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Overview Gradients of the variational bound Generative modelling of binarized MNIST
e We introduce a s!mple, efficient, and general method for training di- e [he gradients w.r.t. to the model and inference net parameters are: Effect of gradient variance reduction
rected latent variable models. 5 g
— Can handle both discrete and continuous latent variables. %L‘@,qb(x) = kg %log Po(x, h)| Figure 1: Sigmoid belief network Figure 2: Sigmoid belief network
— Easy to apply — requires no model-specific derivations. P I ) with 1 hidden layer of 200 units. with 2 hidden layers of 200 units.
e Key idea: Train an auxiliary neural network to perform inference in the a_¢£9>¢(x) = &9 _(log Fylw, h) — log Q¢(h\w))6—¢log Qolh)] -
model of interest by optimizing the variational bound. | | | | N N EEpveves TR
¢ Both gradients can be estimated using samples from the inference net.
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— Was considered before for Helmholtz machines and rejected as infeasi- _ | e
ble due to high variance of inference net gradient estimates. e However, the most natural estimator of the inference net gradient is too

high-variance to be useful.
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e We make the approach practical using simple and general variance re-
duction techniques.
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e Promising document modelling results using sigmoid belief networks. Reducing gradient variance
- : Key observation: if A is sampled from h|z), o weire GBIV | 5 Baseine DB & W |
Variational inference o P Qulhlz) e ‘ -
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e Given a directed latent variable model that naturally factorizes as (log Fy(, h) — log Qy(hl) — ) O l0g Qlh]2),
Py(x, h) = Fy(x|h)Fy(h), IS an unbiased estimator of a%@@x) for any 6 that does not depend on h. NVIL vs. Wake-Sleep
we can lower-bound the contribution of « to the |Og-|ike|ihood as e Since the variance of the estimator does depend on b, we can obtain esti-
log Py(x) > Ep [log By(z, h) — log Qu(h|z)] = Lo (), mators with lower variance by choosing b carefully. e SBN is a sigmoid belief network. MODEL Dl TEST NLL
| | o e Our strategy is to choose b so that the resulting learning signal e fDARN is an SBN with hidden au- NVIL | WS
e Variational learning involves alternating between maximizing the lower e Borrowing terminology from reinforcement learning, we call b a baseline. e Dim is the number of latent vari-  ggp 200-200 99.8 107.7
bound £y ,(z) w.r.t. the variational distribution/posterior );(/|x) and model ables in each layer, starting with  SBN 200-200-200 96.7 102.2
parameters 6. the deepest one. FDARN 200 92.5 95.9
e Typically variational inference requires: Variance reduction techniques e NVIL and WS refer to NVIL and Egﬁzm 288 90'976 397'2
— Variational distributions @ with simple factored form and different param- 1 Constant basellne wake-sleep training respectively. DARN 400/  93.0
eters for each z. -wonstant baseline o e NLL is the negative log-likelihood ESEAECDs 288 1808595
— Simple models FPy(x, h), yielding tractable expectations. e Make b a running .estm.]ate of ’[he. me.an of k)g_P@(% h) —log Qu(h|z). for the tractable models and an es- RBM ECDzé) 500 36.3
_ Iterative optimization to compute O for each . e Centers the learning signal, making it approximately zero-mean. timate of or a bound on it for the 0B 500 137 6
e Enough to obtain reasonable models on MNIST. intractable ones.

2. Input-dependent baseline b, (z)

e An MLP with a single real-valued output.

e Can be seen as capturing log Py(x).
e Makes learning considerably faster and leads to better results. e Task: model the joint distribution of word counts in bags of words describ-

iIng documents.
e Models: SBN and fDARN models with one hidden layer

Neural variational inference and learning (NVIL) 5 ¢ modells it
ocument modelling results

e We propose an approach that avoids iterative inference, while allowing ex-
pressive, potentially multimodal, posteriors and highly expressive models.

e This is achieved by using a feed-forward model for Q,(h|z), making the 3. Variance normalization

dependence of the approximate posterior on the input = parametric. e Scale the learning signal to have unit variance. Sotacer . IR
: C ' i i alaserls. ODEL M EWS | REUTERS
— This allows us to sample from Q,(h|z) very efficiently. e Can be seen as simple global learning rate adaptation. '_20 . SBN 50 005 e
—We refer to () as the inference network because it implements approxi- o Makes learning faster and more robust. grotp FDARN 50 917 724
mate inference for the model being trained. 4. Local learning signals - 11K docs, 2K vocabulary FDARN 200 598
. . .. . . : : : : . . — Reuters RCV1 _DA 50 1091 1437
¢ \We train the model and the inference network jointly by updating their pa- e Simpler, less noisy local learning signals can be derived by taking ad- DA 500 1058 1149
rameters to increase the variational lower bound Ly (). vantage of the Markov properties of the model and the inference net. -800K docs, 10K vocabulary REPSOFTMAX | 50 953 988
—We compute all the required expectations using samples from Q. e Likely to be important for training deeper models. e Performance metric: perplexity DOBINADZ 20 82 (o




