The problem

» Create a generative model and a
learning algorithm that can learn
high-dimensional complex
sequence data

* There are many applications
where the HMM and the LDS are
not nearly powerful enough



Tractable sequence models

« HMM — has N4 parameters and
when generating data the hidden
state only carries log N bits of
information

o | DS — assumptions too unrealistic,
data can rarely be explained
linearly, seldom gaussian



Less tractable sequence

models

* More powerful models with
distributed hidden states need
approximate inference for learning:

- Particle filtering

- Assumed density filtering
- MCMC



Our new model

e Built from the Restricted
Boltzmann Machine (RBM)

* A casual sequence of RBMs

» Highly intractable, lost of
approximations



The Restricted Boltzmann

Machine

» Powerful model of binary data
useful properties:

* Has an easy exact inference algorithm
» Has an efficient learning algorithm

* Has a natural hierarchical multilayered
extension

- This Is a big win over other models



The Restricted Boltzmann
Machine

Hidden

Visible

 An undirected model
 Given V, H is factorial



Goals:
» Construct a sequence model using
RBM's

* The model should inherit some
good qualities of the RBM



The Temporal Restricted
Boltzmann Machine

e Use an RBM to model each item
In the sequence

 Connect the RBM's with directed
connections

* The result: a hybrid
directed/undirected model



The Temporal Restricted
Boltzmann Machine

RBM
connections

Dynamic biases from
previous timesteps
capture sequential
structure




The Temporal Restricted
Boltzmann Machine
Each RBM has the same parameters

EEEE



The Temporal Restricted
Boltzmann Machine

* \WWith the past fixed, the undirected
observation model makes exact
inference easy



Approximate filtering

* The distribution
P(H.|V,,....,V:H,,...,H; ) is factorial by
definition

* This suggests: compute a factorial

approximation to the filtering
distribution

 Like a very simple form of Assumed
Density Filtering



Approximate filtering

 Variables are binary in {0,1}"

* A factorial distribution is in [0,1]M

« P(H,|V,,...,V;H,,....H, ) is factorial,
thus in [O0,1]N

 Use approx (y, is H's distribution):

|JT=P(HT\V1,...,VT,p1,...,pT_1)
using mean-field equations



Learning
» Select a random training vector

e Sample from the approximate filtering
distribution (no smoothing)

» Slightly increase the log likelihood of
each RBM given the fully visible data
(this is easy for the RBM's)

* Not variational because learning
ignores change in approximate
posterior



Multilayered Models

* \We can introduce additional
hidden layers to get a better
representation

* The result: a slightly better
generative model



Multilayered TRBM's

» Using the idea of a multilayered
RBM it is possible to add hidden
layers to the TRBM model one
layer at a time

* Has natural approximate inference
* Improves generative model



Multilayered TRBM's

« Use another TRBM Q to learn the
aggregated approximate posterior:
Pagg(H ) ZVPapprox( 1:T‘V1:T)D(V1:T)

- D is the data distribution

. To generate, sample Q(H. ;), then sample
P(V..|H..), approximately

» Can recurse for Q to make very deep
models

* Has some variational justification



Multilayered TRBM's

Learning the Q
model
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The data distribution

Sampling from the
hierarchical model
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Finetuning

* The learned weights can be
further finetuned by the Wake-
Sleep algorithm (and doesn't hurt
performance)



Visible-Hidden Connections




Visible-Visible Connections




Questions?



Denoising using the TRBM

e The TRBM can be used to
denoise:
Reconstruct the noisy data from
the hidden variables

 The TRBM denoises well, even
though it was not "meant” for this
task



Denoising Results




