weights.

– NCEk denotes NCE training using k noise samples.
GOOGLE MSR TIME

MODEL SEMANTIC SYNTACTIC OVERALL (HOURS)
SKIP-GRAM(*) 28.0 36.4 32.6 31.7 12.3
IVLBL+NCE1 28.4 42.1 35.9 34.9 3.1
IVLBL+NCE2 30.8 44.1 38.0 36.2 4.0
IVLBL+NCE3 34.2 43.6 39.4 36.3 5.1
IVLBL+NCE5 37.2 44.7 41.3 36.7 7.3
IVLBL+NCE10 38.9 45.0 42.2 36.0 12.2
IVLBL+NCE25 40.0 46.1 43.3 36.7 26.8

Large-scale evaluation

•Comparison of vLBL and ivLBL models to their hierar-
chical counterparts from (Mikolov et al., 2013).
• ivLBL models: Predict 5 words on each side of the

current word.
– Trained with NCE25 using AdaGrad.
• vLBL models: Predict the current word from the 5

words before and 5 after it.
– Trained with NCE5 using AdaGrad.
•No position-dependent weights were used.

EMBED. TRAIN. GOOGLE MSR TIME
MODEL DIM. WORDS SEM. SYN. OVERALL (DAYS)
SKIP-GRAM 300 1.6B 52.2 55.1 53.8 2.0
SKIP-GRAM 300 785M 56.7 52.2 55.5 2.5
SKIP-GRAM 1000 6B 66.1 65.1 65.6 2.5×125
IVLBL 100 1.5B 52.6 48.5 50.3 39.2 1.2
IVLBL 100 1.5B 55.9 50.1 53.2 42.3 2.9
IVLBL 100×2 1.5B 59.3 54.2 56.5 44.6 2.9
IVLBL 300 1.5B 61.2 58.4 59.7 48.8 1.2
IVLBL 300 1.5B 63.6 61.8 62.6 52.4 4.1
IVLBL 300×2 1.5B 65.2 63.0 64.0 54.2 4.1
CBOW 300 1.6B 16.1 52.6 36.1 0.6
CBOW 1000 6B 57.3 68.9 63.7 2×140
VLBL 300 1.5B 40.3 55.4 48.5 48.7 0.3
VLBL 100 1.5B 45.0 56.8 51.5 52.3 2.0
VLBL 300 1.5B 54.2 64.8 60.0 58.1 2.0
VLBL 600 1.5B 57.3 66.0 62.1 59.1 2.0
VLBL 600×2 1.5B 60.5 67.1 64.1 60.8 3.0
VLBL 600×2 1.5B 63.0 69.8 66.7 62.8 7.0

How do more expressive models perform?

•We can make our models more expressive by making
them aware of word order through position-dependent
weights. Does this lead to better word embeddings?
•Dataset: MSR Gutenberg corpus

– 47M words, 80K-word vocabulary
•Training: 20 epochs of NCE5 with AdaGrad.
• (D)/(I) denotes models with/without position-

dependent weights.
• Left/middle/right column gives the in-vocabulary accu-

racy obtained using the conditional/target/both word
embeddings.
•nL/nR denotes n words on the left/right of the current

word.
GOOGLE MSR TIME

MODEL CONTEXT C T B C T B (H)
VLBL(D) 5L + 5R 25.3 24.6 30.9 29.9 29.5 36.1 2.6
VLBL(D) 10L 22.4 16.2 32.2 26.7 11.5 40.7 2.6
VLBL(D) 10R 14.6 24.7 32.3 11.3 29.4 40.6 2.6
VLBL(I) 5L + 5R 28.5 30.3 31.3 29.3 30.9 32.7 2.3
VLBL(I) 10L 24.2 17.5 31.6 25.3 12.9 32.2 2.3
VLBL(I) 10R 17.2 25.3 32.5 12.8 25.9 34.0 2.1

IVLBL(D) 5L + 5R 16.5 14.1 17.7 18.5 17.9 21.3 1.2
IVLBL(I) 5L + 5R 27.6 27.4 31.0 27.3 26.8 31.4 1.2

1


