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Abstract

We introduce FactorVAE, a method that disentangles by encouraging the distribu-
tion of codes, the variational posterior averaged over the training set, to be factorial
and hence independent in the dimensions. Furthermore, we propose a new measure
of disentanglement that addresses some weaknesses of commonly used metrics.

1 Introduction

Learning interpretable representations of data that expose semantic meaning has important conse-
quences for artificial intelligence. Such representations are useful not only for standard downstream
tasks such as supervised learning and reinforcement learning, but also for tasks such as transfer
learning and zero-shot inference where humans excel but machines struggle [13]. In particular, there
have been multiple efforts in the deep learning community towards learning factors of variation in the
data, commonly referred to as learning a disentangled representation. While there is no canonical
definition for this term, we adopt the following definition: a representation where a change in one
dimension corresponds to a change in one factor of variation, while being relatively invariant to
change in other factors [3]. Moreover, we focus on image data in this work.

Using generative models has shown great promise in learning disentangled representations in images.
Notably semi-supervised approaches that require implicit or explicit knowledge about the true
underlying factors of the data have excelled at disentangling [12, 10, 22, 23]. However, ideally we
would like to learn these in an unsupervised manner, due to the following reasons: 1. Humans are
able to learn factors of variation unsupervised [21]. 2. Labels are costly as obtaining them requires
a human in the loop. 3. Labels assigned by humans may be inconsistent and could also lead to
omissions of factors that are imperceptible to the human eye.

The generative models used for unsupervised disentangling largely fall into two categories: the
Variational Autoencoder (VAE) framework [11] and the Generative Adversarial Net (GAN) framework
[7]. InfoGAN [5] is a notable example of the latter that learns disentangled representations by
encouraging mutual information between the observations and a subset of latent variables. However
it suffers from instabilities in training, and its disentangling performance is sensitive to the choice of
the prior and the number of latents used [8]. The β-VAE [8] uses a VAE objective with extra penalty
on the KL between the variational posterior and the prior, giving a more robust and stable method of
disentangling.

One drawback of the β-VAE is that there is a strong dependency between disentanglement and
reconstruction. The motivation for our work is to get a better trade-off between disentanglement and
reconstruction, so as to improve the optimal disentanglement and also obtain sharper reconstructions.
We achieve this goal by first analysing the source of this trade-off. We then propose FactorVAE, which
modifies the objective accordingly, introducing a penalty that encourages the marginal distribution of
representations to be factorial without hurting reconstruction too much. This new penalty is optimised
using a discriminator network, following the divergence minimisation view of GANs [18, 20], and we
show that our approach enhances disentanglement as well as reconstruction compared to the β-VAE.
Moreover, to help quantify our improvements, we point out the weaknesses in existing metrics of
disentanglement, and propose a new metric that addresses these shortcomings.



2 The Trade-off between Disentanglement and Reconstruction in β-VAE

We motivate our approach by analysing where the disentanglement and reconstruction trade-off
arises in the β-VAE loss. First, we introduce notation and architecture of our VAE framework.
We have observations x(i), i = 1, . . . , N in image space X , and latents z ∈ RD are real vectors
interpreted as representations of the data. The generative model is defined by the standard Gaussian
prior p(z) = N (0, I), and the decoder pθ(x|z) parameterised by a DeconvNet with weights θ. The
variational posterior is given by the encoder qφ(z|x) =

∏D
j=1N (zj |µj(x), σ2

j (x)), parameterised by
a ConvNet with weights φ. An important distribution for our analysis is the marginal posterior of
VAEs, namely the marginal distribution of the latents/code (used interchangeably):

r(z) =

∫
pdata(x)q(z|x)dx =

1

N

N∑
i=1

q(z|x(i)) (1)

We can easily sample from r by ancestral sampling: x ∼ pdata, z ∼ q(·|x). r is relevant for
when we are looking for a disentangled representation; should the representations correspond to the
independent factors of variation in the data, we would like the distribution of these representations to
be factorised, i.e. independent in the dimensions: r(z) =

∏D
j=1 r(zj).

The β-VAE objective is as follows:

N∑
i=1

Eq(z|x(i))[log p(x
(i)|z)]− βKL(q(z|x(i))||p(z)) (2)

Note this is a variational lower bound for β ≥ 1. The first term is a measure of reconstruction, and
the second term is the complexity penalty that acts as a regulariser. We may break down this KL term
further as follows [9, 14]:

KL(q(z|x(i))||p(z)) = I(x; z) +KL(r(z)||p(z)) (3)

where I(x; z) is the mutual information (MI) between x and z under the joint distribution of the
data and their codes pdata(x)q(z|x). The KL(r(z)||p(z)) term encourages independence in the
dimensions of z and hence disentanglement by pushing r(z) towards p(z), a factorised distribution.
On the other hand, penalising the MI term I(x; z) acts as an information bottleneck between x and z
whose presence is necessary for generalisation, but penalising this term too heavily (high β) leads
to a lack of information about x in z and hence poor reconstruction [14]. Hence initially raising
β from 1, and thus further penalising both terms, leads to better disentanglement while sacrificing
reconstruction. When this sacrifice is severe, there is insufficient information about the observation
in the latents, hurting disentanglement as well. So there exists an optimal value of β > 1 that gives
highest disentanglement, whose reconstructions are blurrier than a VAE (β = 1).

3 The Total Correlation penalty and FactorVAE

We motivate FactorVAE with the suspicion that the further penalty on the MI might be unnecessary
for improved disentanglement. So instead, we keep the VAE objective and directly encourage
independence in the code distribution, arriving at our new objective:

N∑
i=1

Eq(z|x(i))[log p(x
(i)|z)]−KL(q(z|x(i))||p(z))− γKL(r(z)||

D∏
j=1

r(zj)) (4)

The latter term is also known as Total Correlation (TC) [26], often used as a measure of independence
for multiple random variables. However this term is intractable, so we need further machinery to
optimise it. To do so, first note that we can easily sample from r(z) using ancestral sampling described
above. Moreover we can sample from

∏
j r(zj) by sampling D times from r(z) then ignoring all but

one dimension for each sample, or more efficiently by sampling a batch from r(z) then randomly
permuting across the batches for each dimension. As long as the batch is large enough, these samples
will be close to sampling from

∏
j r(zj). This is a standard trick used in the independence testing

literature [1, 6]. Having access to samples from both distributions allows us to minimise their KL
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divergence using a discriminator to approximate the density ratio that arises in the KL [19, 25]. That
is to say, suppose we have a discriminator Dψ, an MLP with weights ψ, that outputs a probability
given input z. Suppose it approximates the probability that z is a sample from r(z) over

∏
j r(zj).

Then we have:

TC(z) = KL(r(z)||
D∏
j=1

r(zj)) = Er(z)
[
log

r(z)∏
j r(zj)

]
≈ Er(z)

[
log

D(z)

1−D(z)

]
(5)

So for FactorVAE we train the discriminator and the VAE by simultaneous gradient descent. In
particular, the VAE parameters θ, φ are updated using the loss in Equation 4, but replacing the TC
term by the right hand side of Equation 5. The discriminator is trained using samples from r(z) and∏
j r(zj) to approximate their density ratio and hence the TC.

Note that in the usual GAN literature, the divergence minimisation occurs between two distributions
over the data space, which is often very high dimensional (e.g. images). So the two distributions
often have disjoint support, which makes training unstable especially when the discriminator is strong.
Hence it is necessary to use tricks such as using sparse discriminator updates, instance noise [24]
or getting rid of the discriminator altogether as for Wasserstein-divergence [2]. For our work, we
are minimising divergence between two distributions over the latent space (as in e.g. [17]), which is
usually much lower dimensional and the two distributions have overlapping support. We observe that
training is stable for large enough batch sizes, allowing us to use a strong discriminator with frequent
updates.

4 A New metric for Disentanglement

Figure 1: Top: Metric in [8]. Bottom: Our new metric, where s ∈ Rd is the scale (empirical standard
deviation) of latent representations of the full data (or big enough random subset)

Returning to our definition of disentanglement, where a change in one dimension of the representation
corresponds to a change in precisely one factor of variation, we point out that this definition is quite
crude. We have implicitly ignored the possibility of: correlations among the factors, hierarchy in the
factors of variation, and a many-to-one mapping between a combination of factors and a data point
(over-representation). Thus our definition is limited to synthetic data with independent factors of
variation. However, as we’ll show in the paper, robust disentanglement is not a fully solved problem
even in this setting. Part of the obstacle in achieving this first milestone lies in the absence of a sound,
quantitative metric for measuring disentanglement. We point out the weaknesses in existing methods
of assessing disentanglement, and introduce a new metric that addresses these problems.

A popular method of measuring disentanglement is by inspecting latent traversals: visualising the
change in reconstructions as one traverses across each dimension of the latent space. The qualitative
nature of this approach makes it unsuitable for comparing different algorithms. Moreover we must
look at multiple latent traversals for a robust assessment of an algorithm, namely using multiple
reference images, random seeds, and points during training. Having a human in the loop to assess the
traversals is too time consuming and the evaluations are not reproducible.

The authors of β-VAE proposed a supervised metric that attempts to quantify disentanglement [8].
The metric is the error rate of a linear classifier that is trained as follows. Choose a factor k; generate
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data with this factor fixed but all other factors varying randomly; obtain their representations; take the
absolute value of the pairwise differences of these representations. Then the mean of these statistics
across the pairs gives one training input for the classifier, and the fixed factor k is the corresponding
training output (see top of Figure 1). So if the representations were perfectly disentangled, we would
see zeroes in the dimension of the training input that corresponds to the fixed factor of variation, and
the linear classifier will learn to map the index of the zero value to the factor.

However this metric has several weaknesses. Firstly, the metric could be sensitive to hyperparameters
of the linear classifier optimisation (optimiser, weight initialisation, number of training iterations)
hence these need to be tuned. Secondly, having a linear classifier is not so intuitive - we could get
representations where each factor corresponds to a linear combination of dimensions instead of a
single dimension. Finally and most importantly, the metric has a failure mode where it gives 100%
accuracy when it only disentangles K − 1 factors out of K; for the remaining factor, the classifier
can cheat by detecting when all dimensions for the K − 1 factors are non-zero. An example of such
a case is displayed in Figure 2.

Figure 2: A model trained on the 2D Shapes data that scores 100% on metric in [8] (ignoring the
shape factor). First row: originals. Second row: reconstructions. Remaining rows: reconstructions of
latent traversals. The model captures x-pos,y-pos and scale but ignores orientation, yet achieves a
perfect score on the metric.

So we propose an enhanced disentanglement metric as follows. Choose a factor k; generate data
with this factor fixed but all other factors varying randomly; obtain their representations; rescale each
dimension by its empirical standard deviation of representations over the full data (or a large enough
random subset); take the empirical variance in each dimension. Then the index of the dimension with
lowest variance gives one training input with training output k for a classifier. So if the representation
is perfectly disentangled, the empirical variance in the dimension corresponding to the fixed factor
will be 0. We rescale the representations prior to taking the argmin, so that the argmin is invariant to
rescaling of the representations in each dimension. Since both inputs and outputs lie on a discrete
space, the optimal classifier is the majority-vote classifier, and the metric is the error rate of the
classifier. Here the classifier is a deterministic function of the training data, hence there are no
optimisation hyperparameters to tune, and we claim that the metric is conceptually simpler and more
intuitive than the previous metric. Most importantly it circumvents the failure mode in the latter,
since the classifier needs to see the lowest variance in a latent dimension for a given factor to classify
it correctly (see bottom of Figure 1).

5 Related Work

Using a discriminator to optimise a divergence encouraging independendence has been explored in
a couple of recent works. The Adversarial Autoencoder (AAE) [15] removes the MI term in the
VAE objective, to optimise the reconstruction error plus KL(r(z)||p(z)) using the density ratio trick.
However they explore the AAE for semi-supervised classification or unsupervised clustering, not so
much in the context of disentangling. In PixelGAN Autoencoders [14] that use the same objective,
it is claimed that adding extra additive noise to the inputs of the encoder is crucial, which could be
an indication that an information bottleneck is necessary and that the MI term shouldn’t be dropped.
Brakel et al [4] also use a discriminator to minimise the Jensen-Shannon Divergence between the
distribution of codes and the product of its marginals, but use the GAN framework with deterministic
encoders and decoders, and only explore their technique in the context of Independent Component
Analysis source separation.
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6 Preliminary Experiments

We show results of experiments on the 2D Shapes dataset [16], which are binary 64 by 64 images
generated from five factors of variation: shape, x-position, y-position, scale and orientation. The
encoder is a 4-layer ConvNet and the decoder is a deConvNet with the same architecture (same as in
[8]). The discriminator is a 6-layer MLP with 1000 units per layer, and use five discriminator updates
per VAE update (smaller MLPs and fewer discriminator updates work fine, but we noticed slight
improvements up to this setting).

Figure 3: Reconstruction error (top), metric in [8] (middle), our metric (bottom). β-VAE (left),
FactorVAE (right). The colours correspond to different values of β and γ respectively, and confidence
intervals are over 10 random seeds.

From Figure 3, we see that FactorVAE gives much improved disentanglement compared to β-VAE
for both metrics1, and that we can do so without sacrificing reconstruction error too much. Note
that the reconstruction error for the best disentanglement of β-VAE (β = 7) is over 60, which is
significantly higher than that for FactorVAE (γ = 35), around 40. Also comparing the β-VAE scores
on the two metrics, we can see that the metric in [8] is inflated compared to our new metric, due to
the failure mode described in Section 4 (can be seen from visual inspection). Our method, on the
contrary, robustly disentangles the four continuous factors, hence the two metrics are similar.

7 Future Work

To ensure that the discriminator is giving us the correct gradients, we wish to investigate the error in
the discriminator’s approximation of TC and analyse how it evolves during training, and how it is
affected by the architecture of the discriminator and the frequency of discriminator updates. We will
also carry out experiments for more complex data sets, and provide comparisons with InfoGAN.

1Both metrics ignore the shape factor for now, since neither the β-VAE nor our method can successfully
model discrete factors of variation. This would require using discrete latent variables instead of Gaussians, but
jointly modelling discrete and continuous factors of variation is a non-trivial problem that needs further research.
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