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Overview
Insufficiently expressive variational posteriors prevent latent variable models
from using their full capacity. Replacing the classical single-sample variational
objective with its multi-sample counterpart has been shown to help when train-
ing models with continuous latent variables (Burda et al., 2016). We extend the
approach by constructing an effective unbiased low-variance gradient estima-
tor for multi-sample objectives, which can handle both discrete and continuous
latent variables.

Monte Carlo objectives
The classical variational lower bound on log Pθ(x):

L(x) = EQ(h|x)

[
log

P(x ,h)
Q(h|x)

]
= log P(x) + EQ(h|x)

[
log

P(h|x)
Q(h|x)

]
.

A tighter, multi-sample generalization of it (IWAE, Burda et al., 2016):

LIWAE(x) = EQ(h|x)

log
1
K

K∑
k=1

P(x ,hk)

Q(hk |x)


We develop a general low-variance gradient estimator for objectives of the form

LK (x) =EQ(h1:K |x)

log
1
K

K∑
k=1

f (x ,hk)

 .

Gradient of the objective
Defining Î(h1:K ) ≡ 1

K

∑K
k=1 f (x ,hk), the gradient of LK (x) can be written as

∂

∂θ
LK (x) =EQ(h1:K |x)

∑
j

log Î(h1:K )
∂

∂θ
log Q(hj|x)

+

EQ(h1:K |x)

∑
j

w̃ j ∂

∂θ
log f (x ,hj)


where w̃ j ≡ f (x ,hj)∑K

k=1 f (x ,hk)
.

We can think of log Î(h1:K ) as the learning signal for Q(hj|x), since it modulates
the gradient of log Q(hj|x). Estimating the first expectation using sampling is
hard because this learning signal

i can be arbitrarily negative and
ii is the same for all K samples h1, ...,hK (no credit assignment).

NVIL gradient estimator
Neural Variational Inference and Learning (NVIL, Mnih & Gregor, 2014)
addresses (i) by learning an input-dependent predictor b(x) of log Î(h1:K ) to
reduce the magnitude of the learning signal:

∂

∂θ
LK (x) '

∑
j

(log Î(h1:K )− b(x))
∂

∂θ
log Q(hj|x) +

∑
j

w̃ j ∂

∂θ
log f (x ,hj),

where hj ∼ Q(h|x).
Drawback: the same learning signal is used for all hj, even though some
samples will be much better than others.

VIMCO gradient estimator
Can avoid having to learn an additional predictor by taking advantage of having
multiple latent samples for each observation and estimating each f (x ,hj) term
from the other K − 1 terms. We do this using geometric averaging:

f̂ (x ,h−j) = exp

 1
K − 1

∑
k 6=j

log f (x ,hk)

 .

This gives us the following learning signal for sample hj:

L̂(hj|h−j) = log
1
K

K∑
k=1

f (x ,hk)− log
1
K

∑
k 6=j

f (x ,hk) + f̂ (x ,h−j)

 ,

which we use in place of log Î(h1:K ) to obtain the VIMCO gradient estimator:
∂

∂θ
LK (x) '

∑
j

L̂(hj|h−j)
∂

∂θ
log Q(hj|x) +

∑
j

w̃ j ∂

∂θ
log f (x ,hj).

Results: generative modelling
Task: learning a density model of 28× 28 binary MNIST digit images.
Model: sigmoid belief network with 3 hidden layers of 200 binary units.
Training algorithms: VIMCO, NVIL, and Reweighted Wake Sleep.
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Figure: Learning signal RMS

Number of Training alg.
samples VIMCO NVIL RWS

1 — 95.2 —
2 93.5 93.6 94.6
5 92.8 93.7 93.4

10 92.6 93.4 93.0
50 91.9 96.2 92.5

Table: Test neg. log-likelihood
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Figure: VIMCO vs. NVIL
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Figure: VIMCO vs. RWS

Results: structured prediction
Task: learning to predict the bottom half of an MNIST digit from its top half.
Model: sigmoid belief network with 2 hidden layers of 200 binary units.
Training algorithms: VIMCO and NVIL.
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Figure: Prior inference
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Figure: Posterior inference

Figure: Conditional completions generated by sampling from an SBN
trained using VIMCO with the 20-sample objective.
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