Neural Variational Inference and Learning in Belief Networks

Andriy Mnih & Karol Gregor Google DeepMind

Overview

- We introduce a simple, efficient, and general method for training directed latent variable models.
- Can handle both discrete and continuous latent variables.
- Easy to apply requires no model-specific derivations.
- Key idea: Train an auxiliary neural network to perform inference in the model of interest by optimizing the variational bound.
- -Was considered before for Helmholtz machines and rejected as infeasible due to high variance of inference net gradient estimates.
- We make the approach practical using simple and general variance reduction techniques.
- Promising document modelling results using sigmoid belief networks.

Variational inference

 Given a directed latent variable model that naturally factorizes as $P_{\theta}(x,h) = P_{\theta}(x|h)P_{\theta}(h),$

we can lower-bound the contribution of x to the log-likelihood as

 $\log P_{\theta}(x) \ge E_Q \left[\log P_{\theta}(x,h) - \log Q_{\phi}(h|x)\right] = \mathcal{L}_{\theta,\phi}(x),$

where $Q_{\phi}(h|x)$ is an arbitrary distribution.

- Variational learning involves alternating between maximizing the lower bound $\mathcal{L}_{\theta,\phi}(x)$ w.r.t. the variational distribution/posterior $Q_{\phi}(h|x)$ and model parameters θ .
- Typically variational inference requires:
- -Variational distributions Q with simple factored form and different parameters for each x.
- -Simple models $P_{\theta}(x, h)$, yielding tractable expectations.
- Iterative optimization to compute Q for each x.

Neural variational inference and learning (NVIL)

- We propose an approach that avoids iterative inference, while allowing expressive, potentially multimodal, posteriors and highly expressive models.
- This is achieved by using a feed-forward model for $Q_{\phi}(h|x)$, making the dependence of the approximate posterior on the input x parametric.
- This allows us to sample from $Q_{\phi}(h|x)$ very efficiently.
- -We refer to Q as the *inference network* because it implements approximate inference for the model being trained.
- We train the model and the inference network jointly by updating their parameters to increase the variational lower bound $\mathcal{L}_{\theta,\phi}(x)$.
- We compute all the required expectations using samples from Q.

Gradients of the variational bound

• The gradients w.r.t. to the model and inference net parameters are:

$$\frac{\partial}{\partial \theta} \mathcal{L}_{\theta,\phi}(x) = E_Q \left[\frac{\partial}{\partial \theta} \log P_{\theta}(x,h) \right],$$
$$\frac{\partial}{\partial \phi} \mathcal{L}_{\theta,\phi}(x) = E_Q \left[(\log P_{\theta}(x,h) - \log Q_{\phi}) \right],$$

- Both gradients can be estimated using samples from the inference net.
- However, the most natural estimator of the inference net gradient is too high-variance to be useful.

Reducing gradient variance

• Key observation: if h is sampled from $Q_{\phi}(h|x)$,

$$(\log P_{\theta}(x,h) - \log Q_{\phi}(h|x) - b)$$

is an unbiased estimator of $\frac{\partial}{\partial \phi} \mathcal{L}_{\theta,\phi}(x)$ for any b that does not depend on h.

- Since the variance of the estimator does depend on b, we can obtain estimators with lower variance by choosing b carefully.
- Our strategy is to choose b so that the resulting learning signal $\log P_{\theta}(x,h) - \log Q_{\phi}(h|x) - b$ is close to zero.
- Borrowing terminology from reinforcement learning, we call b a baseline.

Variance reduction techniques

- . Constant baseline b
- Make b a running estimate of the mean of $\log P_{\theta}(x,h) \log Q_{\phi}(h|x)$.
- Centers the learning signal, making it approximately zero-mean.
- Enough to obtain reasonable models on MNIST.
- 2. Input-dependent baseline $b_{\psi}(x)$
- An MLP with a single real-valued output.
- Can be seen as capturing $\log P_{\theta}(x)$.
- Makes learning considerably faster and leads to better results.
- 3. Variance normalization
- Scale the learning signal to have unit variance.
- Can be seen as simple global learning rate adaptation.
- Makes learning faster and more robust.

4. Local learning signals

- Simpler, less noisy local learning signals can be derived by taking advantage of the Markov properties of the model and the inference net.
- Likely to be important for training deeper models.

 $_{\phi}(h|x)) \frac{\partial}{\partial \phi} \log Q_{\phi}(h|x) \bigg| .$

 $\frac{\partial}{\partial \phi} \log Q_{\phi}(h|x),$

Generative modelling of binarized MNIST

Effect of gradient variance reduction

- for the tractable models and an estimate of or a bound on it for the intractable ones.

Document modelling results

- ing documents.
- Models: SBN and fDARN models with one hidden layer
- Datasets:
- -20 Newsgroups
- 11K docs, 2K vocabulary
- Reuters RCV1
- 800K docs, 10K vocabulary
- Performance metric: perplexity

• Task: model the joint distribution of word counts in bags of words describ-

500

137.6

	MODEL	DIM	20 News	REUTERS
	SBN	50	909	784
	FDARN	50	917	724
	FDARN	200		598
	LDA	50	1091	1437
	LDA	200	1058	1142
	REPSOFTMAX	50	953	988
/	DOCNADE	50	896	742

MoB