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With the increasing availability of large datasets machine learning techniques are be-

coming an increasingly attractive alternative to expert-designed approaches to solving

complex problems in domains where data is abundant. In this thesis we introduce several

models for large sparse discrete datasets. Our approach, which is based on probabilistic

models that use distributed representations to alleviate the effects of data sparsity, is

applied to statistical language modelling and collaborative filtering.

We introduce three probabilistic language models that represent words using learned

real-valued vectors. Two of the models are based on the Restricted Boltzmann Machine

(RBM) architecture while the third one is a simple deterministic model. We show that

the deterministic model outperforms the widely used n-gram models and learns sensible

word representations.

To reduce the time complexity of training and making predictions with the determin-

istic model, we introduce a hierarchical version of the model, that can be exponentially

faster. The speedup is achieved by structuring the vocabulary as a tree over words and

taking advantage of this structure. We propose a simple feature-based algorithm for au-

tomatic construction of trees over words from data and show that the resulting models

can outperform non-hierarchical neural models as well as the best n-gram models.

We then turn our attention to collaborative filtering and show how RBM models
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can be used to model the distribution of sparse high-dimensional user rating vectors

efficiently, presenting inference and learning algorithms that scale linearly in the number

of observed ratings. We also introduce the Probabilistic Matrix Factorization model

which is based on the probabilistic formulation of the low-rank matrix approximation

problem for partially observed matrices. The two models are then extended to allow

conditioning on the identities of the rated items whether or not the actual rating values

are known. Our results on the Netflix Prize dataset show that both RBM and PMF

models outperform online SVD models.

iii



Acknowledgements

Most of all, I would like to thank Geoffrey Hinton for being a great advisor. It was a

pleasure to work with him. I also thank Radford Neal, Sam Roweis, and Rich Zemel,

who were on my supervisory committee, as well as Yoshua Bengio, who served as the

external examiner, for providing valuable and detailed feedback.

I am grateful to the members of the machine learning group, especially Ruslan

Salakhutdinov, Ben Marlin, Roland Memisevic, Vlad Mnih, Iain Murray, Vinod Nair,

Ilya Sutskever, Graham Taylor, and Tijmen Tieleman, for many interesting discussions.

Finally, I would like to thank my parents for their support and encouragement over

the years.

This work was financially supported by NSERC, OGS, CIFAR, and CFI.

iv



Contents

1 Introduction 1

1.1 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Distributed representations . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Restricted Boltzmann machines . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Introduction to language modelling 11

2.1 N -gram language models . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Neural language models . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 The neural probabilistic language model . . . . . . . . . . . . . . 13

2.2.2 Strengths and weaknesses of neural language models . . . . . . . 14

2.3 Evaluating language models . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Three non-hierarchical language models 17

3.1 The factored restricted Boltzmann machine language model . . . . . . . 18

3.1.1 Making predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 The temporal factored RBM . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Making predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



3.3 The log-bilinear language model . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Relationship to other models . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Preliminary evaluation . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.2 Final evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.3 Visualization of word feature vectors . . . . . . . . . . . . . . . . 45

4 The hierarchical log-bilinear language model 52

4.1 The hierarchical neural probabilistic language model . . . . . . . . . . . . 53

4.2 The log-bilinear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 The hierarchical log-bilinear model . . . . . . . . . . . . . . . . . . . . . 55

4.4 Constructing trees over words . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Relationship to other models . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.1 Model training procedure . . . . . . . . . . . . . . . . . . . . . . 64

4.6.2 Models based on random trees . . . . . . . . . . . . . . . . . . . . 65

4.6.3 Models based on non-random trees . . . . . . . . . . . . . . . . . 65

4.6.4 The effect of diversity in overcomplete trees . . . . . . . . . . . . 70

4.6.5 The effect of the context size . . . . . . . . . . . . . . . . . . . . . 72

4.6.6 Bias-variance analysis . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.7 Word-frequency based performance analysis . . . . . . . . . . . . 76

4.6.8 Visualization of word feature vectors . . . . . . . . . . . . . . . . 80

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 RBMs and PMF for collaborative filtering 83

5.1 Introduction to collaborative filtering . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Recommender systems: the two approaches . . . . . . . . . . . . 83

vi



5.1.2 Collaborative filtering . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Restricted Boltzmann machines . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Conditional RBM . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Probabilistic matrix factorization . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Conditional PMF . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.1 The Netflix Prize dataset . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.2 Details of training . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.3 Details of evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.4 Experiments with RBMs . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.5 Experiments with PMF . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.6 Analysis of RBM and PMF models . . . . . . . . . . . . . . . . . 111

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Conclusions 118

6.1 Language modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Collaborative filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography 123

vii



Chapter 1

Introduction

The increasing availability and variety of large datasets requires the development of

sophisticated and efficient methods for processing them. Machine learning techniques are

becoming an increasingly attractive alternative to expert-designed approaches to solving

complex problems in domains with large amounts of data available. However, in order to

be useful in practice, machine learning methods need to be both scalable and powerful

enough to capture the rich structure of the data. In this thesis we introduce several

models for large sparse discrete datasets. Our approach, which is based on probabilistic

models that use distributed representations to alleviate the effects of data sparsity, is

applied to statistical language modelling and collaborative filtering.

The discrete nature of the attributes, such as word or document IDs, makes modelling

such datasets quite different from modelling datasets with real-valued attributes. Many

tasks of interest for discrete datasets can be reduced to learning a mapping from vectors

with discrete components to some (discrete or continuous) output space. If the number of

vector components or the number of values each component can take is large, learning the

mapping is difficult, because it amounts to estimating entries in a very large table, with

very little or no data available for most entries. This is known as the data sparsity problem

in statistical language modelling and collaborative filtering. In a continuous space, this
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kind of a problem can be easily addressed by smoothing the estimates by averaging over

multiple datapoints near the point of interest. In a discrete space, however, it is often

not clear how to implement this kind of smoothing because there is typically no natural

distance metric and hence no concept of neighbourhood.

As an example, consider the task of finding documents similar to a given document.

A popular approach to this task is based on representing each document using a vector

of its word occurrence counts. The similarity between a pair of documents is then mea-

sured by applying a simple metric, such as TF-IDF, to the corresponding pair of word

count vectors. While this approach can be quite effective, it does not handle synonyms

properly, because it performs exact word matching. Thus documents that are similar in

all respects other than word choice are unlikely to be judged similar by such an algo-

rithm. This behaviour is a consequence of representing words using word indices, which

corresponds to the assumption that each word is similar only to itself. A much more

flexible word similarity scheme can be implemented by representing words using learned

real-valued vectors, as we show in the statistical language modelling part of this thesis.

Since the learned word representations capture word similarity information implicit in the

training data, this approach alleviates the effects of data sparsity by ensuring automatic

generalization across similar words.

Though generalization ability can be the primary criterion when selecting a model,

the ability of the training algorithm to scale to large datasets is also important. In fact, a

less powerful model trained on all of the available data can often achieve better predictive

accuracy than a more powerful model trained on a subset of the data. To ensure scaling

to large datasets, we train our models using either online or mini-batch-based gradient

descent.
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1.1 Thesis outline

In this thesis we apply probabilistic models based on distributed representations to two

tasks that involve discrete data: statistical language modelling and collaborative filter-

ing. The remaining two sections of this chapter provide an introduction to distributed

representations and restricted Boltzmann machines (RBMs), which are used in both the

language modelling and collaborative filtering parts of the thesis.

The next three chapters deal with statistical language modelling. Chapter 2 gives a

brief overview of this area, introducing the standard approach to the problem based on

modelling the distribution of the next word conditional on a fixed number of preceding

words. The widely used n-gram language models as well as the recently developed neural

language models are then outlined and the strengths and weaknesses of these two model

types are discussed.

In Chapter 3 we introduce three novel non-hierarchical neural language models that

represent words using learned real-valued feature vectors. Our first model, based on the

RBM architecture, models the interaction between the preceding words and the next

word using a vector of stochastic binary latent variables. We obtain the second model by

augmenting the first model with temporal connections between the successive instantia-

tions of the latent variables to increase the number of preceding words taken into account

without significantly increasing the number of model parameters. We then introduce a

simpler and faster deterministic log-bilinear (LBL) language model that performs linear

prediction in the space of word feature vectors to define the distribution for the next word.

We show that the temporal RBM model is competitive with backoff Kneser-Ney n-gram

models, while the LBL model is superior to them and is capable of taking advantage of

larger windows of preceding words.

In Chapter 4 we address the main shortcoming of the LBL language model, which is its

long training and prediction times. We build on the approach of Morin and Bengio (2005),

who proposed a hierarchical language model based on a binary tree over words. Their
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hierarchal model was two orders of magnitude faster than the non-hierarchical model it

was based on, but performed considerably worse in spite of using a word tree created

using expert knowledge. We introduce a fast hierarchical version of our LBL model along

with a simple feature-based algorithm for automatic construction of word trees from the

data. We then show that the resulting model can outperform non-hierarchical neural

models as well as the best n-gram models.

Chapter 5 constitutes the collaborative filtering part of the thesis. We first introduce

recommender systems and collaborative filtering (CF) and describe the two main types

of CF algorithms. We take the model-based approach and introduce two probabilistic

models for CF. The first model captures the joint distribution of user ratings using a

vector of binary latent variables. We show how the RBM architecture can be extended

to deal with sparse rating vectors so that the training and inference complexity is linear in

the number of observed ratings. The RBM model is then extended so that it can take into

account the identities of the items rated by a user even when the actual rating values are

unknown, producing the conditional RBM model. We then introduce the Probabilistic

Matrix Factorization (PMF) model which is based on a probabilistic formulation of the

low-rank matrix approximation methods for partially-observed matrices. It can also

be viewed as a probabilistic counterpart of the Maximum Margin Matrix Factorization

model (Srebro and Jaakkola, 2003). We then extend PMF, in a manner similar to the

conditional RBM model, to allow conditioning on the identities of the items rated by a

user. The training time of both PMF and conditional PMF scales linearly in the number

of observed ratings, which makes them capable of scaling to very large datasets. We

evaluate our models on the Netflix Prize dataset consisting of about 100M movie ratings.

Our results show that both RBM and PMF models perform quite well, outperforming

online SVD models. Though PMF models perform better than RBM models, they are

also considerably less compact, requiring many tens of millions of parameters to achieve

optimal performance. Conditioning on the identities of the rated movies is shown to be a
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very effective technique for boosting performance of PMF models, with conditional PMF

emerging as the best-performing model class in the comparison.

1.2 Distributed representations

Suppose we would like to represent objects or entities with binary vectors. Of the contin-

uum of possible representations schemes, we will consider two extremes: the (fully) local

representations and the (fully) distributed representations. In a local representation,

each entity is represented by a different component of the vector, so there is a one-to-one

mapping between entities and components. One-of-n (or one-hot) encoding, where entity

i is represented by a binary vector with component i set to 1 and all other components

set to 0, is a classic example of a local representation.

In a distributed representation, an entity is represented by the joint configuration

of all the components of the vector (Hinton et al., 1986). Thus, each component takes

part in representing every entity. Representing entity i with the base-2 representation

of number i (padded with zeros to always have the same length) is an example of a

distributed representation scheme. This scheme demonstrates the exponential efficiency

of distributed representations, since it needs only n bits to represent 2n entities. In

contrast, local representations need 2n bits to represent that many entities.

Since in a distributed representation an entity is represented by the joint configuration

of all components, distributed representations can be used to encode similarity between

entities by representing similar entities with vectors that differ in only a small fraction

of their component values. Even though this approach is fairly crude since it discretizes

the (dis)similarity between entities by encoding it using the Hamming distance between

the corresponding representations, it is still considerably more flexible than any local-

representation-based approach. Indeed, since in a local representation scheme all entities

have equally (dis)similar representations, such a scheme can only encode that each entity
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is similar to itself and dissimilar to all other entities.

Real-valued distributed representations provide a more flexible way to encode entity

similarity information than their discrete-valued counterparts, since the similarity scale

is no longer integer-valued. More importantly, real-valued representations suitable for a

particular task can be efficiently learned jointly with other model parameters from the

training data for the task, using gradient descent (Hinton, 1986).

For tasks involving discrete sequences as inputs, using learned real-valued distributed

representations for sequence elements can lead to automatic generalization for novel input

sequences. Since elements that occur in similar sequences (i.e. sequences that correspond

to identical outputs) will typically be assigned similar representations, replacing one of

the sequence elements with an element with a similar representation will not change the

model input significantly, and thus will have very little effect on the output. This effect

is explained in the context of statistical language modelling in Sec. 2.2.

1.3 Restricted Boltzmann machines

A Boltzmann Machine (BM) is an undirected graphical model parameterized in terms of

pairwise potentials (or interactions) between its variables (Hinton and Sejnowski, 1986).

While a BM with only observed variables can learn to model only their first- and second-

order statistics, introducing latent variables can allow the BM to capture higher-order

statistics as well. The observed and the latent variables of a BM are usually referred

to as the visible and the hidden units respectively. Though general BM models can be

very powerful, exact inference in such models is intractable. By restricting the model

topology, however, it is possible to define a subclass of BMs with efficient exact inference.

A Restricted Boltzmann Machine (RBM) is a BM with only visible unit-hidden unit

interactions present. Thus if we represent units as nodes and interactions as edges of a

graph, an RBM can be visualized as a bipartite graph with the visible and the hidden
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units forming two components with no within-component connections. This bipartite

property makes the time complexity of RBM inference linear in the number of hidden

units.

Though RBMs have been generalized to allow using arbitrary exponential family

random variables (Welling et al., 2005), for simplicity we will present the classic case of

an RBM with binary (or Bernoulli) visible and hidden units. Let v be a binary vector

containing the configuration of the visible units. Let h be the corresponding vector for

the hidden units.

The joint distribution for the visible and hidden units is defined by specifying the

energy function for joint configurations of the visible and hidden units. This function

typically has the form

E(v, h) = −vT Wh − aT v − bT h, (1.1)

where W is the parameter matrix that specifies the interactions between the visible

and hidden units. Vectors a and b contain the biases for the visible and hidden units

respectively. The joint distribution for v and h is given by the Boltzmann distribution

induced by the energy function:

P (v, h) =
1

Z
exp(−E(v, h)), (1.2)

where Z =
∑

v

∑

h exp(−E(v, h)) is the normalizing constant, sometimes called the parti-

tion function. Note that computing Z is typically infeasible because it requires computing

a sum of exponentially many terms.

The marginal distribution for the visible units is obtained by marginalizing out the

hidden variables:

P (v) =
∑

h

P (v, h). (1.3)



Chapter 1. Introduction 8

1.3.1 Inference

The lack of hidden-to-hidden and visible-to-visible connections in an RBM results in

convenient conditional independence properties which enable efficient inference and Gibbs

sampling in the model. These properties are:

• hidden units are conditionally independent given the state of the visible units;

• visible units are conditionally independent given the state of the hidden units.

In other words, the conditional distributions P (v|h) and P (h|v) factorize:

P (v|h) =
∏

i

P (vi|h), (1.4)

P (h|v) =
∏

j

P (hj|v). (1.5)

The conditional distributions for the individual units are given by

P (vi = 1|h) =σ

(

ai +
∑

j

Wijhj

)

, (1.6)

P (hj = 1|v) =σ

(

bj +
∑

i

Wijvi

)

, (1.7)

where σ(x) is the logistic function.

Because P (h|v) factorizes, inference in an RBM takes time linear in the number of

hidden units. To infer the posterior distribution over the hidden units for the given data

vector v, we simply evaluate Eq. 1.7 for each of the hidden units.

Generating samples from an RBM is typically done using MCMC methods. The

block Gibbs sampler that alternates between sampling from P (h|v) and P (v|h) is the

MCMC method of choice for RBMs because their conditional independence properties

make these sampling operations very efficient (and potentially parallelizable). Sampling

from an RBM can be very time-consuming, however, because it can take the sampler a

large number of steps1 to converge to the model distribution.

1One step of the Gibbs sampler consists of sampling h from P (h|v) and then sampling v from P (v|h).
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1.3.2 Learning

Though maximum likelihood learning is intractable in RBMs, we will describe it here

because it serves as the basis for an efficient approximate learning algorithm. From

Eqs. 1.2 and 1.3 it follows that the log-probability of a single datapoint vo can be written

as:

log P (vo) = log

(

∑

h

exp(−E(vo, h))

)

− log

(

∑

v

∑

h

exp(−E(v, h))

)

. (1.8)

The gradient of the log-probability of vo w.r.t. a parameter θ can be computed as follows:

∂

∂θ
log P (vo) =

∂

∂θ
log

(

∑

h

exp(−E(vo, h))

)

−
∂

∂θ
log

(

∑

v

∑

h

exp(−E(v, h))

)

=
∑

h

exp(−E(vo, h)) ∂
∂θ

(−E(vo, h))
∑

h exp(−E(vo, h))
−
∑

v

∑

h

exp(−E(v, h)) ∂
∂θ

(−E(v, h))
∑

v

∑

h exp(−E(v, h))

=
∑

h

P (h|vo)
∂

∂θ
(−E(vo, h)) −

∑

v

∑

h

P (v, h))
∂

∂θ
(−E(v, h))

= ED

[

∂

∂θ
(−E(vo, h))

]

− EM

[

∂

∂θ
(−E(v, h)),

]

(1.9)

where ED[·] and EM [·] denote expectations w.r.t. the posterior distribution P (h|vo) con-

ditional on the observed datapoint and the model distribution P (v, h) respectively. The

gradients of the negative energy function w.r.t. the model parameters are:

∂

∂W
(−E(v, h)) =

∂

∂W
vT Wh

= vhT , (1.10)

∂

∂a
(−E(v, h)) =

∂

∂a
aT v

= v, (1.11)

∂

∂b
(−E(v, h)) =

∂

∂b
bT h

= h. (1.12)
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Plugging in these energy gradients into Eq. 1.9 gives the gradients needed for learning:

∂

∂W
log P (vo) = ED

[

vohT
]

− EM

[

vhT
]

, (1.13)

∂

∂a
log P (vo) = vo − EM [v] , (1.14)

∂

∂b
log P (vo) = ED [h] − EM [h] . (1.15)

Unfortunately, computing these gradients exactly is intractable because evaluating

expectations w.r.t. the model distribution requires summing over exponentially many

terms. Though we can obtain unbiased estimates of EM [·] by sampling from the model

(e.g. using the Gibbs sampler) and averaging the quantity of interest over those samples,

running the Markov chain to convergence before performing each parameter update is

simply too time-consuming to be feasible. Contrastive divergence (CD) learning (Hinton,

2002) is an approximate learning procedure that does not require running the Markov

chain to convergence. CD learning differs from the sampling-based implementation of

maximum likelihood learning in two ways. First, instead of being initialized to a random

configuration, the Markov chain is initialized to the current training case. Second, instead

of running the sampler till the chain converges, it is run for only a small number of steps.

In fact, even a single step of Gibbs sampling is often sufficient to produce a sensible

learning signal. All of the RBM models in this thesis have been trained using this kind of

one-step CD learning. The pseudo-samples produced by the brief sampling runs are then

used instead of the true samples from the model to estimate the gradients using Eqs. 1.13

- 1.15. While the resulting learning algorithm does not optimize the log-likelihood, it does

approximately optimize a different objective function and, more importantly, works well

in practice (Carreira-Perpinan and Hinton, 2005).



Chapter 2

Introduction to language modelling

Statistical language modelling is concerned with building probabilistic models of word

sequences. Such models can be used to discriminate probable sequences from improbable

ones, a task important for performing speech recognition, information retrieval, and

machine translation. The vast majority of statistical language models are based on the

Markov assumption, which states that the distribution of a word depends only on some

fixed number of words that immediately precede it. If we assume that only n−1 previous

words have an effect on the distribution of the next word, the probability of a sequence

of words w1, ..., wN can be expressed as

P (w1:N) = P (w1:n−1)
N
∏

i=n

P (wi|wi−n+1:i−1), (2.1)

where w1:i denotes w1, ..., wi. As a result, the task of modelling the distribution of

sequences of arbitrary length is reduced to modelling the distribution of the next word

given n−1 preceding words, which are called the context. Though the Markov assumption

is clearly false for natural languages, modelling P (wn|w1:n−1) can result in very effective

statistical language models.

11
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2.1 N-gram language models

N -gram models, which are the most popular statistical language models, are effectively

(sparse) probability tables that store P (wn|w1:n−1). These models are estimated by count-

ing n-tuples in the training data and normalizing the counts appropriately. Smoothing

these naive estimates is essential for achieving good performance, since the number of

model parameters is exponential in the context size. A number of effective smoothing

methods have been developed specifically for n-gram models (Chen and Goodman, 1996).

Such methods smooth the next word probability estimates for n − 1 word contexts by

interpolating them with the corresponding estimates for shorter contexts.

However, using larger context sizes (e.g. 5 and larger) does not usually lead to bet-

ter models due to overfitting even when the best smoothing methods are used (Good-

man, 2000). This problem is a consequence of the way n-gram models parameterize

P (wn|w1:n−1): there is a separate free parameter for each context / next word pair. Since

there are no a priori smoothness constraints on the parameters, there is no natural way

to use information about similar contexts when estimating P (wn|w1:n−1) for a particular

context. In other words, these models do not take advantage of the fact that similar

words occur in similar contexts because they have no concept of similarity. Class-based

n-grams (Brown et al., 1992) aim to address this issue by clustering words and/or contexts

into classes based on their usage patterns and using this class information to improve

generalization. While this approach can in some cases improve n-gram performance, it

introduces a very rigid kind of similarity, since each word typically belongs to exactly

one class.

2.2 Neural language models

An alternative and much more flexible approach to counteracting the data sparsity prob-

lem is to represent each word using a real-valued feature vector that captures its prop-
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erties, so that words used in similar contexts will have similar feature vectors (Bengio

et al., 2000). Then the conditional probability of the next word can be modelled as a

smooth function of the feature vectors of the context words and the next word. This

approach provides automatic smoothing, since for a given context similar words are now

guaranteed to be assigned similar probabilities. Similarly, similar contexts are now likely

to have similar representations resulting in similar predictions for the next word. Most

models based on this approach use a feed-forward neural network that takes the feature

vectors of the context words as input and produces the distribution for the next word

as output (e.g. (Schwenk and Gauvain, 2002) and (Emami et al., 2003)). Perhaps the

best known model of this type is the Neural Probabilistic Language Model (Bengio et al.,

2003), which has been shown to outperform n-gram models on a dataset of about one

million words.

Another attractive property of neural language models is that their memory require-

ments are linear in the vocabulary size and the context size. In contrast, the memory

requirements of n-gram models are linear in the training set size because all non-zero

counts for w1:n have to be stored explicitly, which can be prohibitive for large training

sets.

2.2.1 The neural probabilistic language model

In this section we will describe the Neural Probabilistic Language Model of Bengio et

al. (Bengio et al., 2000, 2003) in some detail because most models in the literature

are based on it. The NPLM maps the given context to a distribution for the next

word in two stages. First, it maps the given local representation of the context (i.e.

word IDs) to a distributed representation by mapping the context word IDs w1:n−1 to

their distributed representations C(w1:n−1) = C(w1), ..., C(wn−1). Then, it feeds the

distributed representation of the context C(w1:n−1) into a feed-forward neural network

that outputs the predicted distribution for the next word. The neural network has one
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hidden layer of tanh units and a softmax output layer that ensures that the output of the

network is always a normalized probability distribution. Note that the same mapping

C() is used for all context positions because the distributed representations of words are

meant to capture the position-independent properties of words. In some versions of this

model, there are also direct connections from the input layer to the output layer. Though

adding such connections to a model reduces the number of epochs the network takes to

converge, the resulting model generalizes slightly worse than the original model (Bengio

et al., 2003).

The original version of the NPLM, also called the direct version, uses distributed

representations for the context words but not for the predicted word. As a result, this

architecture does not take advantage of word similarity among the predicted words. To

address this drawback Bengio et al. (2003) proposed an alternative, energy-based cycling

version of the NPLM that used the same mapping C() from words to feature vectors for

both the context words and the next word. This model uses a neural network to map the

distributed representations of the context words and the candidate next word to an energy

value, so that higher energies correspond to less likely context / next word combinations.

After computing the energies for all the next word candidates, the energies are negated,

exponentiated, and normalized to obtain a distribution for the next word. This model is

slightly slower to train than the direct NPLM because each energy computation requires

performing a forward pass in the neural network. The cycling NPLM also performs

slightly worse than the direct NPLM according to Bengio et al. (2000). In this thesis,

“NPLM” will refer to the direct NPLM.

2.2.2 Strengths and weaknesses of neural language models

While representing words using learned distributed representations makes neural lan-

guage models more robust than n-gram models to data sparsity, there are drawbacks

to this approach. By representing words using learned feature vectors, the ability to
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distinguish between words that are used in similar ways is greatly diminished. While

this is also the reason for the superior generalization ability of neural language models,

sometimes words that are very similar in usage are not interchangeable. For example,

since word-for-word reproduction is the defining property of a quotation, replacing any

word with its synonym makes the quotation much less probable. N -gram models excel in

cases like this because they effectively memorize the n-tuples seen in the training data,

after assigning each vocabulary word a unique ID.

This difference in behaviour highlights the fundamental difference in the nature of

the two language model types. N -gram models are very local non-parametric models

and thus are very expressive. In fact, in the limit of the infinite training set they will

converge to the true distribution for the next word (given the previous n − 1 words).

Neural language models are less local and thus limited to representing a smaller class of

distributions. They have a stronger inductive bias which allows them to generalize better

given a small amount of training data but their bias also prevents them from capturing

the true data distribution even in the limit of an infinite training set.

There are a number of choices to be made when using distributed representations in

neural language models. For example, the context words and the predicted word can use

different sets of word representations or they can share the same set. Also, assigning each

word a single feature vector makes it difficult for the model to capture multiple distinct

usage patterns (or senses) for a word. Assigning (some) words multiple feature vectors is a

natural way to address this difficulty. Unfortunately, having multiple representations for

context words seems to require computationally expensive inference for larger contexts.

Handling multiple predictive representations per word, on the other hand is easy, since

it effectively amounts to scaling the number of words in the (predictive) vocabulary by

the number of senses per word.

The complementary strengths of the two language model types suggest that a com-

bination of two models of different types might outperform the individual models. Tra-
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ditionally, neural models have been combined with n-grams by training both models

individually and then mixing the predictions from the two models using fixed mixing

proportions. A more promising approach might be to either train the two models jointly

(as components of the mixture), or to train one model on its own and then train the

second model to optimize the predictive performance of the mixture.

2.3 Evaluating language models

In this thesis we evaluate language models based on their test set perplexity, which is the

standard application-independent performance metric for probabilistic language models.

Perplexity quantifies the (average) uncertainty the model has about the next word given

its context. Perplexity is defined as

P = exp

(

−
1

N

∑

w1:n

log P (wn|w1:n−1)

)

, (2.2)

where the sum is over all subsequences of length n in the dataset, N is the number of

such subsequences, and P (wn|w1:n−1) is the probability under the model of the nth word

in the subsequence given the previous n − 1 words.



Chapter 3

Three non-hierarchical language

models

The supremacy of n-gram models in statistical language modelling has recently been

challenged by parametric models that use distributed representations to counteract the

difficulties caused by data sparsity. Despite their promising results, however, such mod-

els have not received much attention and, as a result, only a small number of possible

architectures have been explored. In this chapter, we will partially address this situation

by introducing three novel probabilistic language models that use distributed word repre-

sentations. We will start with a latent-variable language model that uses a large number

of hidden binary variables to capture the desired conditional distribution. Then we will

augment it with temporal connections between latent variables to increase the number of

preceding words taken into account without significantly increasing the number of model

parameters. Finally, we will introduce a simpler and faster deterministic language model

that performs linear prediction in the space of distributed word representations.

17
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3.1 The factored restricted Boltzmann machine lan-

guage model

In this section we propose a probabilistic model for word sequences that uses distributed

representations for words and captures the dependencies between words in a sequence

using stochastic hidden variables. The main choice to be made here is between directed

and undirected interactions between the hidden variables and the visible variables repre-

senting words. Blitzer et al. (2005a) proposed a model with directed interactions for this

task. However, training their model required exact inference, which is exponential in the

number of hidden variables. As a result, only a very small number of hidden variables

can be used, which greatly limits the expressive power of the model.

In order to be able to handle a large number of hidden variables, we use a Restricted

Boltzmann Machine (RBM) that has undirected interactions between multinomial visi-

ble units and binary hidden units. While maximum likelihood learning in RBMs is in-

tractable, RBMs can be trained efficiently using contrastive divergence learning (Hinton,

2002) and the learning rule is unaffected when binary units are replaced by multinomial

ones.

Assuming that the words we are dealing with come from a fixed vocabulary of size

Nw, we model the observed words as multinomial random variables, each of which can

take on one of Nw values. For convenience we will encode word identities using binary

vectors of length Nw. Word w will be encoded by a vector v with 1 in the wth position

and zeros in all other positions.

Now we will define an RBM for modelling the distribution of the next word in a sen-

tence given the word’s context by specifying the energy function for joint configurations

of the visible and hidden units. The first (n−1)Nw visible units will represent the context

words while the last Nw units will represent the next word. Perhaps the simplest energy
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function for this task is

E0(wn, h, w1:n−1) = −
n
∑

i=1

vT
i Gih, (3.1)

where h is a vector containing the state of the Nh hidden variables. Here matrix Gi

specifies the interaction between the multinomial visible unit vi and the binary hidden

units. For simplicity, we have ignored the bias terms for the visible and hidden units for

now. Unfortunately, the parameterization in Eq. 3.1 requires nNwNh free parameters,

which can be unacceptably high for vocabularies of even moderate size. Perhaps more

importantly, in this parameterization of the model each word is associated with a different

set of parameters for each of the n positions it can occupy, which means that the model

does not have position-independent word representations.

Both of these drawbacks can be addressed by introducing distributed representations

(i.e. feature vectors) for words. Generalization is made easier by sharing feature vectors

across all sequence positions, and defining all of the interactions involving a word via

its feature vector. This type of parameterization has been used in feed-forward neural

networks for modelling symbolic relations (Hinton, 1986) and for statistical language

modelling (Bengio et al., 2003).

We will represent each word using a real-valued feature vector of length Nf and make

the energy depend on the word only through its feature vector. Let R be an Nw × Nf

matrix with row i being the feature vector for the ith word in the vocabulary. Then

the feature vector for word wi is given by vT
i R. Using this notation, we define the joint

energy of a sequence of words w1, ..., wn along with the configuration of the hidden units

h as

E(wn, h, w1:n−1) = −
n
∑

i=1

vT
i RWih − bT

h h − bT
v vn. (3.2)

Here matrix Wi specifies the interaction between the vector of hidden variables and the

feature vector for the visible variable vi. The vector bh contains biases for the hidden units,

while bv is the vector of per-word biases. To simplify the notation we do not explicitly
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show the dependence of the energy functions and probability distributions on model

parameters. In other words, we write P (wn|w1:n−1) instead of P (wn|w1:n−1, Wi, R, ...).

Defining these interactions on the Nf -dimensional feature vectors instead of directly

on the Nw-dimensional visible variables leads to a much more compact parameterization

of the model, since typically Nf is much smaller than Nw. Using the same feature matrix

R for all visible variables forces it to capture position-invariant information about words

while further reducing the number of model parameters. With 18,000 words, 1000 hidden

units and a context of size 2 (n = 3), the use of 100-dimensional feature vectors reduces

the number of parameters by a factor of 25, from 54 million to a mere 2.1 million. As

can be seen from Eqs. 3.1 and 3.2, the feature-based parameterization constrains each of

the visible-hidden interaction matrices Gi to be a product of two low-rank matrices R

and Wi, while the original parameterization does not constrain Gi in any way.

The joint conditional distribution of the next word and the hidden configuration h is

defined in terms of the energy function in Eq. 3.2 as

P (wn, h|w1:n−1) =
1

Zc

exp(−E(wn, h, w1:n−1)), (3.3)

where Zc =
∑

wn

∑

h exp(−E(wn, h, w1:n−1)) is a context-dependent normalization term.

The conditional distribution of the next word given its context, which is the distribution

we are ultimately interested in, can be obtained from the joint by marginalizing over the

hidden variables:

P (wn|w1:n−1) =
1

Zc

∑

h

exp(−E(wn, h, w1:n−1)). (3.4)

Thus, we obtain a conditional model, which does not try to model the distribution of

w1:n−1 since we always condition on those variables.

3.1.1 Making predictions

One attractive property of RBMs is that the probability of a configuration of visible

units can be computed up to a multiplicative constant in time linear in the number of
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Figure 3.1: a) The diagram for the Factored RBM and the Temporal Factored RBM.

The dashed part is included only for the TFRBM. b) The diagram for the log-bilinear

model.

hidden units (Hinton, 2002). The normalizing constant, however, is usually infeasible

to compute because it is a sum of an exponential number of terms (in the number of

visible units). In the proposed language model, though, this computation is easy because

normalization is performed only over wn, resulting in a sum containing only Nw terms.

Moreover, in some applications, such as speech recognition, we are interested in ratios of

probabilities of words from a short list and as a result we do not have to compute the

normalizing constant at all (Bengio et al., 2003).

The unnormalized probability of the next word can be efficiently computed using the
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formula

P (wn|w1:n−1) =
∑

h

P (wn, h|w1:n−1)

∝
∑

h

exp(−E(wn, h, w1:n−1))

=
∑

h

exp

(

n
∑

i=1

vT
i RWih + bT

h h + bT
v vn

)

= exp
(

bT
v vn

)

∑

h

exp

(

n
∑

i=1

vT
i RWih + bT

h h

)

= exp
(

bT
v vn

)

Nh
∏

j=1

1
∑

hj=0

exp

(

n
∑

i=1

vT
i RW

j
i hj + bhjhj

)

= exp
(

bT
v vn

)

Nh
∏

j=1

(

1 + exp

(

n
∑

i=1

vT
i RW

j
i + bhj

))

(3.5)

where W
j
i is the jth column of matrix Wi.

Since the normalizing constant for this distribution can be computed in time linear

in the vocabulary size, exact inference in this model has time complexity proportional to

the product of the number of hidden variables and the vocabulary size. This compares

favourably with the exponential complexity of exact inference in the latent variable model

proposed in (Blitzer et al., 2005a).

3.1.2 Learning

The model can be trained on a dataset D of word sequences using maximum likelihood

learning. The log-likelihood (assuming IID sequences) simplifies to

L =
∑

w1:n∈D

log P (wn|w1:n−1), (3.6)

where the sum is over all word subsequences w1, ..., wn of length n in the dataset. L can

be maximized w.r.t. model parameters using gradient ascent. The contribution made by

a subsequence w1, ..., wn from D to the gradient of L w.r.t. a parameter θ is given by
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∂

∂θ
log P (wn|w1:n−1) = ED

[

∂

∂θ
(−E(wn, h, w1:n−1))

]

− EM

[

∂

∂θ
(−E(wn, h, w1:n−1))

]

,

(3.7)

where ED[·] and EM [·] denote expectations w.r.t. the posterior distribution P (h|w1:n)

conditional on the observed subsequence and the model distribution P (wn, h|w1:n−1))

respectively. The derivation of Eq. 3.7 is completely analogous to the derivation of

Eq. 1.9.

The energy function gradients w.r.t. the model parameters are:

∂

∂R
(−E(wn, h, w1:n−1)) =

∂

∂R

n
∑

i=1

vT
i RWih

=
n
∑

i=1

vih
T W T

i , (3.8)

∂

∂Wi

(−E(wn, h, w1:n−1)) =
∂

∂Wi

vT
i RWih

= RT vih
T . (3.9)

Plugging in them into Eq. 3.7 gives

∂

∂R
log P (wn|w1:n−1) = ED

[

n
∑

i=1

vih
T W T

i

]

− EM

[

n
∑

i=1

vih
T W T

i

]

, (3.10)

∂

∂Wi

log P (wn|w1:n−1) = ED

[

RT vih
T
]

− EM

[

RT vih
T
]

, (3.11)

The gradient of the log-likelihood of the dataset w.r.t. each parameter is then simply the

sum of the contributions by all n-word subsequences in the dataset.

Computing these gradients exactly can be computationally expensive because com-

puting an expectation w.r.t. P (vn, h|w1:n−1) takes Θ(NwNh) time for each context. One

alternative is to approximate the expectation using a Monte Carlo method by generat-

ing samples from P (vn, h|w1:n−1) and averaging over them. Unfortunately, generating an

exact sample from P (vn, h|w1:n−1) is just as expensive as computing the original expec-

tation. Instead of using exact sampling, we can generate samples from the distribution



Chapter 3. Three non-hierarchical language models 24

using a Markov chain Monte Carlo method such as Gibbs sampling which involves ini-

tializing vn and h to some random configuration and alternating between sampling vn

and h from their respective conditional distributions given by

P (wn|h, w1:n−1) ∝ exp
(

vT
n RWnh + vT

n bv

)

, (3.12)

P (h|w1:n) ∝ exp

((

n
∑

i=1

vT
i RWi + bT

h

)

h

)

. (3.13)

However, a large number of alternating updates might have to be performed to obtain a

single sample from the joint distribution.

Instead of performing maximum likelihood learning, we use an approximate learning

procedure called Contrastive Divergence (CD) learning which is much more efficient. It is

obtained by making two changes to the MCMC-based ML learning method. First, instead

of initializing vn to a random configuration, we initialize it to the state corresponding

to wn. Second, instead of running the Markov chain to convergence, we perform three

alternating updates (first h, then vn, and then h again). While the resulting configuration

(vn, h) is not a sample from P (vn, h|w1:n−1), it has been shown empirically that learning

still works well when such configurations (which we will call CD samples) are used instead

of samples from P (vn, h|w1:n−1) in the learning rules given above (Hinton, 2002).

In this chapter, we train all our RBM models using CD learning. In some cases, we

use a version of CD that, instead of sampling vn from P (wn|h, w1:n−1) to obtain a binary

vector with a single 1 in wnth position, sets vn to the vector of probabilities given by

P (wn|h, w1:n−1). This can be viewed as using mean-field updates for the visible units and

stochastic updates for the hidden units, which is common practice when training RBMs

(Hinton, 2002). Using these mean-field updates instead of stochastic ones reduces the

noise in the parameter derivatives allowing larger learning rates to be used.
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3.2 The temporal factored RBM

The FRBM language model proposed above, like most statistical language models, is

based on the assumption that given its context, the word is conditionally independent of

all other preceding words. This assumption, which is clearly false, is made in order keep

the number of model parameters relatively small. In n-gram models, for example, the

number of parameters is exponential in context size, which makes such models unable

to take advantage of large contexts. While the dependence of the number of model

parameters on context size is usually linear for models that use distributed representations

for words, the context size in such models is still fixed and has to be chosen in advance.

Ideally, a language model should be able to take advantage of indefinitely large con-

texts without needing a very large number of parameters. We propose a simple extension

to the FRBM language model to achieve that goal, following Sutskever and Hinton (2007).

Suppose we want to predict word wt+n from w1, ..., wt+n−1 for some large t. We can apply

a separate instance of our model (with the same parameters) to words wτ , ..., wτ+n−1 for

each τ in {1, ..., t}, obtaining a distributed representation of the ith n-tuple of words in

the hidden state hτ of the τ th instance of the model.

In order to propagate context information forward through the sequence towards the

word we want to predict, we introduce directed connections from hτ to hτ+1 and compute

the hidden state of model τ + 1 using the inputs from the hidden state of model τ as

well as its visible units. By introducing the dependencies between the hidden states of

successive instances and specifying these dependencies using a shared parameter matrix

A we make the distribution of wt+n under the model depend on all previous words in the

sequence.
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3.2.1 Making predictions

Exact inference in the resulting model is intractable – it takes time exponential in the

number of hidden variables in the model being instantiated. However, since predicting

the next word given its (nearly-)infinite context is an online problem we take the filtering

approach to the task, which requires storing only the last n − 1 words in the sequence

along with the hidden state distribution of a single model at any given time.

Unfortunately, exact filtering is intractable in this model. Though the distribution of

the hidden state at time τ is factorial given the observed sequence and the hidden state

at time τ −1, marginalizing over a factorial distribution for hτ−1 results in a non-factorial

and thus intractable distribution for hτ .

To get around this problem, we treat the hidden state hτ as fixed at pτ when inferring

the distribution P (hτ+1|w1:τ+n), where pτ
j = P (hτ

j = 1|w1:τ+n−1). Then, given a sequence

of words w1, ..., wt+n−1 we infer the posterior over the hidden states of model instances

using the following recursive procedure. The posterior for the first model instance is

given by Eq. 3.13. Given the (factorial) posterior for model instance τ , the posterior for

model instance τ + 1 is computed as

P (hτ+1|w1:τ+n) ∝ exp

((

n
∑

i=1

vT
i RWi + (bh + Apτ )T

)

hτ+1

)

. (3.14)

Thus, computing the posterior for model instance τ + 1 amounts to adding Apτ to that

model’s vector of hidden unit biases and performing inference in the resulting model

using Eq. 3.13.

Finally, the predictive distribution over wn is computed by applying the FRBM predic-

tion procedure from Sec. 3.1.1 to model instance t after shifting its biases appropriately.

3.2.2 Learning

Maximum likelihood learning in the temporal FRBM model is intractable because it

requires exact inference. Since we would like to be able to train models with large
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numbers of hidden variables we have to resort to an approximate algorithm.

Instead of performing exact inference we simply apply the filtering algorithm from the

previous section to compute the approximate posterior for the model. For each model

instance the algorithm produces a vector which, when added to that model’s vector of

hidden unit biases, makes the model posterior be the posterior produced by the filtering

operation. Then we compute the parameter updates for each model instance separately

using the usual CD learning rule and average them over all instances.

The temporal parameters are updated using the following rule applied to each training

sequence separately:

∆A ∝
t−1
∑

τ=1

(

pτ+1 − p̂τ+1
)T

pτ . (3.15)

Here p̂τ+1
i is the probability of the hidden unit i being on in the CD samples produced by

model instance τ + 1. See (Sutskever and Hinton, 2007) for a more detailed description

of learning in temporal RBMs.

3.3 The log-bilinear language model

Unlike the RBM-based language models, the log-bilinear (LBL) language model is a

simple deterministic model. Its main advantages are its simplicity and faster training.

Like virtually all neural language models, the LBL model represents words by real-

valued feature vectors. We will denote the feature vector for word w by rw and refer to

the matrix containing all these Nf -dimensional feature vectors as R. To predict the next

word wn given the context words w1:n−1, the model computes the predicted representation

r̂ for the next word by linearly combining the context word feature vectors:

r̂ =

n−1
∑

i=1

Cirwi
, (3.16)

where Ci is the weight matrix associated with the context position i. Then the similarity

between the predicted representation and the feature vector for each word in the vocab-
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ulary is computed using the inner product. The similarities are then exponentiated and

normalized to obtain the distribution over the next word:

P (wn = w|w1:n−1) =
exp(r̂T rw + bw)
∑

j exp(r̂Trj + bj)
. (3.17)

Here bw is the bias for word w, which is used to capture the context-independent word

frequency.

Computing the probability of the next word using Eqs. 3.17 and 3.16 takes Θ(NfNw+

(n−1)N2
f ) time. Since typically the vocabulary size is quite large compared to the feature

dimensionality, we have (n − 1)Nf ≪ Nw, which reduces the above complexity down to

Θ(NfNw).

3.3.1 Relationship to other models

The LBL model can be interpreted as a special kind of a feed-forward neural network

with one linear hidden layer and a soft-max output layer. The inputs to the network are

the feature vectors for the context words, while the matrix of weights from the hidden

layer to the output layer is simply the feature vector matrix R. The vector of activities

of the hidden units corresponds to the predicted representation for the next word. Note

that unlike the NPLM, the LBL model has no nonlinearities in the hidden layer.

Alternatively, the LBL model can be viewed in the energy-based framework as a kind

of an “RBM without hidden units” or a fully-observed Markov Random Field. The

energy function for the model is given by

E(wn, w1:n−1) = −
n−1
∑

i=1

vT
i RCiR

T vn − bT
v vn. (3.18)

Here Ci specifies the interaction between the feature vector of wi and the feature vector

of wn, while bv is the vector of per-word biases as in Eq. 3.2. Just like the energy function

for the factored RBM, this energy function defines a bilinear interaction. However, in

the FRBM energy function the interaction is between the word feature vectors and the
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hidden variables, whereas in this model the interaction is between the feature vectors for

the context words and the feature vector for the predicted word.

The LBL model can also be interpreted as a product of experts, where expert i

predicts wn based only on wi:

Pi(wn; wi) ∝ exp

(

vT
i RCiR

T vn +
1

n − 1
bT
v vn

)

. (3.19)

Multiplying P1, ..., Pn−1 and renormalizing yields the LBL model. Combining experts us-

ing the product of experts architecture allows the resulting model to produce predictions

that are more confident than those of any individual expert in cases when several experts

agree (Hinton, 2002). Note that the mixture of experts architecture does not have this

property and predictions produced by a mixture will always be less confident than those

of any constituent expert. Mixed-order Markov models (Saul and Pereira, 1997) can be

seen as the mixture-of-experts counterparts to the LBL-model, that use skip-bigrams as

their experts.

Collobert and Weston (2008) introduced a neural language model designed for learning

word representations suitable for solving various natural language processing tasks. The

architecture of the model is similar to that of the NPLM, except that it has several

hidden layers (i.e. it is a deep model). The model is trained to discriminate fixed-length

sequences taken from the training set from their corruptions obtained by replacing the

middle word by a randomly-chosen word. This model is much faster to train than the

traditional neural language models because it outputs a single probability instead of a

distribution over the entire vocabulary.

3.3.2 Learning

Training the above model is considerably simpler and faster than training the FRBM

models because no stochastic hidden variables are involved. To derive the gradients

needed for learning we will use the energy-based formulation with the model with the
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energy function

E(wn, w1:n−1) = −
n−1
∑

i=1

rT
wi

Cirwn
− bwn

. (3.20)

The gradient of the log-probability of wn w.r.t. a parameter θ is given by

∂

∂θ
log P (wn|w1:n−1) =

∂

∂θ
log

exp(−E(wn, w1:n−1))
∑

w exp(−E(w, w1:n−1))

=
∂

∂θ
(−E(wn, w1:n−1)) −

∂

∂θ
log
∑

w

exp(−E(w, w1:n−1))

=
∂

∂θ
(−E(wn, w1:n−1)) −

∑

w exp(−E(w, w1:n−1))
∂
∂θ

(−E(w, w1:n−1))
∑

w exp(−E(w, w1:n−1))

=
∂

∂θ
(−E(wn, w1:n−1)) −

∑

w

P (w|w1:n−1)
∂

∂θ
(−E(w, w1:n−1))

=
∂

∂θ
(−E(wn, w1:n−1)) − EM

[

∂

∂θ
(−E(w, w1:n−1))

]

, (3.21)

where EM [·] denotes the expectation w.r.t. the model distribution P (wn|w1:n−1).

The gradients of the negative energy function we need are

∂

∂Ci

(−E(wn, w1:n−1)) =
∂

∂Ci

n−1
∑

i=1

rT
wi

Cirwn

= rwi
rT
wn

, (3.22)

∂

∂rw

(−E(wn, w1:n−1)) =
∂

∂rw

n−1
∑

i=1

rT
wi

Cirwn

=
n−1
∑

i=1

(

δw,wn
CT

i rwi
+ δw,wi

Cirwn

)

, (3.23)

where δw,u is the Kronecker delta function.

Plugging in the above gradients into Eq. 3.21 gives following gradients needed for

learning:

∂

∂Ci

log P (wn|w1:n−1) = rwi
rT
wn

− EM

[

rwi
rT
wn

]

, (3.24)

∂

∂rw

log P (wn|w1:n−1) =

n−1
∑

i=1

(

δw,wn
CT

i rwi
+ δw,wi

Cirwn

)

−

EM

[

n−1
∑

i=1

(

δw,wn
CT

i rwi
+ δw,wi

Cirwn

)

]

. (3.25)
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3.4 Experimental evaluation

We evaluated our models using the 16 million word APNews dataset consisting of As-

sociated Press news stories from 1995 and 1996. The dataset has been preprocessed by

replacing proper nouns and rare words with the special “proper noun” and “unknown

word” symbols respectively, and treating punctuation marks as words, resulting in a vo-

cabulary containing 17964 words. A more detailed description of preprocessing can be

found in (Bengio et al., 2003).

We performed our experiments in two stages. First, we compared the performance

of our models to that of n-gram models on a smaller subset of the dataset to determine

which type of our models showed the most promise. Then we performed a more thorough

comparison between the models of that type and the n-gram models on the full dataset.

3.4.1 Preliminary evaluation

In the first experiment, we used a 10 million word training set, a 0.5 million word valida-

tion set, and a 0.5 million word test set. We trained one non-temporal and one temporal

FRBM, as well as two log-bilinear models. All of our models used 100-dimensional feature

vectors and both FRBM models had 1000 hidden units.

The models were trained using mini-batches of 1000 examples each. For the non-

temporal models with n = 3, each training case consisted of a two-word context and a

vector of probabilities specifying the distribution of the next word for this context. These

probabilities were precomputed on the training set and stored in a sparse array. When

training the non-temporal FRBM, vn was initialized with the precomputed probability

vector instead of the usual binary vector with a single 1 indicating the single “correct”

next word for this instance of the context. The use of probability vectors as inputs along

with mean field updates for the visible unit, as described in Sec. 3.1.2, allowed us to use

relatively high learning rates. Since precomputing and storing the probability vectors for
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all 5-word contexts turned out to be non-trivial, the model with a context size of 5 was

trained directly on 6-word sequences.

Mini-batches for training the temporal FRBM were obtained by splitting the dataset

into 1000 sequences of equal length and assigning the ith context / next word pair from

each sequence to the ith mini-batch. During training, mini-batches were processed in the

natural order to allow the model to propagate context information forward through the

sequences. Model parameters were updated after each mini-batch.

All the parameters of the non-temporal models except for word biases were initialized

to small random values. Per-word bias parameters bv were initialized based on word

frequencies in the training set.

The temporal FRBM model was initialized by copying the parameters from the

trained FRBM and initializing the temporal weights (A) to zero. During training,

stochastic updates were used for visible units and vn was always initialized to a binary

vector representing the actual next word in the sequences (as opposed to a distribution

over words).

We regularized our models using weight decay, implemented by adding −λw term to

the derivative of the log-likelihood w.r.t. each parameter w. We used weight decay of

λ = 10−4 for word representations and λ = 10−5 for all other weights. No weight decay

was applied to biases. Weight decay values as well as other learning parameters were

chosen using the validation set. Model performance was not sensitive to the weight decay

setting as long as it was not very high. Each model was trained until its performance

on a subset of the validation set stopped improving significantly. We did not observe

overfitting in any of our models, which suggests that using models with more parameters

might lead to improved performance.

We compared our models to backoff n-gram models estimated using Good-Turing and

modified Kneser-Ney discounting (Chen and Goodman, 1996). Training and testing of the

n-gram models was performed using programs from the SRI Language Modelling toolkit
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Table 3.1: Perplexity scores for the models trained on the 10M word training set. The

mixture test score is the perplexity obtained by averaging the model’s predictions with

those of the modified Kneser-Ney backoff 6-gram model. The first four models use 100-

dimensional feature vectors. The FRBM models have 1000 stochastic hidden units. GTn

and KNn refer to backoff n-grams with Good-Turing and modified Kneser-Ney discount-

ing respectively.

Model Context Model Mixture

type size test score test score

FRBM 2 169.4 110.6

Temporal FRBM 2 127.3 95.6

Log-bilinear 2 132.9 102.2

Log-bilinear 5 124.7 96.5

Back-off GT3 2 135.3

Back-off KN3 2 124.3

Back-off GT6 5 124.4

Back-off KN6 5 116.2

(Stolcke, 2002). To make the comparison fair, the n-gram models treated punctuation

marks (including full stops) as if they were ordinary words, since that is how they were

treated by the neural models.

Models were compared based on their perplexity (see Sec. 2.3) on the test set. To

make the comparison between models of different context size fair, given a test sequence

of length L, we ignored the first C words and tested the models at predicting words

C + 1, ..., L in the sequence, where C = 9 was the largest context size among the models

compared.

For each network model we also computed the perplexity for a mixture of that model

with the best n-gram model (modified Kneser-Ney backoff 6-gram). The predictive dis-
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tribution for the mixture was obtained simply by averaging the predictive distributions

produced by the network and the n-gram model (giving them equal weight of 0.5). The

resulting model perplexities are given in Table 3.1.

The results show that three of the four network models we tested are competitive

with n-gram models. Only the non-temporal FRBM is significantly outperformed by

all n-gram models. However, adding temporal connections to the FRBM to obtain a

temporal FRBM, improves the model dramatically as indicated by a 33% drop in per-

plexity, suggesting that the temporal connections do increase the effective context size

of the model. The log-bilinear models perform quite well: their scores are on par with

Good-Turing n-grams with the same context size.

Averaging the predictions of any network model with the predictions of the best n-

gram model produced better predictions than any single model, which suggests that the

network and n-gram models make sufficiently different predictions in at least some cases.

The best results were obtained by averaging with the temporal network model, resulting

in 18% reduction in perplexity over the best n-gram model.

3.4.2 Final evaluation

Since the log-bilinear models performed well and were much faster to train than the

FRBMs, we did not include FRBMs in our final evaluation. Similarly, we chose not to

include the n-gram models with Good-Turing discounting as they performed significantly

worse than the n-gram models with Kneser-Ney discounting. For this experiment we used

the full APNews dataset which was split into a 14 million word training set, 1 million

word validation set, and 1 million word test set. There was no overlap between the test

set used in the preliminary evaluation and the test set used in the final evaluation. In

fact, all data used in the preliminary evaluation was included in the final (14 million

word) training set.

We trained two log-bilinear models: one with a context of size 5, the other with a
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Table 3.2: Perplexity scores for the models trained on the 14M word training set. The

log-bilinear models use 100-dimensional feature vectors. The mixture test score is the

perplexity obtained by mixing the model’s predictions with those of the Kneser-Ney 5-

gram model using equal weights. The fitted mixture is obtained by mixing the two sets

of predictions using the mixing proportion fitted on the validation set. The fitted mixing

proportion column reports the mixing proportion of the neural model.

Model Context Model Mixture Fitted Fitted

type size test score test score mixture mixing

test score proportion

Log-bilinear 5 117.0 97.2 96.9 0.57

Log-bilinear 10 107.8 92.2 91.4 0.62

Back-off KN3 2 129.8

Back-off KN5 4 123.2

Back-off KN6 5 123.5

Back-off KN9 8 124.6

context of size 10. The training parameters were the same as in the first experiment with

the exception of the learning rate. After the validation perplexity of a model stopped

improving when using the original learning rate of 10−2, the learning rate was reduced

to 10−3 and training was resumed until the validation perplexity stopped improving once

again. This learning rate reduction was not performed in the preliminary evaluation,

which might explain why the LBL models did not perform as well as the n-gram models

in that experiment.

The results of the second experiment are summarized in Table 3.2. The perplexity

scores clearly show that the log-bilinear models outperform the n-gram models. Even the

log-bilinear model with the smaller context size (5) outperforms all the n-gram models.

The results also show that increasing the context size of an n-gram model does not
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necessarily lead to better performance. In fact, the best n-gram performance on this

dataset was achieved using a context of size 4. For the log-bilinear model, on the other

hand, increasing the context size from 5 to 10 reduces perplexity by 8%.

In our second experiment, we used the same training, validation, and test sets as in

(Bengio et al., 2003), which means that our results are directly comparable to theirs.1

Bengio et al. (2003) trained a neural language model with a context size of 5 but did not

report its individual test score. Instead they reported the score of 109 for the mixture of

a Kneser-Ney 5-gram model and the neural language model. That score is significantly

worse than the score of 97.2 obtained by the corresponding mixture in our experiments.

Moreover, our best single model achieves the score of 107.8, outperforming their mixture.

So far we combined predictions of a neural model with those of an n-gram model by

mixing them using the formula

Pmix(wn|w1:n−1) = αPneural(wn|w1:n−1) + (1 − α)Pn−gram(wn|w1:n−1) (3.26)

with a fixed α of 0.5. Though using equal mixing proportions seems to work quite

well, the mixture might perform better if we set the value of the mixing proportion α

based on the models being combined. We use binary search to find the value of α that

maximizes the validation log-likelihood for the mixture. The test set perplexity of the

resulting mixtures as well as the values of α found are reported in Table 3.2. The results

show that while fitting mixing proportions on the validation set does improve the test

set perplexity, the improvement is quite small. In both fitted mixtures the LBL model

contributes more than the n-gram model as indicated by the mixing proportion α being

close to 0.6.

1Due to the limitations of the SRILM toolkit in dealing with very long strings, instead of treating the
dataset as a single string, we broke up each of the test, training, and validations sets into 1000 strings
of equal length. This might explain why the n-gram scores we obtained are slightly different from the
scores reported in (Bengio et al., 2003).
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Model performance analysis

It is well known that averaging predictions from a neural language model with those of

an n-gram model usually results in better predictions than those of the individual models

(Bengio et al., 2003; Schwenk, 2007). As the results in Tables 3.1 and 3.2 show, neural

language models introduced in this thesis also benefit from such averaging. Such results

suggest that neural models and n-gram models make different predictions that tend to

complement each other.

In this section we investigate the ways in which the predictions from a neural language

model differ from those of an n-gram model. We used two models from Table 3.2: the

LBL model with a context of size 5 and the modified Kneser-Ney backoff 5-gram. Our

analysis is based on the predictions made by these models on the 1M word test set.

First, we examined the distribution of the probability of the next word (i.e. P (wn|w1:n−1))

on the test set under the two models. We partitioned the range of probability values into

8 bins, so that for i = 1, ..., 7, bin i contained the values between 10−i and 10−i+1, while

bin 8 contained the values smaller than 10−7. Thus, bin 1 contains the largest prob-

ability values, corresponding to the best predictions, while bin 8 contains the smallest

probability values, corresponding to the least successful predictions. The top panel of

Figure 3.2 shows the number of predictions contained in each bin for each model. The

LBL model appears to produce more very successful (bin 1) as well as very unsuccessful

predictions (bins 7 and 8) than the 5-gram model. The general trend is the same for

both models though: more than half of the predictions fall into the first two bins while

very few predictions fall into the last two bins. This suggests that both the LBL model

and the 5-gram model assign a reasonably high probability to the next word in most

cases. However, since perplexity is defined as P = exp
(

− 1
N

∑

w1:n
log P (wn|w1:n−1)

)

, a

less successful prediction contributes more to its value than the more successful one does.

Thus it is instructive to look at the contribution to the negative log-probability of the

test set (i.e. the sum of − log P (wn|w1:n−1)) by each of the bins. As can be seen from
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Figure 3.2: Top panel: Number of predictions (P (wn|w1:n−1)) on the test set as a function

of their magnitude. Bottom panel: Contribution to the negative log-probability of the

test set as a function of the prediction magnitude. Bin i (for i = 1, ..., 7) contains

predictions between 10−i and 10−i+1. Bin 8 contains predictions smaller than 10−7.
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the bottom panel of Figure 3.2, bins 2-5 dominate the test set log-probability for both

models. Thus the value of perplexity is mostly determined by mediocre predictions, with

the most and the least successful predictions having little effect on it.

We then analyzed model performance as a function of the frequency of the word being

predicted (i.e. the next word). We grouped the 17964 words in the vocabulary based on

their training set frequency into 10 bins, so that each bin accounted for about 10% of

the word occurrences in the training set. This vocabulary partitioning makes the per-bin

results easier to interpret since the contribution of the words in each bin to the overall

test set perplexity is roughly the same.2 Note that the number of words in each bin

is highly variable: the first bin contains 14199 (very rare) words, while the tenth bin

contains only one word3.

For each frequency bin, we computed its perplexity under both models by considering

only those context / next word pairs in which the next word belonged to the frequency

bin. To make evaluating the relative performance of the models easier, we also computed

the ratio of the perplexity of the LBL model to that of the 5-gram model for each bin.

The results of the evaluation are shown in Table 3.3.

As expected, our results show that both models are much better at predicting frequent

words than rare words. However, as the per-bin perplexity ratio values indicate, the LBL

model outperforms the 5-gram model on six of the ten bins. Interestingly, these bins are

located at the extremes of the frequency range – they contain either the very rare (bin 1)

or the very frequent words (bins 6-10). When predicting words of intermediate frequency

the 5-gram model performs better than the LBL model.

We also analyzed model performance as a function of the frequency of the last word

in the context, which is the word that immediately precedes the word we are trying to

2Note that the perplexity of the test set can be (approximately) computed by taking the geomet-

ric mean of the bin perplexities. This corresponds to taking the arithmetic mean of the per-bin log-
probability values.

3This is the most frequent “word” in the dataset: 〈proper noun〉.
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Table 3.3: Model performance as a function of the frequency of the next word.

Bin Bin size Test set LBL5 KN5 Perplexity

number (words) coverage (%) perplexity perplexity ratio (PR) log(PR)

1 14199 10.1 11599.0 13041.0 0.89 -0.12

2 2428 10.0 2489.1 2336.3 1.07 0.06

3 870 10.1 937.2 819.7 1.14 0.13

4 340 9.8 394.7 349.8 1.13 0.12

5 92 9.7 125.2 120.6 1.04 0.04

6 22 10.3 30.2 32.0 0.94 -0.06

7 6 9.6 16.3 19.0 0.86 -0.15

8 4 12.4 10.6 12.8 0.83 -0.19

9 2 9.7 7.5 8.9 0.84 -0.18

10 1 8.2 8.8 10.5 0.84 -0.17

predict. We used the same frequency bin partitioning scheme as in the previous analysis.

The results are shown in Table 3.4. For both models, conditioning on a context with a

rare last word tends to result in a lower perplexity than conditioning on a context with

a frequent last word, though the trend here is less pronounced than the one in the next

word frequency vs. perplexity results. This result suggests that rare words are more

informative than frequent words for predicting the word that follows them. The pattern

of performance of the LBL model relative to the 5-gram model is very similar to the

pattern from Table 3.3: the LBL model performs better when conditioning on very rare

and very frequent words, while the 5-gram model performs better on words in the middle

of the frequency range.

The superior performance of the LBL model when predicting or conditioning on rare

words suggests that the model is able to learn usable 100-dimensional feature vectors

even for words that occur only 30-332 times in the training set. More surprisingly,
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Table 3.4: Model performance as a function of the frequency of the last context word.

Bin Bin size Test set LBL5 KN5 Perplexity

number (words) coverage (%) perplexity perplexity ratio (PR) log(PR)

1 14199 10.1 65.5 89.7 0.73 -0.32

2 2428 10.0 67.2 75.4 0.89 -0.12

3 870 10.1 62.9 63.5 0.99 -0.01

4 340 9.8 72.1 70.0 1.03 0.03

5 92 9.7 118.3 114.0 1.04 0.04

6 22 10.3 148.4 147.1 1.01 0.01

7 6 9.6 136.1 132.5 1.03 0.03

8 4 12.4 134.3 140.1 0.96 -0.04

9 2 9.7 315.7 342.3 0.92 -0.08

10 1 8.2 272.5 287.9 0.95 -0.05

the LBL model also outperforms the 5-gram model when dealing with the extremely

frequent words (over 40,000 occurrences), which appears to indicate that the LBL model

is sufficiently flexible to take advantage of large amounts of training data, in spite of

being a parametric model.

To further investigate the strengths of both models we examined the context / next

word pairs on which one of the models performed much better than the other. For every

context / next word pair in the test set we computed the ratio of the probability of the

next word under the LBL model to that of the 5-gram. Table 3.5 shows the cases with the

largest value of the probability ratio, that is, the ones on which the LBL model performs

disproportionately well, while Table 3.6 shows the cases that favour the 5-gram model.

The results show that the 5-gram model excels at predicting the next word when it is a

part of a frequently used word sequence (e.g. a compound proper noun) well represented

in the training set. This is not at all surprising, since n-gram models effectively memorize
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the training set. In contrast, the LBL model does best relative to the 5-gram model when

the context and the next word do not form a frequent pattern. In some of these cases,

the context contains a part of a pattern that occurs frequently in the training set, but the

next word does not fit that pattern, which causes the 5-gram to assign high probability to

an incorrect answer. For example, the first example in Table 3.5, breaks a very frequent

pattern because it does not have “a” between the monetary amount (#$n) and the next

word (“troy ounce”). Similarly, in the training set the context “unleaded , #n cents for”

is always followed by “mid grade”, which makes the 5-gram place a very low probability

on “premium” being the next word. The LBL model, on the other hand, assigns a fairly

high probability to “premium”. In fact, given this context, the LBL model assigns fairly

high probability (1×10−2 or greater) to words “mid”, ”premium”, and “unleaded”, which

refer to gasoline types. In other cases, the LBL model outperforms the 5-gram model by

generalizing across similar contexts and similar words. For example, though the phrase

“houston symphony orchestra” never occurs in the training set, the neural model is still

able to assign “symphony orchestra” a fairly high probability from the context “guest

conductor with the houston” because “symphony orchestra” is often preceded by a city

name in the training set.

After seeing the LBL model perform poorly when predicting the next word in a

frequently used expression, we inspected the distribution for the next word produced

by the model after giving it a number of contexts with fairly unambiguous next words.

Note that none of these contexts occur in the training set. We will illustrate the model

behaviour using some of the contexts we looked at. The first context is “〈proper noun〉

〈proper noun〉 , pontiac grand” was included in Table 3.6 as one of the contexts on which

the 5-gram model does much better than the LBL model. The distribution for the next

word produced by the LBL model shown in Table 3.7 includes only one plausible next

word (“cherokee”) in the top 20 words. The probability of the next word, which is “am”

in this case, is very low (3 × 10−6). It is not surprising that the LBL model fails in this
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Table 3.5: The context / next word pairs from the test set most probable under the LBL

model relative to the 5-gram model. The “Prob. ratio” column reports the ratio of the

probability of the next word under the LBL model with a context of size 5 to that of

a backoff 5-gram with modified Kneser-Ney smoothing. Contexts that start with “...”

have been abbreviated to fit the table by replacing the first one or more words with “...”.

Prob. LBL5 KN5

ratio prob. prob. Context Next word

3 × 106 8 × 10−3 3 × 10−9 silver traded in london at #$n troy ounce

2 × 105 6 × 10−2 3 × 10−7 matched all five winning cards drawn in

8 × 104 1 × 10−1 2 × 10−6 : lotto #r . 〈proper noun〉 supplementary

3 × 104 5 × 10−2 2 × 10−6 lotto #n #r . 〈proper noun〉 supplementary

2 × 104 8 × 10−1 3 × 10−5 〈unknown〉 off the northwest african coast

1 × 104 5 × 10−2 4 × 10−6 ... committee chairman robert livingston

1 × 104 6 × 10−2 5 × 10−6 unleaded , #n cents for premium

1 × 104 7 × 10−1 7 × 10−5 ... news agency quoted fitzgerald as saying

1 × 104 3 × 10−2 3 × 10−6 guest conductor with the houston symphony orchestra

9 × 103 3 × 10−1 3 × 10−5 band of heavy showers with thunderstorms

9 × 103 2 × 10−1 2 × 10−5 jurors deadlocked on two robbery counts

8 × 103 5 × 10−1 6 × 10−5 - 〈proper noun〉 ohio lottery will pay out

8 × 103 4 × 10−1 5 × 10−5 ” the newspaper quoted webster as saying

7 × 103 9 × 10−3 1 × 10−6 the basque language acronym for homeland

7 × 103 3 × 10−1 4 × 10−5 associate art professor at moscow university

6 × 103 1 × 10−1 2 × 10−5 ... american stock exchange ’s market value

6 × 103 2 × 10−1 3 × 10−5 . 〈proper noun〉 case is duncan vs.

6 × 103 1 × 10−1 2 × 10−5 colleagues - moderates and liberals alike

6 × 103 5 × 10−2 9 × 10−6 suddenly turned on when the gas went off

6 × 103 3 × 10−2 5 × 10−6 most of 〈proper noun〉 former french colonies

5 × 103 9 × 10−2 2 × 10−5 , twelve , twenty-seven and thirty-four
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Table 3.6: The context / next word pairs from the test set most probable under the

5-gram model relative to the LBL-gram model. The “Prob. ratio” column reports the

ratio of the probability of the next word under the LBL model with a context of size 5

to that of a backoff 5-gram with modified Kneser-Ney smoothing. Contexts that start

with “...” have been abbreviated to fit the table by replacing the first one or more words

with “...”.

Prob. LBL5 KN5

ratio prob. prob. Context Next word

2 × 10−8 6 × 10−14 3 × 10−6 latest weapon as peace talks inch

2 × 10−7 1 × 10−8 6 × 10−2 is #n . actor john hurt

2 × 10−7 5 × 10−8 2 × 10−1 〈unknown〉 , the chemical weapons convention

4 × 10−7 7 × 10−11 2 × 10−4 in #n , frederick r law

5 × 10−7 3 × 10−7 7 × 10−1 inappropriate for young children . r

6 × 10−7 2 × 10−7 4 × 10−1 assault charges , actor todd bridges

6 × 10−7 3 × 10−7 5 × 10−1 “ 〈proper noun〉 hunt for red october

7 × 10−7 4 × 10−7 5 × 10−1 such as age , sex , region

2 × 10−6 3 × 10−7 2 × 10−1 〈proper noun〉 . #n . art direction

2 × 10−6 1 × 10−6 7 × 10−1 a #n ) a #n )

2 × 10−6 5 × 10−9 3 × 10−3 ’s birthdays : actor victor mature

2 × 10−6 6 × 10−7 3 × 10−1 〈proper noun〉 the benefit of the doubt

2 × 10−6 3 × 10−10 1 × 10−4 desert world , dependent on an off

2 × 10−6 5 × 10−7 2 × 10−1 ’s jimmy page and robert plant

3 × 10−6 4 × 10−7 1 × 10−1 a basket of washington state apples

3 × 10−6 2 × 10−9 5 × 10−4 to return . 〈proper noun〉 gen guy

4 × 10−6 3 × 10−9 7 × 10−4 research at wheat butcher & singer

4 × 10−6 3 × 10−6 6 × 10−1 ... 〈proper noun〉 , pontiac grand am

4 × 10−6 6 × 10−7 1 × 10−1 first come , first served basis

5 × 10−6 2 × 10−6 4 × 10−1 of #n . earth island institute

5 × 10−6 4 × 10−7 8 × 10−2 force , ” “ play misty
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case because the word “am” is used here as a part of a car name as opposed to its vastly

more popular role as a form of the verb “to be”. Since neural models generally have only

one feature vector per word, they can be expected to have difficulty dealing with words

that have several very different usage patterns. However, if two quite different vectors

are needed, their average can be much closer to both of them than to almost all other

word vectors provided the vectors are high-dimensional.

However, the above example is rather atypical. The following two examples demon-

strate a more typical situation. The next word distributions produced by the model when

given contexts “a performance by the rolling” and “he has joined the rolling” are shown

in Tables 3.8 and 3.9 respectively. In the first case, the correct next word (“stones”) is

the fourth most probable prediction, while in the second case it is the most probable

prediction. In both cases, the singular form of the word (“stone”) is also among the most

probable words, which suggests that the model has learned similar representations for

“stones” and “stone” from their similar usage patterns.

3.4.3 Visualization of word feature vectors

Our next step is to evaluate the distributed word representations learned by the LBL

model. Since these feature vectors are high-dimensional (100D), it is infeasible to inspect

them directly. Instead, we visualize them after reducing their dimensionality down to

two dimensions using the recently developed t-SNE dimensionality reduction algorithm

(van der Maaten and Hinton, 2008).4 t-SNE is a nonlinear algorithm that reduces the

dimensionality of the data while trying to preserve the local neighbourhood structure.

Though we realize that some of the structure in the data will be lost or distorted by

performing dimensionality reduction, we believe that analysis based on an imperfect

condensation of the data is better than no analysis at all.

To evaluate the quality of the learned word feature vectors, we computed two embed-

4Perplexity, the only tunable parameter of the t-SNE algorithm, was set to 20 in our experiments.
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Figure 3.3: A fragment of a t-SNE embedding of the feature vectors (learned by an LBL

model) of the most frequent 1000 words.

dings: one for the 1000 most frequent words and one for the 1000 rarest words. We used

the word feature vectors from the LBL model with a context of size 5. Figures 3.3 and 3.4

show fragments of the two embeddings. The embedding of the top 1000 words exhibits

strong local and mid-range structure. Days of the week, months, numbers, and various

units of measurement form compact clusters, while geographic names and people’s names

form more diffuse clusters. Verbs and nouns tend to form large homogeneous regions.

The quality of the embedding suggests that the feature vectors for the most frequent

words capture word similarity very well.

The embedding of the least frequent 1000 words is less structured. However, the
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Figure 3.4: A fragment of a t-SNE embedding of the feature vectors (learned by an LBL

model) of the least frequent 1000 words.

larger mostly homogeneous regions consisting predominantly of a single part of speech

are still there, as are clusters of locations and names. The small clusters that were very

prominent in the embedding of the frequent words are now less frequent and more diffuse.

The loss of finer structure suggests that the feature vectors for rare words are not as well-

estimated as those of their frequent counterparts. However, the amount of structure in

the embedding suggests that even the feature vectors of the rarest words capture a fair

amount of word similarity information.
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Table 3.7: Most probable next words under the LBL model for the context “〈proper noun〉

〈proper noun〉 , pontiac grand”.

Rank Probability Next word

1 6.62 × 10−1 〈proper noun〉

2 4.23 × 10−2 〈unknown〉

3 1.63 × 10−2 forks

4 1.53 × 10−2 ,

5 7.97 × 10−3 of

6 7.44 × 10−3 and

7 7.01 × 10−3 hall

8 5.60 × 10−3 bell

9 5.17 × 10−3 ;

10 4.78 × 10−3 cherokee

11 4.50 × 10−3 grand

12 3.79 × 10−3 kennedy

13 3.72 × 10−3 for

14 3.40 × 10−3 .

15 3.34 × 10−3 city

16 3.15 × 10−3 news

17 2.80 × 10−3 silver

18 2.75 × 10−3 bank

19 2.72 × 10−3 campbell

20 2.66 × 10−3 company
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Table 3.8: Most probable next words under the LBL model for the context “a performance

by the rolling”.

Rank Probability Next word

1 7.85 × 10−2 〈unknown〉

2 5.42 × 10−2 〈proper noun〉

3 2.75 × 10−2 .

4 2.45 × 10−2 stones

5 1.98 × 10−2 stone

6 1.89 × 10−2 ,

7 1.72 × 10−2 and

8 1.49 × 10−2 on

9 1.48 × 10−2 to

10 1.22 × 10−2 west

11 1.04 × 10−2 glass

12 9.32 × 10−3 creek

13 9.29 × 10−3 at

14 8.17 × 10−3 house

15 8.01 × 10−3 hills

16 7.87 × 10−3 lake

17 7.81 × 10−3 for

18 7.63 × 10−3 valley

19 7.38 × 10−3 river

20 7.27 × 10−3 rock
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Table 3.9: Most probable next words under the LBL model for the context “he has joined

the rolling”.

Rank Probability Next word

1 6.49 × 10−2 stones

2 6.16 × 10−2 on

3 4.76 × 10−2 〈unknown〉

4 4.40 × 10−2 〈proper noun〉

5 3.85 × 10−2 to

6 3.73 × 10−2 stone

7 3.42 × 10−2 at

8 2.56 × 10−2 through

9 2.51 × 10−2 in

10 2.32 × 10−2 .

11 2.21 × 10−2 for

12 2.19 × 10−2 and

13 2.12 × 10−2 across

14 1.97 × 10−2 back

15 1.63 × 10−2 hills

16 1.12 × 10−2 by

17 1.11 × 10−2 ,

18 8.91 × 10−3 around

19 8.09 × 10−3 house

20 7.07 × 10−3 west



Chapter 4

The hierarchical log-bilinear

language model

In the previous chapter, we introduced the log-bilinear language model and showed that

it can outperform n-gram models. Though its simplicity makes the LBL model faster to

train and test than the more complex neural language models, training it can still take

weeks on a single-core CPU.

To reduce the time complexity of training and making predictions with the NPLM1,

Morin and Bengio proposed a hierarchical language model built around a binary tree

over words, which was two orders of magnitude faster than the non-hierarchical NPLM

it was based on. However, it performed considerably worse than its non-hierarchical

counterpart, in spite of using a word tree constructed using expert knowledge. In this

chapter, we introduce a fast hierarchical language model, based on the log-bilinear model

from the previous chapter, along with a simple feature-based algorithm for automatic

construction of word trees from data. We then show that the resulting models can

outperform non-hierarchical neural models as well as the best n-gram models.

1The Neural Probabilistic Language Model of Bengio et al. (2003) was described in Sec. 2.2.1.

52
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4.1 The hierarchical neural probabilistic language model

The main drawback of neural language models, such as the NPLM and the LBL model,

is that they are very slow to train and test (Morin and Bengio, 2005). Since computing

the probability of the next word requires explicitly normalizing over all words in the

vocabulary, the cost of computing the probability of a specific next word and the cost

of computing the entire distribution for the next word are virtually the same – they

take time linear in the vocabulary size. Since training such models requires repeatedly

computing the probability of the next word given its context and updating the model

parameters to increase that probability, training time is also linear in the vocabulary

size. Typical natural language datasets have vocabularies containing tens of thousands

of words, which means that training NPLM-like models the straightforward way is usually

too computationally expensive in practice. One way to speed up the process is to use

a specialized importance sampling procedure to approximate the gradients required for

learning (Bengio and Senécal, 2003; Bengio and Sénécal, 2008). However, while this

method can speed up training substantially, making predictions remains computationally

expensive.

The hierarchical NPLM introduced by Morin and Bengio (2005) provides an expo-

nential reduction in time complexity of learning and testing relative to the NPLM. It

achieves this reduction by replacing the unstructured vocabulary of the NPLM by a

binary tree that represents a hierarchical clustering of words in the vocabulary. The

tree-based vocabulary decomposition is a generalization of the (word) class-based vocab-

ulary decomposition proposed by Goodman (2001) as a way to speed up the training

of maximum entropy language models. In a tree-based decomposition, each word cor-

responds to a leaf in the tree and can be uniquely specified by the path from the root

to that leaf. If N is the number of words in the vocabulary and the tree is balanced,

any word can be specified by a sequence of Θ(log N) binary decisions indicating which of

the two children of the current node is to be visited next. In this approach, one N -way
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decision is replaced by a sequence of Θ(log N) binary decisions. In probabilistic terms,

one N -way normalization is replaced by a sequence of Θ(log N) local (binary) normal-

izations. As a result, a distribution over words in the vocabulary can be specified by

providing the probability of visiting the left child at each of the nodes. In the hierarchi-

cal NPLM, these local probabilities are computed by applying a version of the NPLM

to the feature vectors for the context words and the feature vector for the current node.

The probability of the next word is then given by the probability of making the sequence

of binary decisions that encodes to the path to that word.

When applied to a dataset of about one million words, this model outperformed class-

based trigrams, but performed considerably worse than the NPLM (Morin and Bengio,

2005). The hierarchical NPLM however was more than two orders of magnitude faster

than the NPLM. The main limitation of this work is the procedure used to construct the

tree over words for the model. The tree was constructed by starting with the WordNet

IS-A taxonomy and converting it into a binary tree through a combination of manual and

data-driven processing. Our goal is to replace this procedure by an automated method

for constructing trees from the training data without resorting to expert knowledge. We

will also explore the benefits of using trees where each word can occur more than once.

4.2 The log-bilinear model

We will use the log-bilinear language model introduced in Sec. 3.3 as the foundation

of our hierarchical model because of its simplicity and excellent performance. In this

section, we will quickly review the LBL model. To compute the distribution for the

word following the given context w1:n−1, the model first computes the predicted feature

vector r̂ for the word by linearly combining the context word feature vectors using the

context-position-dependent weight matrices C1, ..., Cn−1:

r̂ =

n−1
∑

i=1

Cirwi
. (4.1)
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Then the similarity between the predicted feature vector and the feature vector for each

word in the vocabulary is computed using the inner product. The similarities are then

exponentiated and normalized to obtain the distribution over the next word:

P (wn = w|w1:n−1) =
exp(r̂T rw + bw)
∑

j exp(r̂Trj + bj)
. (4.2)

Thus, the LBL model performs multinomial logistic regression to map the predicted word

feature vector to a distribution over words in the vocabulary.

The probabilistic component of our hierarchical model will be used to model binary

(left child / right child) decisions instead of the N -way decisions modeled by the LBL

model. To achieve that we replace the softmax function used in Eq. 4.2 by the logistic

function

σ(x) =
1

1 + exp(−x)
. (4.3)

4.3 The hierarchical log-bilinear model

Like the hierarchical NPLM, our hierarchical language model consists of two components:

a binary tree over words and a probabilistic model of binary decisions for traversing the

tree. The distinguishing features of our model are the use of the log-bilinear language

model for computing the probabilities at each node and the ability to handle multiple

occurrences of each word in the tree. The idea of using multiple word occurrences in a

tree was proposed by Morin and Bengio (2005) but it was not implemented.

The first component of the hierarchical log-bilinear (HLBL) model is a binary tree

with words at its leaves. For now, we will assume that each word in the vocabulary is

at exactly one leaf. Then each word can be uniquely specified by a path from the root

of the tree to the word’s leaf node. The path itself can be encoded as a binary string d

of decisions made at the nodes on the path, with di = 1 corresponding to the decision

to visit the left child of the node being visited at time i. d1 corresponds to the decision

made at the root node. For example, the string “10” corresponds to a path that starts
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at the root, visits its left child, and then visits the right child of that child. This scheme

allows each word to be represented by a binary string which we will call a code.

The second component of the HLBL model is the probabilistic model for making

binary decisions at tree nodes, which in our case is a modified version of the LBL model.

In the HLBL model, just like in its non-hierarchical counterpart, context words are

represented using real-valued feature vectors. Each of the non-leaf nodes in the tree also

has a feature vector associated with it for discriminating the words in the left subtree

from the words in the right subtree of the node. Unlike the context words, the next

word (i.e. the word to be predicted) is represented using its binary code that encodes its

location in the word tree. Note that in spite of being discrete, this representation for the

next word is quite flexible, since each binary digit in the code encodes a decision made

at a node, which depends on that node’s feature vector. The feature vector of a node

specifies a hyperplane separating the feature vectors of words in its left subtree from

those in its right subtree.2

Given a context, the probability of the next word being w is the probability of making

the sequences of binary decisions specified by the word’s code. Since the probability of

making a decision at a node depends only on the predicted feature vector, determined

by the context, and the feature vector for that node, we can express the probability of

the next word as a product of probabilities of the binary decisions:

P (wn = w|w1:n−1) =
∏

i

P (di|qi, w1:n−1), (4.4)

where di is ith digit in the code for word w, and qi is the feature vector for the ith node

in the path corresponding to that code. The probability of each decision is given by

P (di = 1|qi, w1:n−1) = σ(r̂T qi + bi), (4.5)

where σ(x) is the logistic function and r̂ is the predicted feature vector computed using

2The representations referred to here are the predicted feature vectors produced by combining the
context word feature vectors.
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Eq. 4.1. bi in the equation is the node’s bias that captures the context-independent

tendency to visit the left child when leaving this node.

The definition of P (wn = w|w1:n−1) can be extended to multiple codes per word by

summing over all codes for w as follows:

P (wn = w|w1:n−1) =
∑

d∈D(w)

∏

i

P (di|qi, w1:n−1), (4.6)

where D(w) is a set of codes corresponding to word w. Using multiple codes per word

can allow better prediction of words that have multiple senses or multiple usage patterns.

Allowing multiple codes per word also makes it easy to combine several trees over words

into a single one to better capture the multifaceted nature of word similarity.

Using the LBL model instead of the NPLM for computing the local probabilities allows

us to avoid computing the nonlinearities in the hidden layer which makes our hierarchical

model faster at making predictions than the hierarchical NPLM. More importantly, the

hierarchical NPLM needs to compute the hidden activities once for each of the Θ(log N)

decisions, while the HLBL model computes the predicted feature vector just once per

prediction.

The quadratic time complexity (Θ(D2), where D is the feature vector dimensionality)

of computing the predicted feature vector in the HLBL model can make the use of high-

dimensional feature vectors too computationally expensive. We make the time complexity

linear in D by restricting the weight matrices Ci to be diagonal. Now the feature vector

for the next word can be computed as

r̂ =
n−1
∑

i=1

ci ◦ rwi
, (4.7)

where ci is the weight vector for context position i and ◦ denotes the elementwise product

of two vectors. Note that for a context of size 1, restricting the context weight matrices to

be diagonal does not reduce the representational power of the model because the context

weight matrix C1 can be absorbed into the word feature vector matrix R. And while

this restriction does make models with larger contexts slightly less powerful, we believe
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that this loss is more than compensated for by faster training times which allow using

higher-dimensional feature vectors or more complex trees.

We train HLBL models by maximizing the penalized log-likelihood, with all model

parameters regularized using an L2 penalty. Since the probability of the next word

depends only on the context weights, the feature vectors of the context words, and the

feature vectors of the nodes on the paths from the root to the leaves containing the

word in question, only a (logarithmically) small fraction of model parameters need to be

updated for each training case.

4.4 Constructing trees over words

Before we can train a hierarchical language model, we need to construct a binary tree

over words for it to use. This can be done by using data-driven methods, human exper-

tise, or a combination of the two. For example, in (Morin and Bengio, 2005) the tree

was constructed from the IS-A taxonomy DAG from WordNet (Fellbaum, 1998). After

preprocessing the taxonomy by hand to ensure that each node had only one parent, data-

driven hierarchical binary clustering was performed on the children of the nodes that had

more than two children, resulting in a binary tree.

We are interested in using a pure learning approach applicable in situations where

the expert knowledge is unavailable or inadequate. It should be noted that even when it

is available, relying on human expertise exclusively does not necessarily lead to superior

performance. Hierarchical binary clustering of words based on the their usage statistics is

a natural choice for generating binary trees over words automatically. This task is similar

to the task of clustering words into classes for training class-based n-gram models, for

which a large number of algorithms have been proposed. We considered several of these

algorithms before deciding to use our own algorithm which turned out to be surprisingly

effective in spite of its simplicity. However, we will mention two existing algorithms that
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might be suitable for producing binary word hierarchies. Since we wanted an algorithm

that scaled well to large vocabularies, we restricted our attention to the top-down hi-

erarchical clustering algorithms, as they tend to have lower time complexity than their

agglomerative counterparts (Goodman, 2000). The algorithm in (McMahon and Smith,

1996) produces exactly the kind of binary trees we need, except that its time complexity

is cubic in the vocabulary size.3 We also considered the distributional clustering algo-

rithm (Pereira et al., 1993) but decided not to use it because of the difficulties involved

in using contexts of more than one word for clustering. This problem is shared by most

n-gram clustering algorithms, so we will describe it in some detail. Since we would like

to cluster words for easy prediction of the next word based on its context, it is natural

to describe each word in terms of the distribution of contexts that can precede it. The

difficulty with this approach becomes apparent when we consider using larger contexts:

the number of possible contexts is exponential in the context size. This is the very same

data sparsity problem that affects the n-gram models, which is not surprising, since we

are trying to describe words in terms of exponentially large (normalized) context count

vectors. Thus, clustering words based on such large-context representations becomes

non-trivial due to the computational cost involved as well as the statistical difficulties

caused by the sparsity of the data.

We avoid these difficulties by operating on low-dimensional real-valued word repre-

sentations in our tree-building procedure. Since we need to train a model to obtain word

feature vectors, we perform the following bootstrapping procedure: we generate a random

binary tree over words, train an HLBL model based on it, and then use the distributed

representations it learns to compute the word representations used to construct the word

tree. Though we could iterate the bootstrapping procedure and use the feature vectors

learned by the model based on the constructed word tree to build another tree, we found

3More precisely, the time complexity of the algorithm is cubic in the number of the frequent words,
but that is still too slow for our purposes.
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that doing this resulted in only a slight improvement in model accuracy. As a result, in

this thesis we perform the bootstrapping procedure only once.

Since each word is represented by a distribution over contexts it appears in, we need a

way of compressing such a collection of contexts down to a low-dimensional vector. After

training the HLBL model, we represent each context w1:n−1 with the predicted feature

vector produced from it using Eq. 4.1. Then, we map the distribution of contexts that

precede a given word to a feature vector by computing the expectation of the predicted

representation w.r.t. that distribution. Thus, for the purposes of clustering each word is

represented by its average predicted feature vector.

Ideally, we would have preferred to cluster the next word feature vectors directly

instead of clustering the average predicted feature vectors. However, since, unlike LBL,

HLBL does not learn feature vectors for the next word, we have to derive a surrogate

representation from the parameters the model does have, such as the context word feature

vectors. Though it is possible to cluster the context word feature vectors learned by the

model directly instead of using the average predicted feature vectors, we found that this

approach does not work nearly as well. This is not very surprising because the context

word representations capture the effect of the given context word on the next word (i.e.

the word being predicted). It does not capture the information about the distribution

of the contexts that can precede the given word, which is what we would like to cluster

words based on. In other words, context word feature vectors are a poor replacement for

next word feature vectors for building trees over words for HLBL.

After computing the low-dimensional real-valued feature vectors for words, we cluster

them using a very simple recursive algorithm. At each step, we fit a mixture of two

Gaussians to the feature vectors and then partition them into two subsets based on the

responsibilities of the two mixture components for them. We then partition each of the

subsets using the same procedure, and so on. The recursion stops when the current set
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contains a single word. We fit the mixtures by running the EM algorithm for 10 steps4,

updating both the means and the spherical covariances of the mixture components. Since

the means of the components are initialized based on a random partitioning of the feature

vectors, the algorithm is not deterministic and will produce slightly different clusterings

on different runs. One appealing property of our hierarchical clustering algorithm is that

each stage takes linear time in the vocabulary size, which is a consequence of representing

words using feature vectors of fixed dimensionality. This property makes the algorithm

suitable for handling very large vocabularies. In our experiments, the algorithm took

only a few minutes to construct a tree for a vocabulary of nearly 18000 words based on

100-dimensional feature vectors.

In the implementation of the mixture fitting algorithm we used for all our experiments,

mixture components do not share their covariance matrices. This can potentially lead to

clusters in feature space that are optimally separated by quadratic decision boundaries

that might be impossible to approximate accurately for the linear classifiers used at

the tree nodes (see Eq. 4.5). Constraining the mixture components to use the same

covariance matrix would eliminate this problem by ensuring that the optimal decision

boundary between the classes is linear. However, enforcing this constraint explicitly did

not seem to have any effect on the accuracy of the resulting models.

In order for hierarchical language models to generalize well and be fast to train and

make predictions with, the trees over words used by the models should be well supported

by the data and be reasonably balanced. To explore the trade-off between these two

requirements, we explored several splitting rules in our tree-building algorithm. The

rules are based on the observation that the responsibility of a mixture component for a

datapoint can be used as a measure of confidence about the assignment of the datapoint

to the component. Thus, when the responsibilities of both components for a datapoint

4Running EM for more than 10 steps did not result in a significant improvement in the quality of the
resulting trees.
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are close to 0.5, we cannot be sure that the datapoint should be in one component but

not in the other.

Our simplest rule aims to produce a balanced tree at any cost. It sorts the respon-

sibilities and splits the set of words into two disjoint subsets of equal size based on the

sorted order. The second rule makes splits that are well-supported by the data even if

that results in an unbalanced tree. It achieves that by assigning the word to the compo-

nent with the higher responsibility for the word. The third and the most sophisticated

rule is an extension of the second rule, modified to assign a point to both components

whenever both responsibilities are within ǫ of 0.5, for some prespecified ǫ. This rule is

designed to produce multiple codes for words that are difficult to cluster. We will refer

to the algorithms that use these rules as BALANCED, ADAPTIVE, and ADAPTIVE(ǫ)

respectively. Finally, as a baseline for comparison with the above algorithms, we will use

an algorithm that generates random balanced trees. It starts with a random permuta-

tion of the words and recursively constructs the left subtree based on the first half of the

words and the right subtree based on the second half of the words. We will refer to this

algorithm as RANDOM.

4.5 Relationship to other models

As we have already seen in Sec. 4.3, the HLBL model is closely related to the hierarchical

NPLM. However, there is another hierarchical neural language model that is related to

both the hierarchical NPLM and the HLBL model. This model, introduced in (Blitzer

et al., 2005b), is based on the hierarchical mixture of experts (HME) architecture (Jordan

and Jacobs, 1994), and we will refer to it as the HMELM. As with most neural language

models, context words in this model are represented using real-valued feature vectors.

The distributed representation of the context is fed into a HME that is structured as a

perfect binary tree. The leaf nodes of the tree store multinomial distributions over all
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words in the vocabulary, while the internal nodes are logistic regression models used to

weight the contributions of the leaf experts. Since the distributions over words stored by

the leaf nodes are context independent, both learning and making predictions in HMELM

does not require the slow per-context normalization operation.

HMELM takes the idea of using multiple codes / leaves per word to the extreme.

While HLBL models typically have a small number of codes per word, in HMELMs each

word has as many codes as there are leaves in the HME tree. More importantly, since in

HMELMs every word occurs at every leaf, all words share all these codes, so computing

the probability of the given next word requires summing over all codes / leaves in the

tree. This lack of structure in the next-word space makes it easy for HMELMs to overfit

when large trees are used, a behaviour that was observed in (Blitzer et al., 2005b).

In terms of the number of codes per word, the hierarchical NPLM, with one code

per word, and the HMELM, with many codes per word, define the two extremes of a

spectrum, with the HLBL model located somewhere in between. The exact location of

the HLBL model depends on the architecture of the tree over words that it is based on.

4.6 Experimental results

We evaluated our models on the 16 million word APNews dataset described in Sec. 3.4.

The dataset consists of a 14 million word training set, a 1 million word validation set,

and a 1 million word test set. The vocabulary size for this dataset is 17964.

Except where stated otherwise, the HLBL models used in the experiments had diago-

nal context weight matrices, 100-dimensional feature vectors and a context of size 5. All

models were compared based on their perplexity score on the test set.
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Table 4.1: Test set perplexity results for the HLBL models based on the trees generated

using the RANDOM algorithm. LBL is the non-hierarchical log-bilinear model. The

(H)LBL models have a context of size 5. KNn is an interpolated modified Kneser-Ney

n-gram model. The perplexity value reported for each HLBL model is an average over

four models based on different random trees.

Model type Tree generating algorithm Perplexity

HLBL RANDOM 151.0

HLBL RANDOM ×2 140.3

HLBL RANDOM ×4 132.8

Int. KN2 174.2

Int. KN3 125.6

Int. KN6 119.2

LBL 117.0

4.6.1 Model training procedure

All of our neural models have been trained by maximizing the log-likelihood using stochas-

tic gradient ascent. All model parameters other than the biases were initialized by sam-

pling from a Gaussian of small variance. The biases for the tree nodes were initialized

so that the distribution produced by the model with all the non-bias parameters set to

zero matched the base rates of the words in the training set.

Models were trained using a learning rate of 10−3 until the perplexity on the validation

set started to increase. Then the learning rate was reduced to 3× 10−5 and training was

resumed until the validation perplexity started increasing again. All model parameters

were regularized using a small L2 penalty.
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4.6.2 Models based on random trees

In our first set of experiments, we evaluated the HLBL models that used random trees.

In addition to random trees with one leaf per word, we also used 2× and 4× overcom-

plete trees that had two leaves per word and four leaves per word respectively. The

2× overcomplete trees were generated by running the RANDOM algorithm twice and

combining the resulting trees by making them subtrees of a new root node. The 4×

overcomplete trees were generated in an analogous manner. We generated four trees of

each type (1×, 2×, and 4×) to find out whether different runs of the algorithm produce

trees of significantly different quality. The test set perplexity results for these models are

shown in Table 4.1. Since we trained four models per tree type, the perplexity values

reported in the table are averages over the four models. There was little variability in

the performance of models based on the same tree type, with the difference between the

best and the worst model being under 1.7 perplexity points in all cases. Perplexity scores

for interpolated modified Kneser-Ney n-grams are also reported in the table.

The results show that while HLBL models based on random trees perform reasonably

well, they are not really competitive with Kneser-Ney n-gram models. Though the HLBL

models use a context of size 5, they outperform only the Kneser-Ney bigram model.

Using overcomplete trees clearly improves model performance, with the models based

on 4× overcomplete tree being much closer to trigrams than bigrams in performance.

However, none of the random-tree based models are competitive with the Kneser-Ney

6-gram or the LBL model. Thus, it is worthwhile to consider tree building algorithms

more sophisticated than the RANDOM algorithm.

4.6.3 Models based on non-random trees

Next we explored the effect of the quality of the tree and the capacity of the binary

decision model used on model performance. Since any distribution over leaf nodes in a
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Table 4.2: The effect of the feature dimensionality and the word tree used on the test set

perplexity of the model.

Feature Perplexity using Perplexity using Reduction

dimensionality a random tree a non-random tree in perplexity

25 191.6 162.4 29.2

50 166.4 141.7 24.7

75 156.4 134.8 21.6

100 151.2 131.3 19.9

tree can be obtained by setting the tree edge probabilities appropriately5, for an infinitely

powerful decision model trained on an infinitely large dataset the structure of the tree

used does not matter. In practice, of course, both the model capacity and the training

set size will be finite, so the quality of the tree is likely to be important.

To investigate the effect of tree quality on model performance, we compared the

performance of models based on a random tree to that of models based on a more carefully

constructed tree. The non-random tree was generated by running the BALANCED

algorithm on the feature vectors obtained by training a random-tree based model with

100-dimensional feature vectors. For each of these trees, we then trained models of various

feature vector dimensionality to see whether a more expressive probabilistic model can

compensate for using a tree of lower quality. The test scores for the resulting models are

given in Table 4.2. As can be seen from the scores, using a tree constructed based on

learned feature vectors results in much better model performance than using a random

tree. Though the performance gap can be reduced by increasing the dimensionality

of feature vectors, using a feature-based tree drastically improves performance even for

5Supposed we are given a distribution over leaves in a tree. Let S(n) be the sum of the probabilities
of the leaves that are descendants of node n. Then for every node n, set the probability of choosing the

left child to S(left child of n)
S(n) .
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the model with 100-dimensional feature vectors. In fact, when 100-dimensional feature

vectors are used, the model that uses a feature-based tree performs as well as a model

based on a 4× overcomplete random tree. These results clearly show that the quality

of the tree matters even when fairly powerful binary decision models are used. Since

increasing the feature dimensionality beyond 100 did not result in a substantial reduction

in perplexity, we used models with 100-dimensional feature vectors in all of the remaining

experiments.

Next we compared the predictive performance of models that used trees generated

by our more sophisticated tree-building algorithms, ADAPTIVE and ADAPTIVE(ǫ),

to that of models based on trees generated by the simpler algorithms, RANDOM and

BALANCED. To do that, we used the RANDOM, BALANCED, and ADAPTIVE algo-

rithms to generate one tree each. The ADAPTIVE(ǫ) algorithm was used to generate

two trees: one with ǫ set to 0.25 and the other with ǫ set to 0.4. Note that trees gener-

ated using ADAPTIVE(ǫ) using ǫ > 0 result in models with more parameters due to the

greater number of non-leaf nodes (and thus node feature vectors), as compared to trees

generated using methods producing one leaf / code per word. We then generated a 2×

overcomplete tree by running the ADAPTIVE(0.4) algorithm twice and creating a tree

with a root node that had the two generated trees as its subtrees. Finally, we generated a

4× overcomplete tree using the same approach. Models based on overcomplete trees are

more powerful than their non-overcomplete counterparts because they have more codes

per word (and more parameters) to work with. However, it not clear that this extra

capacity will necessarily translate to better test set performance.

Table 4.3 lists the generated trees along with some of their characteristics. Table 4.4

shows the test set scores for the resulting models along with the scores for the LBL

model from Sec. 3.4.2 and the interpolated modified Kneser-Ney n-gram models. The

results show that the performance of the HLBL models based on non-random trees is

comparable to that of the Kneser-Ney trigram model. As expected, constructing word
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Table 4.3: Trees over words used in the experiments. The mean code length is the sum

of the lengths of the codes associated with a word, averaged over the word distribution in

the training set. The run-time complexity of the hierarchical model is linear in the mean

code length of the tree used. The mean number of codes per word refers to the number

of codes per word averaged over the training data distribution. Since each non-leaf node

in a tree has its own feature vector, the number of free parameters associated with the

tree is linear in this quantity.

Tree Generating Mean code Mean number of Number of

label algorithm length codes per word non-leaf nodes

T1 RANDOM 14.2 1.0 17963

T2 BALANCED 14.3 1.0 17963

T3 ADAPTIVE 16.1 1.0 17963

T4 ADAPTIVE(0.25) 24.2 1.3 22995

T5 ADAPTIVE(0.4) 29.0 1.7 30296

T6 ADAPTIVE(0.4) × 2 69.1 3.4 61014

T7 ADAPTIVE(0.4) × 4 143.2 6.8 121980

trees adaptively improves model performance. The general trend that emerges is that

models based on larger trees tend to perform better. For example, a model based on

a single tree produced using the ADAPTIVE(0.4) algorithm, performs better than the

Kneser-Ney bigram model but not as well as the trigram model or the non-hierarchical

LBL model. However, using a 2× overcomplete tree generated using the same algorithm

results in a model that outperforms both the n-gram models and the LBL model, and

using a 4× overcomplete tree leads to a further reduction in perplexity.

For each of the neural models in Table 4.4 we also report the test set perplexity for

two mixtures of that model with the Kneser-Ney 6-gram. In the first mixture, the neural
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Table 4.4: Test set perplexity results for the hierarchical LBL models. All (H)LBL models

used 100-dimensional feature vectors and a context of size 5. LBL is the non-hierarchical

log-bilinear model. KNn is an interpolated modified Kneser-Ney n-gram model. Mixture

perplexity is the perplexity obtained by mixing the model’s predictions with those of

the Kneser-Ney 6-gram model using equal mixing proportions. The fitted mixture is

obtained by mixing the two sets of predictions using the mixing proportion fitted on the

validation set. The fitted mixing proportion column reports the mixing proportion for

the neural model.

Fitted Fitted

Model Tree Tree generating Perplex. Mixture mixture mixing

type used algorithm perplex. perplex. proportion

HLBL T1 RANDOM 151.2 107.2 106.0 0.34

HLBL T2 BALANCED 131.3 99.9 99.7 0.43

HLBL T3 ADAPTIVE 127.0 98.3 98.2 0.45

HLBL T4 ADAPTIVE(0.25) 124.4 97.5 97.4 0.47

HLBL T5 ADAPTIVE(0.4) 123.3 97.2 97.1 0.47

HLBL T6 ADAPTIVE(0.4) × 2 115.7 95.3 95.3 0.52

HLBL T7 ADAPTIVE(0.4) × 4 112.1 94.4 94.3 0.54

LBL 117.0 94.0 94.0 0.50

Int. KN2 174.2

Int. KN3 125.6

Int. KN6 119.2

model and the 6-gram model are combined using equal mixing proportions (0.5). In the

second mixture, the mixing proportion is chosen to optimize the validation set perplexity

of the mixture as described in Sec. 3.4.2. In all cases, a mixture of a neural model
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and the 6-gram considerably outperforms the models being mixed. This suggests that

the predictions of neural models differ significantly from the predictions of the 6-gram

model. Though the HLBL model based on the ADAPTIVE(0.4) × 4 tree is the best-

performing individual model in the table, its mixture with the 6-gram model is slightly

outperformed by the mixture of the non-hierarchical LBL model with the 6-gram. The

results also indicate that optimizing the mixing proportion on the validation set does not

significantly improve the test test perplexity of the mixture. The fact that almost all

of the optimized values of the mixing proportions are close to our default value of 0.5,

suggests that the perplexity of the mixture is not very sensitive to the exact setting of the

mixing proportion in that region. The general trend is that when the mixing proportions

for a mixture of two models are fitted, the model with the lower perplexity gets the larger

mixing proportion.

The time-per-epoch statistics reported for the neural models in Table 4.5 shows the

great speed advantage of the HLBL models over the LBL model. Indeed, the slowest of

our HLBL models is over 200 times faster than the LBL model.

4.6.4 The effect of diversity in overcomplete trees

As we have just seen, using overcomplete trees results in better model performance.

In our previous experiments, we generated the overcomplete trees by combining several

independently-generated non-overcomplete trees. Since all of our tree-building algorithms

are stochastic to some degree, this approach constructed overcomplete trees from non-

identical subtrees. To determine whether the use of non-identical subtrees is important,

we evaluated five models based on 4× overcomplete trees, with only one of the trees con-

structed from non-identical subtrees. That is, we generated four different subtrees S1, S2,

S3, and S4 using the same algorithm and constructed five different 4× overcomplete trees

by combining these subtrees in different ways. The first four trees were obtained by com-

bining four replicas of the same subtree Si. The fifth tree was obtained by combining all
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Table 4.5: Training time per epoch for the hierarchical LBL models. All of the models

used 100-dimensional feature vectors and a context of size 5. LBL is the non-hierarchical

log-bilinear model.

Model Tree Tree generating Minutes

type used algorithm per epoch

HLBL T1 RANDOM 4

HLBL T2 BALANCED 4

HLBL T3 ADAPTIVE 4

HLBL T4 ADAPTIVE(0.25) 6

HLBL T5 ADAPTIVE(0.4) 7

HLBL T6 ADAPTIVE(0.4) × 2 16

HLBL T7 ADAPTIVE(0.4) × 4 32

LBL 6420

four subtrees. We performed this procedure using the ADAPTIVE(0.4), RANDOM, and

NOISY-ADAPTIVE(0.4) tree-building algorithms. NOISY-ADAPTIVE(ǫ) is a modifi-

cation of the ADAPTIVE(ǫ) algorithm designed to produce more variable trees. When

the responsibility p of a component for a word is more than ǫ away from 0.5, NOISY-

ADAPTIVE(ǫ) assigns the word to that component with probability p and to the other

component with probability 1−p. The test set scores of the resulting models are shown in

Table 4.6. For all three tree-building algorithms, the five models perform very similarly,

which implies that the boost in model performance we have seen when using overcom-

plete trees is not due to the diversity of the subtrees being combined into a single tree.

Instead, it appears to be a consequence of using a larger tree with each word occurring

in multiple leaves and the significant increase in the number of tree node feature vectors

that accompanies it.
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Table 4.6: The effect of diversity in overcomplete trees. Four non-overcomplete subtrees

(S1-S4) were generated using the same algorithm. Then five models were trained using

five different 4× overcomplete trees. The first four trees were obtained by combining

four replicas of the same subtree Si. The fifth tree was obtained by combining the four

subtrees S1-S4. The procedure was performed using the ADAPTIVE(0.4), RANDOM,

and NOISY-ADAPTIVE(0.4) tree-building algorithms.

Tree ADAPTIVE(0.4) RANDOM NOISY-ADAPTIVE(0.4)

composition perplexity perplexity perplexity

S1 ×4 112.6 134.0 111.8

S2 ×4 112.2 136.0 112.7

S3 ×4 112.3 134.9 113.1

S4 ×4 112.7 134.6 112.1

S1+S2+S3+S4 112.1 133.9 111.3

4.6.5 The effect of the context size

One important advantage of neural language models over n-gram models is their ability

to use large contexts. As we have shown in Sec. 3.4.2, increasing the context size of an

LBL language model from 5 to 10 significantly reduces the model’s perplexity on the

APNews dataset. To determine whether HLBL models behave in a similar manner, we

trained six HLBL models based on the ADAPTIVE(0.4) × 4 overcomplete tree using

context sizes from 1 to 20. The perplexity scores for those models along with the scores

for interpolated modified Kneser-Ney n-gram models are shown in Table 4.7.

The scores indicate that the perplexity of HLBL models improves monotonically in

context size (at least until the context becomes over twenty words long). In contrast,

the best n-gram model perplexity is achieved by the 5-gram model and increasing the

context size beyond that value increases perplexity slightly.
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Table 4.7: Test set perplexity as a function of the context size. The HLBL models used

a 4 × overcomplete tree generated using the ADAPTIVE(0.4) algorithm. KNn is an

interpolated modified Kneser-Ney n-gram model.

Model type Context size Perplexity Mixture Fitted

perplex. mixture

perplex.

HLBL 1 170.5 115.9 112.8

HLBL 2 128.7 103.6 103.4

HLBL 3 119.4 98.7 98.7

HLBL 5 112.1 94.4 94.3

HLBL 10 104.3 89.6 89.2

HLBL 20 99.1 86.3 85.6

Int. KN2 1 174.2

Int. KN3 2 125.6

Int. KN6 5 119.2

Int. KN8 7 120.2

An additional benefit of neural language models such as HLBL is that using larger

contexts does not significantly increase the time or space complexity of using such models,

because computing the predicted vector from the context is only a small fraction of the

computation. Thus, the advantages of using larger contexts in such models essentially

come for free.

4.6.6 Bias-variance analysis

To study the effect of the choice of the training set on the resulting model, we performed

a bias-variance analysis of the HLBL model based on the ADAPTIVE(0.4) × 4 tree and
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the interpolated Kneser-Ney 6-gram model.

In order to estimate bias and variance of a model, we need to compute expectations

w.r.t. the distribution of training sets. Since we do not know this distribution, we approx-

imate it by a collection of datasets derived from the original training set. We generated

eight new training sets by subdividing the original training set into eight parts and leav-

ing out one part at a time. On each of the new training sets, we then trained one model

of each type. Bias and variance values were then estimated based on the predictions

made by the resulting models on the test set. We used the same test set for this analysis

as for all other experiments in this chapter.

Unfortunately, there is no standard bias-variance decomposition for the multinomial

log-likelihood objective function. Here we will derive a simple decomposition which we

believe is sufficient for our purposes. Let Pi = Pi(wn|w1:n−1) be the probability of the next

word under the model trained on the ith training set. Let N be the number of training

sets used. Then the expected negative log-probability of the next word, averaged over

the distribution of training sets, is

E[− log Pi] = −
1

N
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log Pi
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Since the arithmetic mean is always greater than or equal to the geometric mean, the

second term in Eq. 4.8 in always non-negative. That term is also equal to zero if and only

if all Pi’s are equal. Based on these properties, we will associate this term with variance.

The term − log 1
N

∑N

i=1 Pi will be associated with bias.
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Table 4.8: Bias and variance estimates for an HLBL model based on the

ADAPTIVE(0.4)×4 tree and the interpolated Kneser-Ney 6-gram model.

Model Bias Variance

HLBL 4.629 0.111

Int. KN6 4.771 0.042

Based on this decomposition, we compute the estimates of bias and variance as follows:

Bias = −
1

K

∑

w1:n

log
1

N

N
∑

i=1

Pi(wn|w1:n−1), (4.9)

V ariance =
1

K

∑

w1:n

log
1
N

∑N

i=1 Pi(wn|w1:n−1)
∏N

i=1 Pi(wn|w1:n−1)
1

N

, (4.10)

where summation over w1:n denotes summing over all n-tuples in the test set and K is the

number of such n-tuples. Note that under this definition, bias is equal to the logarithm

of perplexity for the model that mixes the N predictors using equal mixing proportions.

The obtained bias and variance estimates shown in Table 4.8, indicate that the HLBL

model has slightly lower bias and much higher variance than the Kneser-Ney 6-gram.

This is somewhat surprising since the 6-gram model has many more parameters than the

HLBL model, which might suggest that it has lower bias and higher variance. It appears

that Kneser-Ney smoothing is very effective at regularizing the 6-gram model, greatly

reducing its variance at the cost of increasing its bias.

Table 4.9 shows the perplexity scores for the eight models of each type trained on the

subsets of the training set. The perplexity scores obtained by averaging the predictions

from the eight models is also reported. Averaging predictions from models trained on the

different subsets of the training set is much more effective at reducing perplexity for the

HLBL model than for the 6-gram model. This provides further evidence that the HLBL

model has higher variance than the 6-gram model.
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Table 4.9: Test set perplexity for an HLBL model based on the ADAPTIVE(0.4)×4 tree

and the interpolated Kneser-Ney 6-gram model trained on subsets of the training set.

The “combined” perplexity score was obtained using the average prediction for the eight

models.

Training HLBL test 6-gram test

subset perplexity perplexity

1 115.1 124.7

2 114.6 123.5

3 114.1 122.8

4 113.9 122.7

5 114.0 122.8

6 114.1 123.2

7 114.2 122.5

8 114.7 122.3

Combined 102.4 118.0

4.6.7 Word-frequency based performance analysis

In this section we compare the predictive performance of an HLBL model to that of an

LBL model, as a function of the frequency of the context words and the next word. Our

goal is to see whether we give anything up (as far as predictive accuracy is concerned)

when we replace the flat vocabulary of LBL models with a tree over words.

First, we compare the HLBL model based on the ADAPTIVE(0.4) × 4 tree, which

is the best-performing model from Table 4.4, to the LBL model listed in the same table.

Both of these models have contexts of size 5 and 100-dimensional feature vectors.

As in Sec. 3.4.2, we partition the context / next word pairs into ten bins based on the

frequency of the next word so that each bin accounts for roughly 10% of the pairs in the
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Table 4.10: Test set perplexity as a function of the frequency of the next word. The

HLBL model is the ADAPTIVE(0.4) × 4 model from Table 4.4. The LBL model is the

model with the context of size 5 from Table 3.2.

Bin Bin size Test set HLBL LBL Perplexity

number (words) coverage (%) perplexity perplexity ratio (PR) log(PR)

1 14199 10.1 14353.4 11599.0 1.24 0.21

2 2428 10.0 2612.4 2489.1 1.05 0.05

3 870 10.1 917.8 937.2 0.98 -0.02

4 340 9.8 371.8 394.7 0.94 -0.06

5 92 9.7 115.3 125.2 0.92 -0.08

6 22 10.3 27.0 30.2 0.89 -0.11

7 6 9.6 14.9 16.3 0.92 -0.08

8 4 12.4 9.8 10.6 0.92 -0.08

9 2 9.7 6.7 7.5 0.89 -0.11

10 1 8.2 7.7 8.8 0.88 -0.13

test set. We then compute the perplexity for the pairs in each bin under both models.

We also compute the ratio of the perplexity under the HLBL model to the perplexity

under the LBL model as well as the (natural) logarithm of that ratio (which we will call

log(PR)). The results shown in Table 4.10 indicate that the HLBL model outperforms

the LBL model on eight of the ten bins – the ones that contain the more frequent words.

It appears that the hierarchical model is at its weakest when predicting the very rare

words.

To gain more insight into this phenomenon, we compared the above HLBL model

(HLBL1) to the RANDOM × 4 HLBL model (HLBL2) from Table 4.1. Table 4.11 shows

the result of this comparison. Though HLBL1 achieves lower perplexity than HLBL2

for each frequency bin, the gap in performance (as indicated by the perplexity ratio),
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Table 4.11: Test set perplexity as a function of the frequency of the next word. HLBL1

is the ADAPTIVE(0.4) × 4 HLBL model from Table 4.4. HLBL2 is the RANDOM × 4

HLBL model from Table 4.1.

Bin Bin size Test set HLBL1 HLBL2 Perplexity

number (words) coverage (%) perplexity perplexity ratio (PR) log(PR)

1 14199 10.1 14353.4 23327.1 0.62 -0.49

2 2428 10.0 2612.4 3671.1 0.71 -0.34

3 870 10.1 917.8 1199.0 0.77 -0.27

4 340 9.8 371.8 450.3 0.83 -0.19

5 92 9.7 115.3 132.1 0.87 -0.14

6 22 10.3 27.0 29.3 0.92 -0.08

7 6 9.6 14.9 16.0 0.93 -0.07

8 4 12.4 9.8 10.3 0.95 -0.06

9 2 9.7 6.7 7.0 0.96 -0.04

10 1 8.2 7.7 7.8 0.99 -0.01

largest when predicting the least frequent words, becomes smaller as the frequency of

the word being predicted increases. This trend suggests that the structure of the tree is

much more important for predicting rare words. This is not surprising, since for frequent

words there is much more training data available to learn the feature vectors of the nodes

on the paths to those words. In contrast, there is very little training data available for

each rare word, which makes sharing of statistical strength between neighbouring words

in a tree much more important. And, of course, such sharing can only be beneficial

if the neighbouring words occur in similar contexts or, in other words, the tree is well

constructed. This suggests that in order for HLBL models to compete with LBL models

when predicting rare words, better algorithms for tree construction need to be found.

We also analyzed model performance as a function of the frequency of the last context
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Table 4.12: Test set perplexity as a function of the frequency of the last context word.

The HLBL model is the ADAPTIVE(0.4) × 4 model from Table 4.4. The LBL model is

the model with the context of size 5 from Table 3.2.

Bin Bin size Test set HLBL LBL Perplexity

number (words) coverage (%) perplexity perplexity ratio (PR) log(PR)

1 14199 10.1 68.4 65.5 1.04 0.04

2 2428 10.0 66.9 67.2 1.00 -0.00

3 870 10.1 60.5 62.9 0.96 -0.04

4 340 9.8 68.4 72.1 0.95 -0.05

5 92 9.7 112.3 118.3 0.95 -0.05

6 22 10.3 139.6 148.4 0.94 -0.06

7 6 9.6 127.4 136.1 0.94 -0.07

8 4 12.4 123.5 134.3 0.92 -0.08

9 2 9.7 299.9 315.7 0.95 -0.05

10 1 8.2 261.4 272.5 0.96 -0.04

word. As the perplexity scores in Table 4.12 show, the HLBL model achieves lower

perplexity than the LBL model on all but one of the frequency bins. The superior

performance of the LBL model on the bin containing the least frequent words might be

a consequence of the use of the same set of feature vectors for both the context words

and the next word. This parameter sharing scheme allows the feature vectors for rare

words to be estimated more accurately. The HLBL model, on the other hand, does not

use parameter sharing of this type because it uses real-valued feature vectors to represent

the context words but not the next word. Thus context word feature vectors might be

estimated less accurately in the HLBL model.
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Figure 4.1: A fragment of a t-SNE embedding of the feature vectors (learned by an HLBL

model) of the most frequent 1000 words.

4.6.8 Visualization of word feature vectors

Unlike LBL models which use the same set of feature vectors to represent the context

words and the next word, only the context words are represented with feature vectors

by HLBL models. The next word is represented using binary codes (that encode word

location in the tree) along with the collection of feature vectors for the tree nodes. Since

this representation of the next word does not naturally lend itself to embedding in a

Euclidean space, we are going to visualize only the feature vectors for the context words.

To evaluate the quality of the learned word feature vectors, we computed two 2D
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Figure 4.2: A fragment of a t-SNE embedding of the feature vectors (learned by an HLBL

model) of the least frequent 1000 words.

embeddings: one of the 1000 most frequent words and one of the 1000 least frequent

words. The feature vectors used were learned by the ADAPTIVE(0.4) × 4 HLBL model

from Table 4.4. As can be seen from Figure 4.1, the embedding of the most frequent

words is highly structured on both short-range and mid-range scales. It does not differ

noticeably in quality from the corresponding embedding based on the feature vectors from

an LBL model (Figure 3.3). However, the embedding of the least frequent 1000 words,

shown in part on Figure 4.2, exhibits very little coherent structure, though sensible

clusters of three or four words can still be found. This embedding is noticeably inferior

to the embedding of the rare word feature vectors from the LBL model (Figure 3.4).
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This provides evidence for our theory from the previous section that the feature vectors

for the rare context words are estimated less accurately in HLBL models than in their

non-hierarchical counterparts.

4.7 Discussion

Beygelzimer et al. (2009) have recently proposed an algorithm for estimating the proba-

bility of a label in multiclass classification in time logarithmic in the number of classes.

Their approach can be seen as an application-agnostic online version of our approach to

constructing trees. Their algorithm does not have a separate tree building phase: when a

new label value is observed during training, it is inserted into the binary tree over labels

in a way that tries to keep the tree balanced and make the classification problems for the

binary classifiers at the internal tree nodes as easy as possible. It would be interesting

to see how HLBL models trained using this algorithm would perform.

Another way of using a hierarchy over classes has been proposed by Shahbaba and

Neal (2007). Here the hierarchy is used to introduce correlations between the weight

vectors for different classes in a multinomial regression model. The authors show that

their approach can produce more accurate models than the tree-based factorization ap-

proach (i.e. the one used by HLBL). We think that incorporating this kind of hierarchical

parameterization into HLBL models is worth investigating, since it might improve their

predictive performance through better regularization.
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Chapter 5

Restricted Boltzmann machines and

probabilistic matrix factorization for

collaborative filtering

5.1 Introduction to collaborative filtering

5.1.1 Recommender systems: the two approaches

The number of products such as books and DVDs available to consumers online, which

is already much larger than the number of such products available in brick-and-mortar

stores, keeps increasing every month. This growth makes choosing products worth one’s

attention increasingly difficult. Recommender systems attempt to make the product

selection process easier by filtering the list of products based on customer preferences.

There are two main approaches to recommender systems. The first approach, called

content-based filtering, recommends items based on their content or description (Ado-

mavicius and Tuzhilin, 2005). Thus items are represented by vectors of their intrinsic

attributes, which for a book could be its title, author, publisher, genre, and so on. The

drawback of this approach is that recommendation accuracy is heavily dependent on

83
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the comprehensiveness of item descriptions. In contrast, collaborative filtering (Marlin,

2004a) does not use any information about items other than the rating information. This

means that items are treated as abstract entities and are represented using arbitrary item

IDs. As a result, collaborative filtering systems cannot recommend items that have not

been rated. The content-based systems do not suffer from this drawback, called the cold-

start problem, because they take advantage of the intrinsic item attributes. On the other

hand, content-based systems treat items with similar attributes as similar, while collab-

orative filtering systems can learn to view any pair of items as similar (or dissimilar) as

necessary given a sufficient amount of training data.

In practice, because the strengths of the collaborative and context-based systems are

complementary, very few systems are purely collaborative or purely content-based. In this

thesis we will concentrate on (almost pure) collaborative filtering algorithms. This choice

was motivated by the recent release of a very large dataset of movie ratings, associated

with the Netflix Prize competition (Bennett and Lanning, 2007), which is about ten

times larger than the previous largest publicly available dataset. The size of this dataset

makes it feasible to consider more sophisticated collaborative filtering algorithms than

was possible before, while at the same time making algorithm scalability an important

design requirement.

5.1.2 Collaborative filtering

While the ultimate goal of recommender systems is recommending items to users, most

collaborative filtering systems do not approach this task directly. Typically such systems

implement the rating-based approach, where they first learn to predict ratings users assign

to items and then make recommendations based on the predicted ratings (Adomavicius

and Tuzhilin, 2005). The advantage of this approach is its simplicity, since it reduces the

complex problem of recommending (or ranking) items to regression, which is a simpler

and better-understood task.
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Collaborative filtering algorithms are usually classified into two broad classes: memory-

based algorithms and model-based algorithms (Breese et al., 1998). In machine learning

terms, these two classes roughly correspond to non-probabilistic non-parametric algo-

rithms and (semi-)parametric algorithms.

Memory-based algorithms

Memory-based algorithms predict the rating given to an item by a user by aggregating

the ratings given by the same user to other items (or the ratings given to the item by

other users). Such algorithms use a prespecified similarity metric to find some fixed

number of items rated by the user that are most similar to the item of interest. The

most popular similarity metrics for rating vectors are the Pearson correlation coefficient

and the cosine-based similarity metric (Adomavicius and Tuzhilin, 2005). The drawback

of memory-based algorithms is that they are almost entirely based on heuristics, which

means that they require extensive hand-tuning on new datasets. They also have higher

memory requirements than model-based algorithms because they need to have access to

the entire dataset in order to make predictions.

Model-based algorithms

Model-based algorithms predict ratings using a parametric or semi-parametric model

trained on the rating data. A large number of model types have been used in such algo-

rithms. Mixture models (Breese et al., 1998), belief networks (Breese et al., 1998), the

aspect model (Hofmann, 2001), the user rating profile model (Marlin, 2004b), and the

multiple multiplicative factor model (Marlin and Zemel, 2004) are some of the probabilis-

tic models employed. Low-rank matrix factorization (Srebro and Jaakkola, 2003; Srebro

et al., 2004; Rennie and Srebro, 2005) is the most popular non-probabilistic model-based

approach.

Collaborative filtering algorithms proposed in this thesis will follow the probabilistic
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model-based approach because it is based on a principled and flexible framework widely

used in machine learning and applied statistics. In the following sections we will refer to

items as movies because we will be presenting our models in the context of the Netflix

Prize dataset.

5.2 Restricted Boltzmann machines

A set of ratings assigned to movies by users can be arranged into a matrix with rows

corresponding to users and columns to movies. Most entries in this matrix will be missing

(or unobserved) because typically users rate only a small fraction of the available movies.

Collaborative filtering can be viewed as a matrix completion task, where the goal is to fill

in the missing entries of the rating matrix based on the observed entries. In this thesis

we will assume that ratings can take on integral values between 1 and K, with 1 being

the lowest rating and K the highest.

One popular model-based approach to collaborative filtering is to define a latent

variable model of users, where the variables encode user preferences (Canny, 2002; Marlin,

2004b; Marlin and Zemel, 2004). The appeal of this approach is that it provides fully

generative models of (fully observed) user rating vectors. Since users are represented by

vectors of latent variables, user profiles can be recomputed to take into account newly-

observed ratings without having to retrain the entire model. Similarly, such models can

handle new users without retraining by inferring the latent representation for them from

the new ratings. Unfortunately, exact inference in almost all such models is intractable,

so approximate inference methods, such as variational inference (Neal and Hinton, 1998;

Jordan et al., 1999), have to be used. As a result, even when approximate methods are

used, inference in such models is an iterative and fairly expensive process, which is not

ideal for large-scale real-world applications. Moreover, in cases when variational inference

is used there is the concern that its approximate nature might compromise the predictive
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performance of the model.

In contrast, exact inference in Restricted Boltzmann Machines (Sec. 1.3) is very effi-

cient due to the combination of the model’s bipartite structure and the use of undirected

interactions. In fact, inferring the latent representation for an observed datavector in an

RBM amounts to performing a multiplication of the input vector by a matrix followed by

evaluating the logistic function for every component of the resulting vector. We propose

a model for collaborative filtering based on the exponential-family Restricted Boltzmann

Machine architecture (Welling et al., 2005) and demonstrate its scalability by applying

it to the Netflix Prize dataset consisting of 100M movie ratings.

5.2.1 Model formulation

Ideally, ratings that take on ordered discrete values should be modelled using ordinal

random variables. However, since to the best of our knowledge, no exponential family

is ideal for modelling this type of random variables, we chose the simplest option which

was to model ratings with multinomial random variables. This is a popular choice in the

collaborative filtering literature used in mixture models (Breese et al., 1998), and various

directed graphical models (e.g. Marlin, 2004b). The drawback of this approach is that

while it captures the fact that rating values are discrete, it fails to capture the fact that

they are ordered. However, we do not believe that this is a serious flaw, because given

enough training data the model will be able to learn the correct ordering of rating values.

For notational convenience, we will represent ratings with binary vectors using one-

hot encoding. Let ei denote a vector of length K with component i set to 1 and all other

components set to 0. Then rating i given to movie m by user v will be represented by

rvm = ei. If movie m has not been rated by user v, rvm is a vector of zeros. We will

denote the matrix obtained by stacking these vectors by rv.

Now we will define an RBM model with multinomial visible units and binary hidden

units for modelling the joint distribution of ratings given to movies by a user. We start
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by specifying the joint energy function for the visible vector of observed ratings and the

hidden variable vector:

Ev(rv, hv;Rv) = −
∑

m∈Rv

rT
vm(Wmhv + bm) − bT

h hv. (5.1)

Here Rv is the set of movies rated by user v, Wm is the matrix of interaction weights

between the rating for movie m and the hidden variables. bh and bm are the vectors of

biases for the hidden units and for the rating values for movie m respectively. The joint

distribution for rv and hv is then given by the Boltzmann distribution induced by the

energy function:

Pv(rv, hv|Rv) =
exp(−Ev(rv, hv;Rv))

∑

r′v

∑

hv
exp(−Ev(r′v, hv;Rv))

, (5.2)

where the summation w.r.t. r′v in the denominator is performed only over ratings for

movies rated by the user.

The marginal distribution of user rating vectors is then obtained by marginalizing

out the hidden variables:

Pv(rv|Rv) =
∑

hv

Pv(rv, hv|Rv). (5.3)

To simplify our notation, we will not explicitly show conditioning on Rv from now on,

though it will always be implied.

Note that the energy function for a user rating vector does not depend on the entries

in rv that correspond to the movies not rated by user v. Similarly, normalization in

Eq. 5.2 is performed only over the ratings for the rated movies. This means that for the

given user, we model the distribution of ratings only for movies that have been rated

by the user. Thus we learn one RBM per user under the constraint that the interaction

weights {Wm} and unit biases ({bm}, bh) are shared among the RBMs. This parameter

sharing is essential for avoiding overfitting, since we have only one datapoint per RBM.

Now that we have explained the “family of RBMs” view of the model, from now on we

will talk about it as if it were a single RBM.
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The primary advantage of modelling ratings only for movies rated by the user is

efficiency. Inference for a single user takes Θ(NrNh) time, where Nr is the number of

movies rated by the user and Nh is the number of hidden units in the RBM. Modelling

the distribution of ratings for all movies for every user makes the time complexity of

inference linear in the number of movies in the dataset, which is typically orders of

magnitude larger than the number of movies rated by an average user. Thus, modelling

the distribution of the observed ratings only is essential for making the model scale to

larger datasets.

Learning

Since, as explained in Sec. 1.3, computing the log-likelihood gradient for RBMs is in-

tractable, we train our models using contrastive divergence learning. The CD update

rule for the weights is given by

∆Wm = ǫ
(

ED

[

rvmhT
v

]

− ET

[

rvmhT
v

])

, (5.4)

where ǫ is the learning rate, and ED[·] and ET [·] denote expectations with respect to the

posterior distribution Pv(h|rv) conditional on the observed ratings for the user and the

distribution of T -step reconstructions respectively. The corresponding rules for updating

the movie and hidden unit biases are similar:

∆bm = ǫ (ED [rvm] − ET [rvm]) , (5.5)

∆bh = ǫ (ED [hv] − ET [hv]) . (5.6)

Our models were trained by using the above updates in the online learning setting. That

is, we iterated through the users in the training set, updating model parameters based

on the ratings of the current user.

The expectations with respect to the distribution of T -step reconstructions were com-

puted by running the Gibbs sampler for T steps, starting at the data, and then averaging
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the quantity of interest over the resulting reconstructions. The conditional distributions

used by the Gibbs sampler are given by

Pv(rvm = ei|h) =
exp(eT

i (bm + Wmhv))
∑

j exp(eT
j (bm + Wmhv))

, (5.7)

Pv(hi = 1|rv) = σ

(

bhi +
∑

m∈Rv

rT
vmWmi

)

, (5.8)

where σ(x) is the logistic function and Wmi is the ith column of matrix Wm.

Since the distribution over the hidden unit states in an RBM is factorial, inference in

an RBM amounts to computing Pv(hi = 1|rv) for each hidden unit using Eq. 5.8.

Making predictions

The downside of modelling ratings for rated movies only is that, strictly speaking, we

cannot predict user ratings for movies that were not rated. We considered two approaches

to solving this problem. One approach would be to treat all movies we would like to

predict ratings for as rated with a missing rating.1 Then during learning we would

treat these ratings as proper latent variables and marginalize them out. Since exact

marginalization takes time exponential in the number of missing observations, we would

sample the values of the missing ratings to approximate the expectation of interest. The

drawback of this approach is that we need to know the movies of interest for each user

before training the model. Moreover, if the number of such movies is large, training time

might increase significantly.

We take an alternative approach, where we train the RBMs as if we were only inter-

ested in modelling the observed ratings. Then to predict ratings for movies the given user

RBM was not trained on, we expand the RBM to include the visible units corresponding

1This is a sensible approach for the Netflix dataset because we know that the ratings for movies we
would like to predict come from roughly the same distribution as the movies we train on. However,
this approach is unlikely to work well when the two distributions are different (see (Marlin and Zemel,
2007)).
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to the movies of interest.2

Before we derive the procedure for predicting ratings, we need to extend our notation.

Let rv\m be the rating matrix rv with all the entries in the row corresponding to rvm set

to zero (as if movie m were not rated by v). Then we can compute the distribution of

rating rvm as follows:

Pv(rvm = ei|rv\m) ∝
∑

h

Pv(rvm = ei, rv\m, h) =
∑

h

exp(−Ev(rvm = ei, rv\m, h))

∝ exp(eT
i bm)

Nh
∏

j=1

1
∑

hj=0

exp





∑

l∈Rv\m

rT
vlWlhvj + eT

i Wmjhvj + bhjhvj





= exp(bmi)

Nh
∏

j=1



1 + exp





∑

l∈Rv\m

rT
vlWl + eT

i Wmj + bhj







 (5.9)

Normalizing the above expression over the K possible rating values gives the distri-

bution for the rating of interest. However, computing the distribution over n ratings

rvm1
, ..., rvmn

exactly would requires computing Pv(rvm|rv\m1,...,mn
) for Kn possible rating

combinations, which is infeasible for all but the smallest values of n. If we assume that

the ratings to be predicted are conditionally independent given the observed ratings,

we can compute the distribution for each rating separately using Eq. 5.9. Though the

time complexity of predicting n ratings is now linear in n, we still need to compute the

quantity in Eq. 5.9 K times for each prediction.

We propose a faster way of making predictions based on the mean field update equa-

tions. This approximate method is based on the assumption that the hidden unit prob-

abilities are not significantly affected by the value of a single rating. We expect this

method to perform well as long as the number of observed ratings is not very small. For

any number of ratings to predict, we first compute the probability of being on for each

2The (shared) weights to those units have been learned by the RBMs that had those movies in their
training data.
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hidden unit:

pi = σ

(

bhi +
∑

m∈Rv

rT
vmWmi

)

. (5.10)

Then for each rating to be predicted, we compute its distribution based on the hidden

units probabilities:

Pv(rvm = ei|p) =
exp(eT

i (bm + Wmp))
∑

j exp(eT
j (bm + Wmp))

, (5.11)

where p is the vector of probabilities computed using Eq. 5.10. Since p has to be computed

only once per user, this approach leads to considerable computational savings.

In this thesis we will evaluate our collaborative filtering models based on the root

mean squared error (RMSE) of their predictions. We chose to use RMSE because it is

the standard evaluation metric on the Netflix Prize dataset. Since the mean of a random

variable is the optimal estimator for it under the RMSE metric, once we have computed

the distribution for the rating we want to predict, we take the mean of the distribution

as our prediction.

5.2.2 Conditional RBM

Sometimes we know that certain movies have been rated by a user even though we do

not know the actual rating values. Alternatively, we might know all movies rented by a

user who entered ratings only for some of the movies. This type of information should

be useful for inferring user preferences because knowing what movies someone has rented

(or rated) can tell us quite a bit about their taste in movies. For example, someone who

rented the third movie in a trilogy most likely did not hate the first two movies. We can

take this kind of implicit preference information into account by conditioning on it and

thus modelling the distribution of user ratings given the identities of movies rated by the

user.

The particular parameterization for the multinomial visible units used by the RBM

allows it to detect whether the rating for a particular movie is among the observed
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ratings. This can be seen by comparing the parameterization of Pv(rvm|h) and Pv(h|rv)

given by Eqs. 5.7 and 5.8 respectively. Note that adding the same value w to the K

weights from a hidden unit to the K possible rating values for movie m does not affect

Pv(rvm = ei|h) because both the numerator and the denominator are multiplied by the

same value. In other words, the conditional distribution for the visible units given the

hidden units is overparameterized. However, as can be seen from Eq. 5.8, adding w to

those weights does have an effect on the hidden unit involved, as its total input increases

by w as long as the rating rv is observed. Decreasing the bias for the hidden unit by w

in addition to shifting the weights produces an RBM that can detect whether the rating

for movie m is present in its input. Thus, in theory, an RBM might be able to learn to

take advantage of the rating presence / absence information encoded in the user rating

vectors in the training set. In practice, however, this ability is likely to be compromised

by regularization applied to the weights, which would encourage the weights to be small

in magnitude. Moreover, even if the regularization effect were to be disregarded, the

RBM would not be able to take advantage of the rated information3 for movies with

unknown ratings.

We propose conditioning on the identities of movies rated by the user by making the

hidden unit biases of the user RBM a linear function of the rated indicator vector. Let

fv be a binary vector with entries encoding the identities of the movies rated by user v.4

The vector of hidden biases for the user RBM is then given by

b′v = bh + Ufv, (5.12)

where U is the matrix of conditioning weights shared among all the user RBMs. The

resulting conditional RBM models the joint distribution of rv and h conditional on fv:

Pv(rv, h|fv).

3In this thesis rated information refers to the identities of the movies rated by a user. This information
does not include the actual rating values.

4That is the ith entry of fv is set to 1 if and only if the user rated movie i.
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The conditional distributions needed for Gibbs sampling in this model are:

Pv(rvm = ei|h, fv) =
exp(eT

i (bm + Wmhv))
∑

j exp(eT
j (bm + Wmhv))

, (5.13)

Pv(hi = 1|rv, fv) = σ
(

bhi + Uifv + rT
vmWmi

)

, (5.14)

where Ui is the ith row of the conditioning matrix U .

We learn U using a rule similar to the one for learning W :

∆U = ǫ
(

ED

[

hvf
T
v

]

− ET

[

hvf
T
v

])

. (5.15)

The rules for learning other parameters of the model are the same as for the original

RBM model.

Though we used a linear function to map fv to b′v, the mapping from the rated

indicators to the biases of the hidden units does not have to be linear. For example, a

feed-forward neural network can be used to map fv to b′v. The parameters of the network

can then be learned by backpropagating the gradient estimator given by ED [hv]−ET [hv].

5.3 Probabilistic matrix factorization

Latent variable user models, already mentioned in Sec. 5.2, are based on the assumption

that rating preferences of a user are determined by a small number of unobserved factors.

Such models (e.g. Hofmann, 1999; Marlin, 2004b; Marlin and Zemel, 2004) can be viewed

as graphical models with directed connections from marginally independent user-specific

latent variables to the variables representing the observed ratings. Since exact inference

in models of this type is typically intractable (Welling et al., 2005), approximate inference

methods have to be resorted to. In Sec. 5.2, we proposed a model with efficient exact

inference, based on the Restricted Boltzmann Machine architecture, as an alternative

to directed latent variable models. The key to making exact inference tractable was

replacing the directed connections between the latent variables and the observed variables

by undirected connections. The drawback of this approach is that it makes the latent
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variables marginally dependent and the process of generating data from the model less

intuitive.

Matrix factorization methods form the other major class of model-based collaborative

filtering methods. These methods approximate the rating matrix with a product of two

low-rank matrices: a user factor matrix U and an item factor matrix V . As a result,

predicting a rating in the rating matrix amounts to computing the inner product between

the feature vectors for the user and the item, which is a very efficient operation. In

contrast to the traditional latent variable models that use discrete-valued factors, the

low-rank matrices found by matrix factorization methods are real-valued. Moreover,

such methods treat factors as parameters to be learned as opposed to latent variables to

be inferred, thus avoiding all inference-related difficulties.

In the (hypothetical) case of a fully-observed rating matrix, the best approximation

of the specified rank in the least squares sense can be found using Singular Value De-

composition (SVD). However, as most real-world datasets are sparse, the sum of squares

distance is computed only for the observed entries of the rating matrix. This seemingly

minor modification results in a difficult non-convex optimization problem which cannot

be solved using standard SVD implementations, as was shown by Srebro and Jaakkola

(2003). Instead of constraining the rank of the approximation matrix, or equivalently

the number of factors, Srebro et al. (2004) proposed a method called Maximum Mar-

gin Matrix Factorization that is based on penalizing the norms of the factor matrices

U and V . Training this model, however, requires solving a sparse semi-definite program

(SDP), making this approach infeasible for all but the smallest datasets. While the faster

gradient-based version of the algorithm scales much better than the SDP-based version

(Rennie and Srebro, 2005), it still cannot handle a dataset of tens of millions of ratings.5

In this section, we will present the Probabilistic Matrix Factorization (PMF) model,

5For example, the fast MMMF training algorithm took about 15 hours on a dataset of about 2 million
ratings on a (single-core) 3 Ghz Pentium 4 (Rennie and Srebro, 2005).
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which is a straightforward probabilistic formalization of the low-rank matrix approxima-

tion methods for partially-observed matrices. As such, it can be viewed both as a latent

variable user model and as a matrix factorization model. Even though more sophisti-

cated algorithms for training PMF models exist, we will restrict our attention to the

gradient-based online training method, since model scalability is our primary concern

here. The training time for this algorithm is linear in the number of observed ratings,

which makes the proposed method easily scalable to datasets of hundreds of millions of

observed ratings.

5.3.1 Model formulation

We will now formulate PMF as a directed latent variable model. In PMF users and

movies are represented by D-dimensional real-valued feature vectors. We will refer to

the feature vectors for the ith user and jth movie as Ui and Vj respectively. The feature

vectors are assumed to have Gaussian prior distributions:

P (Ui|σ
2
U) = N (Ui|0, σ

2
UI), (5.16)

P (Vj|σ
2
V ) = N (Vj |0, σ

2
V I). (5.17)

To reflect the fact that the mean rating can be drastically different for different users

and different movies, we incorporate per-user and per-movie biases into the model:

P (bi|σ
2
b ) = N (bi|0, σ

2
b ), (5.18)

P (cj|σ
2
c ) = N (cj |0, σ

2
c ). (5.19)

The rating given by user i to movie j is assumed to be Gaussian-distributed, with the

distribution mean given by the inner product between the corresponding feature vectors

added to the corresponding biases:

P (Rij|Ui, Vj, bi, cj , σ
2) = N (Rij |U

T
i Vj + bi + cj, σ

2). (5.20)
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The entries of R are assumed to be independent given the model parameters, which

results in the following conditional distribution for the rating matrix:

P (R|U, V, b, c, σ2) =
∏

i

∏

j

N (Rij |U
T
i Vj + bi + cj, σ

2). (5.21)

For simplicity, all hyperparameters in the model are assumed to be fixed.

Even though all conditional distributions used to define PMF are Gaussian, exact

inference in the model is intractable. This is the case because UT
i Vj is not Gaussian-

distributed, since a product of two Gaussian random variables is not a Gaussian. Since

exact inference is intractable, we need to choose an approximate inference method. In the

interests of scalability, we avoided the full Bayesian approach that involves computing

the posterior over model parameters using either Markov chain Monte Carlo (Neal, 1993)

or variational methods (Neal and Hinton, 1998; Jordan et al., 1999). Instead, we find

the MAP point estimate of the parameters using online gradient descent. The time

complexity of computing the gradient of log-likelihood w.r.t. to the model parameters is

linear in the number of observed ratings because the terms corresponding to unobserved

ratings drop out. Thus one pass through the dataset takes Θ(DN) time where D is the

feature vector dimensionality and N is the number of ratings in the training set.

5.3.2 Conditional PMF

Conditional PMF extends PMF to take into account the identities of the movies rated

by a user, by conditioning on those identities. This extension is based on the assumption

that users who have rated similar sets of movies are likely to have similar preferences. The

resulting model is the PMF counterpart of the conditional RBM model from Sec. 5.2.2.

We condition on ratings by making the prior mean of the user feature vector a linear

function of the rated indicator vector as follows:

µUi
=

P

j IijWj
P

j Iij
, (5.22)
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where Wj is the vector of conditioning weights for movie j and Iij is an indicator function

that is equal to 1 if and only if user i rated movie j. The prior distribution for Ui is now

P (Ui|σ
2
U) = N (Ui|µUi

, σ2
UI). (5.23)

The conditioning weight vectors are given zero-mean spherical Gaussian priors:

p(Wi|σ
2
W ) = N (Wi|0, σ

2
W I). (5.24)

This kind of conditioning on rated information allows the model to use the information

that a user rated some movie even if the rating value is not known. Moreover, the model

does not have to be retrained to use the identities of the newly-rated movie for making

predictions. Intuitively, the ith column of the W matrix captures the effect of a user

having rated a particular movie has on the prior mean of the user’s feature vector.

As a result, users that have seen the same (or similar) movies will have similar prior

distributions for their feature vectors.

Learning

We avoid recomputing the conditioning contribution to the user feature vector for each

user/movie/rating triple by training on user rating vectors instead of triples. Given a

vector of ratings for a particular user, we compute the conditioning term using Eq. 5.22

and, keeping it fixed, accumulate the parameter gradients for all the ratings in the vector

before updating the model parameters.

5.4 Experimental results

5.4.1 The Netflix Prize dataset

We evaluated our models on the Netflix Prize dataset, which is the largest publicly

available collaborative filtering dataset. The dataset contains over 100M ratings given
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by 480,189 users to 17,770 movies and is split into a 99M rating training set and a 1.4M

validation set. Additionally, 2.8M user / movie pairs are provided as the test set. The

ratings corresponding to these pairs are not publicly available,6 though Netflix provides

an online service that computes the test score given a set of predictions.7 The ratings,

which are integers from 1 to 5, have been provided by Netflix customers between October

1998 and December 2005. Each user / movie pair is accompanied by the date on which

the rating was entered. The users included in the dataset have been chosen uniformly

at random from the Netflix customer base. While no information outside their ratings

has been provided for the users, the dataset includes the titles and release years for the

movies.

This dataset in interesting for several reasons. First, it is large and very (98.8%)

sparse. It includes users with over 10,000 ratings as well as users with fewer than 5

ratings. More importantly, the provided validation and test sets do not exclude the very

rare users, which makes the results obtained on this dataset much more representative of

the real-world situation. The validation and the test set were created by taking nine most

recent ratings entered by each user and assigning each one of them with probability 1
3

to the validation set and with probability 2
3

to the test set.8 As a result of this selection

scheme, ratings from users with few ratings are overrepresented in the validation and

test sets, relative to the training set. This makes predictive accuracy on users with few

ratings very important for achieving high overall predictive accuracy.

6These rating are not available as of time of this writing. They will be released once the competition
is over.

7The test score reported is actually computed on a subset of the test set. Netflix did not disclose
which test pairs are included in the subset to prevent model selection based on the test score.

8If a user had fewer than 18 ratings in total, only a half of those ratings were split between the
validation set and the test set.
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5.4.2 Details of training

RBM and CRBM models were trained on vectors of user ratings, with model parameters

updated after each user vector (i.e. online). A learning rate of 10−3 for weights and 10−4

for biases was used. The L2 regularization parameter was set to 10−2 for weights and to

10−3 for biases.

PMF and online SVD models were trained on user/movie/rating triples, with param-

eters updated after each triple. The learning rates for feature vectors and biases were

10−2 and 10−3 respectively. The L2 regularization parameter was set to 10−2 for feature

vectors and to 10−1 for biases.

Like RBMs, conditional PMF models were trained on vectors of ratings. Each user

vector was broken up into blocks of 100 ratings each and model parameters were updated

after each block. The learning rate and the regularization parameter for the conditioning

weights were 5 × 10−3 and 3 × 10−3 respectively.

Early stopping on the validation set was used for all models. We found that using

early stopping in conjunction with L2 weight regularization produced better models (as

measured by the validation set RMSE) than either regularization method on its own. Our

training algorithm performed 250 passes through the training set, keeping track of the

parameter values that produced the best validation score, which was computed after each

pass. Early stopping was implemented by returning the model with the best validation

score. While this is not the most efficient way to implement early stopping, it is simpler

and more robust to the random fluctuations in the validation score than implementations

that make the stopping decision based on the last few score values. The L2 regularization

parameters were chosen based on the validation set score they produced in conjunction

with the early stopping procedure described above.
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5.4.3 Details of evaluation

In our evaluation we compared models based on their RMSE on the validation set. We

chose to use the validation set score instead of the test set score as a basis for comparison

because some of our performance analysis methods require computing RMSE on subsets

of the evaluation set, which cannot be done for the test set since the answers for it have

not been released by Netflix at the time of this writing.9 We did not split the validation

set into a new validation set and a new test set because we wanted to make sure that our

reported scores were directly comparable to those in the literature, where the score on

the standard validation set is frequently reported either in addition to or instead of the

test score. Finally, while the reported validation scores are likely to be slightly optimistic

compared to the corresponding test scores, this is not a serious problem since we are

primarily interested in determining how our models perform relative to each other.

5.4.4 Experiments with RBMs

To determine how the predictive performance of RBMs depends on the number of hidden

units used we tried four different numbers of hidden units: 25, 50, 100, and 200. For each

of these numbers, we trained one plain RBM and two conditional RBMs that differed

in the set of movies conditioned on: the first CRBM (CRBM1) conditioned only on

the movies rated by the user in the training set, while the second CRBM (CRBM22)

conditioned on the movies from the validation set and the test set in addition to those

from the training set.10 The validation set RMSE scores for the resulting models are

given in Table 5.1. As can be seen from the results, increasing the number of hidden units

results in better performance for both the plain RBM and CRBM2, with lowest RMSE

scores achieved by the models with 200 hidden units. For CRBM1, RMSE decreases as

9The web service provided by Netflix of course does not allow choosing the subset of the test set to
compute the RMSE on.

10Though it is possible to condition on one set of rated indicators when training a CRBM and on
another when testing it, in these experiments the same set was used during training and testing.
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Table 5.1: Validation set RMSE for RBM models with various numbers of hidden units.

The second column shows the scores for the basic RBM model. The conditional RBM in

the third column conditions on the rated information in the training set. The conditional

RBM in the fourth column conditions on the rated information in the validation and test

sets in addition to that in the training set.

Number of CRBM1 cond. on CRBM2 cond. on

hidden units RBM train train + valid + test

25 0.9277 0.9290 0.9276

50 0.9180 0.9191 0.9179

100 0.9127 0.9146 0.9121

200 0.9125 0.9151 0.9116

the number of hidden units goes from 25 to 50 to 100 and then slightly increases when

the number of units becomes 200. For all three RBM types, however, the difference in

performance between the model with 100 hidden units and the model with 200 hidden

units is very small. In all cases, models with 100 and 200 hidden units outperform models

with 25 hidden units (and, to a lesser extent, models with 50 hidden units) by a large

margin.

For all numbers of hidden units in the table, the plain RBM outperforms CRBM1,

while CRBM2 outperforms the RBM. We believe that CRBM1 does not perform as well

as the plain RBM because of overfitting. After all, when conditioning on the rated

information from the training set alone, a CRBM is not any more powerful than the

plain RBM it is based on, in spite of having more parameters, as explained in Sec. 5.2.2.

However, conditioning on the rated information not already present in the training set

does make the CRBM more powerful than the underlying RBM as demonstrated by

CRBM2 slightly outperforming the plain RBM for all numbers of hidden units. The
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Figure 5.1: Validation set RMSE of a conditional RBM with 50 hidden units as a function

of the size of the rated set conditioned on. The model was trained on a 10M rating training

set. The x-axis gives the size of the rated set conditioned on during training and testing

by the RBM.

small gap in performance between CRBM2 and the plain RBM is explained by the

fact that only a small fraction of the rated information CRBM2 conditions on does not

come from the training set, since the training set contains 99M rated entries, while the

validation set and the test set contain only 4.2M entries in total.

The results reported in Table 5.1 demonstrate that conditioning on more rated in-

formation than is present in the training set alone, allows CRBMs to outperform plain

RBMs. To test our theory that the improvement in RMSE is so small because only a

small fraction of the rated information came from outside the training set, we performed
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Figure 5.2: Validation set RMSE of a conditional RBM with 50 hidden units as a function

of the size of the rated dataset conditioned on. The model was trained on a 50M rating

training set. The x-axis gives the size of the rated set conditioned on during training and

testing by the RBM.

two additional experiments. Ideally, we would have preferred to train our models on

the entire Netflix training set while conditioning on a large collection of additional rated

information. Since no such collection was available, we randomly split the Netflix train-

ing set into two parts: a training set containing 10M user/movie/rating triples and a

conditioning set containing 89M of user/movie tuples. We then trained a sequence of

ten conditional RBMs with 50 hidden units on the training set, conditioning on progres-

sively larger subsets of the rated information. The first CRBM conditioned only on the

rated information from the training set, while the tenth CRBM conditioned on all 99M
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rated entries. As can be seen from Figure 5.1, the RMSE score is effectively linear in the

number of the rated entries conditioned on, going from 0.9912 for the first model down

to 0.9814 for the last one. For comparison, the plain RBM trained on the 10M training

set achieved a score of 0.9914. These numbers confirm that rated information can be

used to improve RBM performance substantially, as long as there is a sufficient amount

of such information available. On the other hand, using more rating data is likely to be

a more effective way of boosting model performance. For example, doubling the training

set size to 20M ratings reduces the RMSE for the plain RBM down to 0.9646.

We performed a similar experiment using a larger training set of 50M ratings. The

remaining 49M ratings were discarded leaving only the rated information that was par-

titioned into 5 sets of about 10M entries each. We trained a sequence of six CRBMs

with the first one using only the rated information from the training set and the last one

using all available rated information. As in the previous experiment, the models had 50

hidden units. The baseline plain RBM had a score of 0.9339, while the first and the last

CRBMs in the sequence achieved 0.9346 and 0.9259 respectively. These results (shown

in Figure 5.2) indicate that even when we have a fairly large training set using a set of

rated information of a comparable size can still lead to a substantial reduction in RMSE.

5.4.5 Experiments with PMF

We investigated the effect of feature vector dimensionality on the performance of PMF

and conditional PMF models by training models with 10-, 25-, 50-, 100-, 200-, and 500-

dimensional feature vectors. As baselines for comparison, we used unregularized PMF

models with and without biases. Models of this type can be viewed as an online version

of SVD that operates on partially observed matrices. These baselines have been chosen

to emphasize the importance of regularization and biases in PMF. We also included three

weaker baselines: a user-bias model, a movie-bias model, and a model with both user and
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Figure 5.3: Validation set RMSE for various PMF and PMF-like models.

movie biases.11 All models were trained of the entire Netflix training set. The conditional

PMF models conditioned on all available rated information (training, validation, and test)

during training and testing. Early stopping on the validation set was used. The RMSE

scores for the feature-vector-based models are plotted on Figure 5.3. Those scores along

with the scores for the bias-only models, which did not fit on the figure, are also shown

in Table 5.2.

The worst performing models in the comparison are the bias-only models, which is

not surprising considering how few parameters they have. The model with both user and

movie biases performs much better than the two models that have biases of a single type.

In terms of RMSE, it is about half-way between the other two bias-only models and the

11These bias-only models can be viewed as PMF models without feature vectors.
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Table 5.2: Validation set RMSE for various PMF and PMF-like models.

Feature vector dimensionality

Model type 10 25 50 100 200 500

Online SVD 0.9316 0.9266 0.9269 0.9284 0.9283 0.9272

Online SVD w. biases 0.9244 0.9190 0.9190 0.9209 0.9197 0.9182

PMF 0.9212 0.9121 0.9086 0.9066 0.9052 0.9037

Conditional PMF 0.9157 0.9059 0.9024 0.9004 0.8993 0.8982

User-bias 1.0634

Movie-bias 1.0528

User and movie bias 0.9820

PMF models. The online SVD models without biases outperform the bias-only models by

a large margin but perform considerably worse than the corresponding SVD models with

biases. The gap in performance due to biases grows from 0.0072 for models with 10D

feature vectors to 0.0090 for models with 500D feature vectors. More impressively, the

worst-performing SVD model with biases outperforms the best-performing SVD model

without biases. This clearly demonstrates that movie and user biases have a strong

positive effect on predictive performance.

For each feature vector dimensionality we used, the online SVD model with biases was

outperformed by the PMF model, which, in turn, was outperformed by the conditional

PMF model. The gap in RMSE between the online SVD model with biases and the

PMF model grew from 0.0032 for 10D feature vectors to 0.0145 for 200D and 500D

feature vectors. These numbers demonstrate the importance of regularization for matrix

factorization models, since the online SVD model with biases is simply a PMF model

with regularization turned off. As expected, regularization becomes more important as

the number of free parameters in the model increases. The gap in RMSE between the

PMF model and the conditional PMF model, on the other hand, changes only slightly as



Chapter 5. RBMs and PMF for collaborative filtering 108

the dimensionality of the feature vectors grows, staying in the range 0.0055-0.0062. Thus

the benefit from conditioning on the rated information does not seem to depend on the

feature vector dimensionality of the model.

Figure 5.3 shows that predictive performance of PMF and conditional PMF models

improves monotonically as feature vector dimensionality increases. However, this is not

the case for the online SVD models (with and without biases), for which model per-

formance degrades significantly when going from 50D feature vectors to 100D feature

vectors before starting to improve again. This behaviour is a consequence of the lack

of a regularization term in the objective function for the online SVD models. Since

early stopping is the only regularization method used by these models, the differences

in learning dynamics resulting from different feature vector dimensionalities can have a

dramatic effect on the parameter values found by the training algorithm. In contrast, the

regularization effect produced by the feature vector priors (Eqs. 5.16 and 5.17) of PMF

models makes PMF training less sensitive to the peculiarities of learning dynamics.

The effect of conditioning on rated information

To determine the effect of conditioning on rated information in PMF models on prediction

accuracy for users of different rating frequency, we grouped users into ten bins and

computed the model RMSE for each bin. Users were assigned to bins based on the

number of ratings they had in the training set, so that each bin contained the same

number of users. This is a reasonable partitioning scheme because users of all frequencies

have roughly the same number of ratings in the validation set. The plots of the per-bin

RMSE scores for PMF and conditional PMF models with 10D and 500D feature vectors

are shown on Figure 5.4. From the figure it is clear that both models perform much

better on users with more ratings. For users with few ratings (the first two bins), the

conditional PMF models outperform their non-conditional counterparts by over 0.01, but

this gap decreases as the number of training set ratings per user increases. For the models
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Figure 5.4: Validation set RMSE of PMF and CPMF models as a function of the number

of ratings for the user. PMFn is a PMF model with n-dimensional feature vectors.

CPMFn is a conditional PMF model with n-dimensional feature vectors.

with 10D feature vectors, when predicting ratings for users with the most ratings (i.e.

in the last bin) the gap is only 0.026. For the models with 500D feature vectors, the

PMF model actually outperforms the conditional PMF model by 0.0017 on the last bin.

However, on users with the fewest ratings contained in the first bin, the conditional PMF

model with 10D feature vectors outperforms the non-conditional PMF model with 500D

feature vectors by 0.0075. These results show that conditioning on rated information

tends to improve PMF performance for almost all users, though users with few (e.g.
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1-100) ratings benefit the most.

One of the advantages of conditional PMF is that it can make non-trivial predictions

for users for which we know the identities of the rated items but not the actual rating

values. To determine how much conditioning on the identities of the rated items helps,

we measured the accuracy of the model when predicting the test ratings for users with

no ratings in the training set, while conditioning on the identities of the rated movies.

We started by randomly dividing users into five groups of equal size. For each group, we

generated a modified training set by leaving out the ratings for the users in the group

from the original training set. The corresponding validation sets were produced in an

analogous manner. The test set for each group was obtained by leaving out the ratings for

users from other groups from the original validation set. On each modified training set,

we trained a 100D conditional PMF model and measured its RMSE on the corresponding

test set. Predictions on the test set were made while conditioning on the identities of the

movies rated by the user in the original training set. As a baseline for comparison, we

used a movie-bias model trained on the same training sets.

Figure 5.5 shows the mean RMSE for each model type as a function of the number

of movies known to be rated by the user. For each frequency bin, the RMSE value was

computed based on the total SSE value for the five models. The conditional PMF model

clearly outperforms the movie-bias model for all user frequency bins. The overall RMSE

scores are 1.0134 for CPMF and 1.0529 for the movie-bias model. The gap in RMSE

between the two models is the smallest (0.0121), though still quite substantial, for users

with the fewest movies rated (the first bin). The gap between the two models is much

larger (0.0332-0.0505) for users in other frequency bins. It achieves its largest value of

0.0505 for users in the third bin (28-43 movies rated), before beginning to decrease down

to 0.0332 for the last bin (538-17651 movies rated). Thus when making predictions for

users without known rating values, users with an intermediate number of movies rated

(28-63) benefit the most from conditioning on the movie identities.
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Figure 5.5: Validation set RMSE for users without known rating values as a function of

the number of movies known to be rated by the user. CPMF is a conditional PMF model

with 100D feature vectors. Movie-bias is a PMF-like model without feature vectors and

user biases. CPMF conditions on the identities of the movies rated by the user, while

the movie-bias model does not.

5.4.6 Analysis of RBM and PMF models

In this section we will compare the predictive performance of RBM models to that of

PMF models. Table 5.3 summarizes the results from the two previous sections. The

table does not include conditional RBMs because they performed only marginally better

than the plain RBM models. As can be seem from the table, PMF and conditional PMF
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models with feature vector dimensionality 25 and higher outperform all RBM models.

The best PMF model achieves an RMSE score that is 0.0088 lower than the best RBM

score. The gap between the scores of the best conditional PMF model and the best RBM

model is even larger at 0.0143. However, the best-performing (C)PMF models have many

more parameters than any of the RBM models. Performance of RBM and plain PMF

models with similar numbers of parameter are quite similar. Conditional PMF models

still outperform the corresponding RBM models even if we control for the number of

parameters. Thus, whether or not model memory usage is a concern, conditional PMF

appears to be the best-performing model class.

Though, as we have seen, PMF models tend to outperform RBM models in terms

of the overall RMSE score, it is not clear that PMF models are better across the entire

spectrum of users. To investigate this question, we grouped users into bins based on

the number of ratings in the training set and computed the per-bin RMSE. We use the

same binning setup as in Sec. 5.4.5. We compared the best RBM (200 hidden units) to

the 50D PMF model as well as to the 500D PMF model, which was the best-performing

PMF model. The 50D PMF model was chosen because it had a comparable number of

parameters to that of the RBM (about 42% more parameters).

The plots of the per-bin RMSE results are shown on Figures 5.6 and 5.7. The large

gap between the score of the PMF model and the RBM model on the last three bins

on both plots indicates the PMF models excel at predicting ratings for users with many

(e.g. over 150) ratings. On bins 2-4, the RBM performs better than the 50D PMF model

and about as well at the 500D PMF model. On the first bin however, the PMF models

outperform the RBM once again. The superior performance of the PMF models on users

with many ratings can be explained by the fairly large number of per-user parameters

these models have. Having many user-dependent parameters makes such models very

flexible but results in more training data being required for good performance. The

use of per-user biases in PMF models explains why the RBM, which does not have any
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Figure 5.6: Validation set RMSE of RBM and PMF models as a function of the number

of ratings for the user. RBM200 is an RBM model with 200 hidden units. PMF50 is a

PMF model with 50-dimensional feature vectors.

user-dependent parameters, is outperformed by all PMF models on the bin containing

users with the fewest ratings. Figure 5.8 showing the per-bin results for a 10D PMF

model provides more evidence for this theory, since the RBM model outperforms this

PMF model on all bins but the first one.
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Figure 5.7: Validation set RMSE of RBM and PMF models as a function of the number

of ratings for the user. RBM200 is an RBM model with 200 hidden units. PMF500 is a

PMF model with 500-dimensional feature vectors.

5.5 Discussion

The release of the Netflix Prize dataset has resulted in an increased interest in large-scale

collaborative filtering in the machine learning community. Matrix factorization (MF)

models have received by far the most attention due to their simplicity and remarkably

good performance on the dataset.

The common feature of the best-performing MF models is conditioning on the identi-

ties of the rated movies, first introduced for RBM models in (Salakhutdinov et al., 2007).
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Figure 5.8: Validation set RMSE of RBM and PMF models as a function of the number

of ratings for the user. RBM200 is an RBM model with 200 hidden units. PMF10 is a

PMF model with 10-dimensional feature vectors.

This technique was used by Paterek (2007) to eliminate user feature vectors in an MF

model by replacing them with a linear function of the rated indicator vector. The result-

ing model performed considerably worse than the unconstrained model because it had

several times fewer parameters. The conditional PMF model introduced in (Salakhutdi-

nov and Mnih, 2008b) was the first MF model that had both the conditional component

and user feature vectors, resulting in performance superior to that of the non-conditional

MF models. Similar models have since been proposed in (Koren, 2008; Takács et al.,
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2008), where they were augmented with non-parametric components designed capture

the local structure in the data.

A number of Bayesian MF approaches to collaborative filtering have also been ex-

plored. Both variational Bayes (Lim and Teh, 2007) and MCMC-based training (Salakhut-

dinov and Mnih, 2008a; Zhu et al., 2008) have been shown to produce more accurate

models than MAP-based training.

Boltzmann machines as models for collaborative filtering have received relatively little

attention. Truyen et al. (2009) introduced “ordinal Boltzmann machines” designed for

modelling ordinal rating values. The basic idea is to represent ratings using vectors of

indicator variables of the form [rating < i] and [rating > i] to ensure that rating values

that are close numerically will have similar representations. The authors also introduced

a product-of-RBMs model that models the joint distribution of the rows and columns of

the rating matrix.
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Table 5.3: Validation set RMSE for RBM and (C)PMF models. Representation dimen-

sionality refers to the number of hidden units in RBM models and the dimensionality of

the feature vectors in (C)PMF models. Number of parameters is the number of model

parameters in millions.

Model type Representation Number of RMSE

dimensionality parameters (×106)

RBM 25 2.3 0.9277

RBM 50 4.5 0.9180

RBM 100 9.0 0.9127

RBM 200 17.9 0.9125

PMF 10 5.5 0.9212

PMF 25 13.0 0.9121

PMF 50 25.4 0.9086

PMF 100 50.3 0.9066

PMF 200 100.1 0.9052

PMF 500 249.5 0.9037

CPMF 10 5.6 0.9157

CPMF 25 13.4 0.9059

CPMF 50 26.3 0.9024

CPMF 100 52.1 0.9004

CPMF 200 103.6 0.8993

CPMF 500 258.4 0.8982



Chapter 6

Conclusions

In this thesis we proposed and evaluated a number of probabilistic models for discrete

data. Our approach was based on the use of learned distributed representations for

discrete inputs as a way of dealing with sparse high-dimensional data. We concentrated

on two application areas: statistical language modelling and collaborative filtering.

6.1 Language modelling

The first part of the thesis was concerned with statistical language modelling. In Chap-

ter 3 we introduced three non-hierarchical language models. Our first model, based on

the RBM architecture, used a vector of binary latent variables to capture the interaction

between the feature vectors for the context words and the feature vector for the next

word. Though this model did not perform well, we showed that augmenting it with tem-

poral connections between different instantiations of the latent variable vector made it

competitive with n-gram models. The log-bilinear model, which was simpler and faster

than the RBM-based models, was shown to be superior to the n-gram models on the

14M word APNews dataset.

Though the LBL model achieves high predictive accuracy, the time complexity of

training and making predictions with the model is linear in the number of words in the

118
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vocabulary, which makes it too slow for most applications. We addressed this drawback in

Chapter 4, where, building on work of Morin and Bengio (2005), we introduced the hier-

archical version of the LBL model which is exponentially faster than its non-hierarchical

counterpart. The speedup is achieved by structuring the vocabulary as a binary tree

over words, making the time complexity of computing the probability of the next word

logarithmic in the vocabulary size.

We have demonstrated that HLBL models can outperform the best n-gram models

and perform as well as LBL models on the APNews dataset. We found that the key

to making a hierarchical model perform well is using a carefully constructed hierarchy

over words. We have presented a simple and fast feature-based algorithm for automatic

construction of such hierarchies. Creating hierarchies in which every word occurred more

than once was essential to getting the models to perform well.

An inspection of trees generated by our adaptive algorithm showed that the words

with the largest numbers of replicas in a tree did not typically have multiple distinct

senses. Instead, the algorithm appeared to replicate the words that occurred relatively

infrequently in the data and were therefore difficult to cluster. The failure to use multiple

codes for words with several very different senses is probably a consequence of summa-

rizing the distribution over contexts with a single mean feature vector when clustering

words. The “sense multimodality” of context distributions would be better captured by

using a small set of feature vectors found by clustering the contexts.

Our results show that the hierarchical clustering algorithm we use to build trees over

words works quite well in practice. However, the objective function that this algorithm

optimizes is unrelated to the log-likelihood on the training data, which is the objective

function we optimize when we train the model. Developing a tree-building algorithm

that optimizes the same objective function as the training algorithm is likely to produce

word hierarchies better suited for use by HLBL models, which in turn is likely to produce

better performing models.
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HLBL is based on the idea of linear prediction in the space of word feature vectors.

While this approach works well with high-dimensional feature vectors, it is possible that

comparable or superior performance can be achieved by performing non-linear prediction

in a lower-dimensional feature space. Using a deep neural network (Hinton et al., 2006;

Bengio and Lecun, 2007) for making probabilistic decisions on a tree is another promising

direction, since it was shown that deep networks are more effective than shallow networks

at mapping text documents to compact codes (Ranzato and Szummer, 2008).

Though in this thesis we emphasized the advantages of using distributed represen-

tation for words, there are drawbacks to this approach. By representing words using

learned feature vectors, the ability to distinguish between words that are used in similar

ways is greatly diminished. While this is also the reason for the superior generalization

ability of neural language models, sometimes words that are very similar in usage are

not interchangeable. For example, since word-for-word reproduction is the defining prop-

erty of a quotation, replacing any word with its synonym makes the quotation much less

probable. N -gram models excel in cases like this because they effectively memorize the

n-tuples seen in the training data. The complementary strengths of the two language

model types suggest that a combination of models of different types might outperform

the individual models. Traditionally, neural models have been combined with n-grams

by training the models separately and then mixing their predictions using fixed mixing

proportions. A more promising approach might be to either train the models jointly (as

components of the mixture), or to train the neural model on its own and then train the

n-gram model to optimize the predictive performance of the mixture.

6.2 Collaborative filtering

In the second part of the thesis we concentrated on collaborative filtering. We showed

how RBM models can be used to model the distribution of sparse high-dimensional
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user rating vectors efficiently, presenting inference and learning algorithms that scale

linearly in the number of observed ratings. We also introduced the PMF model which

is based on the probabilistic formulation of the low-rank matrix approximation problem

for partially observed matrices. Conditional versions of both model types were also

introduced to allow conditioning on the identities of the movies rated whether or not the

actual rating values are known. We evaluated our collaborative filtering models on the

Netflix Prize dataset and showed that both PMF and RBM models outperform online

SVD models. Of all models we evaluated, conditional PMF models performed best in our

comparison, achieving excellent performance even when using relatively low-dimensional

feature vectors.

Though RBMs typically use exponential family random variables, the multinomial

distribution is not the only reasonable choice for modelling ratings, since Binomial,

Gaussian, and Beta distributions can also be used. Moreover, extending RBMs that

have visible units of one of these types to condition on rated information is likely to be

much more beneficial then for RBMs with multinomial units, since it will actually make

the models more expressive.

There is considerably more flexibility with the choice of the rating noise distribution in

PMF than in RBMs. For example, PMF can model ordinal ratings by using the ordered

multinomial logit parameterization at the output (Gelman and Hill, 2007, Chap. 6).

Similarly, PMF can be extended to model multinomial observations with many possible

values efficiently by organizing the variable values into a hierarchy as was done with words

in the HLBL model. This extension would be useful for modelling the distribution of

movies rated by a user. Unfortunately, this tree-based parameterization of a multinomial

distribution cannot be used efficiently in an RBM due to the restrictions on the form of

its energy function (Hinton et al., 2006; Bengio, 2009).

Since PMF models performed best in our experiments when they had hundreds of

millions of parameters, developing better ways of regularizing such models is important.
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Making the prior mean of a user vector a linear function of the rated indicator variables

as was done in conditional PMF is one such regularization technique. Another possibility

is to define flexible hierarchical priors for user and movie vectors.

Like most model-based collaborative filtering methods, PMF assumes that each user

has a single set of preferences. While in most cases this is a reasonable assumption,

accounts for many users in the Netflix Prize dataset are shared by multiple people with

distinct movie tastes. Because of its probabilistic nature, PMF can be easily extended to

associate each user (account) with multiple feature vectors. The model would generate

the rating given by a user to a movie by picking one of the user feature vectors and then

generating the rating the way original PMF does. As a result, the rating for any given

user/movie pair would have a mixture of Gaussians distribution.



Bibliography

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on

Knowl. and Data Eng., 17(6):734–749.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in

Machine Learning, 2(1):1–127.

Bengio, Y., Ducharme, R., and Vincent, P. (2000). A neural probabilistic language model.

In NIPS, pages 932–938.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic

language model. Journal of Machine Learning Research, 3:1137–1155.

Bengio, Y. and Lecun, Y. (2007). Scaling learning algorithms towards AI. In Bottou, L.,

Chapelle, O., Decoste, D., and Weston, J., editors, Large-Scale Kernel Machines. MIT

Press.
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