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Overview

e I[n spite of their superior performance, neural proba-
bilistic language models (NPLMs) are far less widely
used than n-gram models due to their notoriously long
training times.

e We Introduce a simple training algorithm for NPLMs
based on noise-contrastive estimation, with time
complexity independent of the vocabulary size.

— Qver an order of magnitude faster than maximum-
likelihood estimation.

— The resulting models perform just as well.

e We demonstrate the algorithm’s scalability by train-
Ing several large neural language models on the MSR
Sentence Completion Challenge dataset, achieving
state-of-the-art results.

Neural probabilistic language models

e Neural probabilistic language models use distributed
representations of words to deal with the curse of
dimensionality.

— Words are represented with real-valued feature vec-
tors learned from data.

— A neural network maps contexts (sequences of word
feature vectors) to next word distributions.

—Word feature vectors and neural net parameters are
learned jointly.

e NPLMs generalize well because smooth functions
map nearby inputs to nearby outputs.

e Similar representations are learned for words with
similar usage patterns.

e Main drawback: very long training times.

Statistical language modelling

e Goal: Model the joint distribution of words in a sen-
tence.

e Applications: speech recognition, machine transla-
tion, information retrieval.

e Markov assumption:

— The distribution of the next word depends only on &
words that immediately precede it.

— Though clearly false, the assumption makes the task
much more tractable without making it trivial.

n-gram models

e Task: predict the next word w, from n — 1 preceding
words h = wy, ..., w,—; (called the context).

e n-gram models are conditional probability tables for
— Estimated by smoothing word n-tuple counts.

— Most widely used statistical language models due to
their simplicity and good performance.

e Cannot take advantage of similarity between words /
contexts.

e Curse of dimensionality:

— The number of model parameters is exponential In
the context size.

— Cannot take advantage of large context sizes.

Training neural language models

e A NPLM quantifies the compatibility between a con-
text ~ and a candidate next word w using a scoring
function sy(w, h).

e T he distribution for the next word is defined in terms of
scores:

) exp(sg(w, h)),

where Zy(h) = > exp(sg(w’, h)).
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Maximum-likelihood estimation

e The gradient of the log-likelihood is
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e Computing 2 log Zy(h) is expensive — the time com-
plexity is linear in the vocabulary size.
e Can approximate %log Zy(h) using importance sam-
pling (Bengio and Senécal, 2003):
—Sample words from a proposal distribution and
reweight the gradients.

— Stability issues: need either a lot of samples or an
adaptive proposal distribution.

Noise-contrastive estimation

e [dea: Fit a density model by learning to discrim-
inate between samples from the data distribution
and samples from a known noise distribution (Gut-
mann and Hyvarinen, 2010).

e [f noise samples are k times more frequent than data
samples, the posterior probability that a sample came
from the data distribution is
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e To fit a model P}'(w) to the data, use P;(w) in place of
Pl(w) and maximize J"(0) =

Peh(w) kPo(w)
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e NCE allows working with unnormalized distribu-
tions P’ (w).
—Set P}(w) = P)’(w)/Z" and learn Z".
— 4" are the parameters of the unnormalized distribu-
tion and 6§ = {6°, log Z"}.
e The gradient of the objective for context / is
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e Much easier to estimate than the importance sam-
pling gradient because the weights on 2 log P}(w)
are always between 0 and 1.

— Can use far fewer noise samples as a result.

e The global NCE objective is a sum of the per-context
objectives weighted by the empirical context probabil-
ities P(h):

J(0) = P(h)J"0).

Speedup over MLE

The NCE parameter update is <.-- times faster than
the ML update.

e Here c Is the context size, d Is the feature vector di-
mensionality, V' is the vocabulary size, and £ is the
number of noise samples.

Penn Treebank results

Data: news stories from Wall Street Journal
e Training/validation/test set: 930K/74K/82K words

e VVocabulary: 10K words

TRAINING NUM. OF TRAINING PPL W. NOISE
ALG. |SAMPLES TIME (H) UNIGRAM UNIFORM
ML 21 163.5 163.5
NCE 1 1.5 192.5 291.0
NCE S 1.5 172.6 233.7
NCE 25 1.5 163.1 195.1
NCE 100 1.5 159.1 173.2

Pl (w) + /-an(w)} ~kE, {log Pl w) + kPy(w)]

Sentence completion results

Task: given a sentence with a missing word find the cor-
rect completion from a list of candidate words.
e [raining set: 522 19th-century novels (48M words)

e Test set: 1,040 sentences from five Sherlock Holmes
novels

e Five candidate completions per sentence.

METHOD CONTEXT LATENT| TEST PERCENT
SIZE| DIM PPL CORRECT

CHANCE 0 20.0
3-GRAM 2 130.8/ 36.0
5-GRAM 4 121.5 38.7
6-GRAM 5 121.7 38.4
LSA SENTENCE 300 49
RNN |SENTENCE ? ? 45
 BL 2 100 1455 41.5
 BL 3 100 135.6/ 45.1
 BL 5 100 129.8) 49.3
L BL 100 100 124.0 50.0
 BL 100 200 117.7 52.8
 BL 0 300 116.4) 54.7
2

_BL 10 100 38.6 44.5

Conclusions

Noise-contrastive estimation provides a fast and simple

way of training neural language models:

e Over an order of magnitude faster than maximum-
likelinood estimation.

e Models trained using NCE with 25 noise samples per
datapoint perform as well as the ML-trained ones.




