An efficient way to learn deep
generative models

Geoffrey Hinton
Canadian Institute for Advanced Research
&
Department of Computer Science
University of Toronto

Joint work with: Ruslan Salakhutdinov,
Yee-Whye Teh, Simon Osindero, llya Sutskever,
Graham Taylor, Andriy Mnih

Belief Nets

A belief net is a directed acyclic
graph composed of stochastic
variables.

We get to observe some of the
variables and we would like to
solve two problems:

The inference problem: Infer
the states of the unobserved
variables.

stochastic
hidden
cause

visible
The learning problem: Adjust effect
the interactions between We will use nets
variables to make the network composed of stochastic
more likely to generate the binary variables with

observed data. weighted connections

Stochastic binary neurons

e These have a state of 1 1

or O.

p(s =1

e The probability of

turning on is determined 0 |
by the weighted input

0
from other neurons b "'Zsj Wi —
(plus a bias) J

1
1+ exp(—b, — Z Sj le)
J

p(s =1 =

Learning Belief Nets

It is easy to generate an
unbiased example at the
leaf nodes, so we can see
what kinds of data the
network believes in.

It is hard to infer the
posterior distribution over
all possible configurations
of hidden causes.

It is hard to even get a
sample from the posterior.

So how can we learn deep
belief nets that have
millions of parameters?

stochastic
hidden
cause

visible
effect

Explaining away (Judea Pearl)

 Even if two hidden causes are independent, they can
become dependent when we observe an effect that they can
both influence.

— If we learn that there was an earthquake it reduces the
probabllity that the house jumped because of a truck.

-10 -10
(o
20\ %

Why it Is usually very hard to learn
sigmoid belief nets one layer at a time

To learn W, we need the posterior
distribution in the first hidden layer.

Problem 1: The posterior is typically
Intractable because of “explaining
away’.

Problem 2: The posterior depends
on the prior as well as the likelihood.

— So to learn W, we need to know
the weights in higher layers, even
If we are only approximating the
posterior. All the weights interact.

Problem 3: We need to integrate
over all possible configurations of
the higher variables to get the prior
for first hidden layer. Yuk!

hidden variables

J

hidden variables

l prior

hidden variables

Iikeliliod l W

data

Two types of generative neural network

 |f we connect binary stochastic neurons in a
directed acyclic graph we get a Sigmoid Belief
Net (Radford Neal 1992).

 |f we connect binary stochastic neurons using
symmetric connections we get a Boltzmann
Machine (Hinton & Sejnowski, 1983).

— If we restrict the connectivity in a special way,
It Is easy to learn a Boltzmann machine.

Restricted Boltzmann Machines

* We restrict the connectivity to make
learning easier. hidden

— Only one layer of hidden units.
 We will deal with more layers later

)) (O
— No connections between hidden units. .
%
ON®

* In an RBM, the hidden units are
conditionally independent given the
visible states. visible

— So we can quickly get an unbiased
sample from the posterior distribution
when given a data-vector.

— This Is a big advantage over directed
belief nets

The Energy of a joint configuration
(ignoring terms to do with biases)

binary state of binary state of
visible unit i hidden unit |

\ /
E(V,h) - - ZVi thVIj
/ N

Energy with configuration weight between
v on the visible units and units i and |

h on the hidden units

0E(v,h) _
OW

Vihj

J

Weights - Energies = Probabilities

 Each possible joint configuration of the visible
and hidden units has an energy

— The energy Is determined by the weights and
biases (as in a Hopfield net).

 The energy of a joint configuration of the visible
and hidden units determines its probability:

o(v.hy [l e E(v,h)

* The probability of a configuration over the visible
units Is found by summing the probabilities of all
the joint configurations that contain it.

Using energies to define probabillities

—E(v h)
» The probability of a joint p(V h) -

configuration over both visible Z e—E(u g)
and hidden units depends on

the energy of that joint part,t,on

configuration compared with function

the energy of all other joint

configurations.

a~E(V.h)
 The probability of a Z
configuration of the visible

units is the sum of the p(V) = Ze—E(u ,J)

probabillities of all the joint
configurations that contain it.

A picture of the maximum likelihood learning

algorithm for an RBM

O

O

OQO
7N

O

t=20

of®

OO
\ /
O

t=1

t=2

ODO

<v;h; >
o0 0 a/fantasy

O

t = infinity

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

dlogp(v) _

OW

J

<v;h;>° —<y;h; >

A quick way to learn an RBM

Q /® Q Q Start with a training vector on the

visible units.

<v;h;> vih;>
Update all the hidden units in
parallel

Update the all the visible units Iin
t=0 t=1 parallel to get a “reconstruction”.

data reconstruction Update the hidden units again.

This is not following the gradient of the log likelihood. But it works well.

E (<Vi hj>0 — <Vi hj>1)

It is approximately following the gradient of another objective function.

How to learn a set of features that are good for
reconstructing images of the digit 2

50 binary 50 binary
feature feature
neurons neurons
Increment weights Decrement weights
between an active between an active
pixel and an active pixel and an active
feature feature
16 x 16 16 x 16
pixel pixel
Image Image
data reconstruction

(reality) (better than reality)

The final 50 x 256 weights

iy
-
L i=|
M
=

Each neuron grabs a different feature.

How well can we reconstruct the digit images
from the binary feature activations?

Reconstruction
from activated
Data binary features

New test images from
the digit class that the
model was trained on

Reconstruction
from activated
Data binary features

Images from an
unfamiliar digit class
(the network tries to see
every image as a 2)

Training a deep network

o First train a layer of features that receive input directly
from the pixels.

e Then treat the activations of the trained features as If

they were pixels and learn features of features in a
second hidden layer.

e |t can be proved that each time we add another layer of
features we get a better model of the set of training
Images.

— The proof Is complicated. It uses variational free
energy, a method that physicists use for analyzing
non-equilibrium systems.

— But it is based on a neat equivalence (described later)

The generative model after learning 3 layers

 To generate data:

from the top-level RBM by

h3
1. Get an equilibrium sample
|
performing alternating Gibbs

sampling. h2

2. Perform a top-down pass to
get states for all the other I l W,
layers. h1
So the lower level bottom-up I 1 i
connections are not part of data

the generative model. They
are just used for inference.

Why does greedy learning work?

The weights, W, in the bottom level RBM define
p(v|h) and they also, indirectly, define p(h).

So we can express the RBM model as

p(v) = 2 p(h) p(v|h)
h

If we leave p(v|h) alone and build a better model of
p(h), we will improve p(v).

We need a better model of the
distribution over hidden vectors produced by

applying W to the data.

What does each RBM achieve?

|t divides the task of modeling the data into

two tasks and leaves the second task to the
next RBM

— Task 1: Learn generative weights that can
convert the posterior distribution over the
hidden units into the data.

— Task 2: Learn to model the posterior
distribution over the hidden units that is
produced by applying the transpose of the
generative weights to the data

e Task 2 is guaranteed to be easier (for the next
RBM) than modeling the original data.

A neural model of digit recognition

The top two layers form an

associative memory whose 2000 top-level neurons
energy landscape models the low
dimensional manifolds of the I I
digits.
10 label
The energy valleys have names = 500 neurons
neurons

The model learns to generate
combinations of labels and images.

To perform recognition we start with a
neutral state of the label units and do
an up-pass from the image followed
by a few iterations of the top-level
associative memory.

11

500 neurons

11

28 x 28
pixel
Image

Fine-tuning with a contrastive divergence
version of the wake-sleep algorithm

After learning many layers of features, we can fine-tune
the features to improve generation.

1. Do a stochastic bottom-up pass

— Adjust the top-down weights to be good at
reconstructing the feature activities in the layer below.

2. Do a few iterations of sampling in the top level RBM
— Use CD learning to improve the RBM
3. Do a stochastic top-down pass

— Adjust the bottom-up weights to be good at
reconstructing the feature activities in the layer above.

Show the movie of the network
generating digits

(available at www.cs.toronto/~hinton)

Samples generated by letting the associative
memory run with one label clamped. There are
1000 iterations of alternating Gibbs sampling
between samples.

O ¢ 0 © O 0 0 0 9

<N anluyr~o0
DooNGFgyLWhr—
O O N —
N IR IS BN N
S e a8 un~

/
pi
J
A
>
b
=
3
T

o Q- o~ LN N
Qo NY¥ RPN~

!
2
1
[
5~
6
e
€
?

O on~d D fEWNSN

What goes on in its mind if we show it an
Image composed of random pixels and ask it
to fantasize from there?

2000 top-level neurons

l |

Ol 500 neurons

mind brain neurons I l

500 neurons

11!

28 x 28
pixel

Image

Examples of correctly recognized handwritten digits
that the neural network had never seen before

ool N\ (/A2
de22adQQ 2 RA5H7
3¢ 794494046 >9
el 772\7124%°

Its very

D8 TI U947 s

How well does it discriminate on MNIST test set with
no extra information about geometric distortions?

 Generative model based on RBM’s 1.25%
e Support Vector Machine (Decoste et. al.) 1.4%
e Backprop with 1000 hiddens (Platt) ~1.6%
o Backprop with 500 -->300 hiddens ~1.6%
« K-Nearest Neighbor ~ 3.3%

 Its better than backprop and much more neurally plausible
because the neurons only need to send one kind of signal,
and the teacher can be another sensory input.

An RBM with real-valued visible units

* In a mean-field logistic unit, the total
Input provides a linear energy-
gradient and the negative entropy
provides a containment function with
fixed curvature. So it Is impossible N
for the value 0.7 to have much lower %
free energy than both 0.8 and 0.6. - entropy
This i1s no good for modeling real-
valued data.

« Using Gaussian visible units we can 0 output-> 1
get much sharper predictions and
alternating Gibbs sampling is still
easy, though learning is slower.

. —h)? V-
E(vh) = 3 (Vlzag) - b - Y hw,

| £ VIS |] € hid]

Another view of why layer-by-layer
learning works

 There Is an unexpected equivalence between
RBM'’s and directed networks with many layers
that all use the same weights.

— This equivalence also gives insight into why
contrastive divergence learning works.

An infinite sigmoid belief net
that Is equivalent to an RBM

* The distribution generated by this
Infinite directed net with replicated
weights is the equilibrium distribution
for a compatible pair of conditional
distributions: p(v|h) and p(h|v) that
are both defined by W

— A top-down pass of the directed
net is exactly equivalent to letting
a Restricted Boltzmann Machine
settle to equilibrium.

— So this Iinfinite directed net
defines the same distribution as
an RBM.

Inference In a directed net
with replicated weights

The variables in hO are conditionally
Independent given vO0.

— Inference is trivial. We just
multiply vO by W transpose.

— The model above hO implements
a complementary prior.

— Multiplying vO by W transpose
gives the product of the likelihood
term and the prior term.

Inference in the directed net is
exactly equivalent to letting a
Restricted Boltzmann Machine
settle to equilibrium starting at the
data.

 The learning rule for a logistic DAG is:

Aw; Osi (S —5)

e With replicated weights this becomes:

Sj (s -§)+
S (s} -sj)+
Sj(§ =) +...

The derivatives g% $°°
for the recognition J
weights are zero.

 Then freeze the first layer of weights
In both directions and learn the
remaining weights (still tied
together).

— This Is equivalent to learning
another RBM, using the
aggregated posterior distribution
of hO as the data.

vi
| Y,
ho

Learning a deep directed
network

« First learn with all the weights tied

— This Is exactly equivalent to
learning an RBM

— Contrastive divergence learning

IS equivalent to ignoring the small

derivatives contributed by the tied
weights between deeper layers.

ho
I W
VO

What happens when the weights in higher layers
become different from the weights in the first layer?

* The higher layers no longer implement a complementary
prior.

— So performing inference using the frozen weights in
the first layer Is no longer correct.

— Using this incorrect inference procedure gives a
variational lower bound on the log probability of the
data.

e We lose by the slackness of the bound.

e The higher layers learn a prior that is closer to the
aggregated posterior distribution of the first hidden layer.

— This improves the network’s model of the data.

* Hinton, Osindero and Teh (2006) prove that this
Improvement is always bigger than the loss.

A stack of RBM’s

Each RBM has the same subscript as
its hidden layer.
Each RBM defines its own distribution PL

over Its visible vectors

ZeXp(_E(h—l’ h))
R(h-y) = Z P,

Each RBM defines its own distribution
over its hidden vectors

hlzexp(—E(h—r h)) P
R(h)= Z

The variational bound

Each time we replace the prior over the hidden units by a better

prior, we win by the difference in the probability assigned
|=L-1

log p(v) = log R (v) + > <Iog R.1(h)-logR(h) >Q(h||v)

=1

Now we cancel out all of the partition functions except the top one
and replace log probabilities by goodnesses using the fact that:

G(v) =log) exp(-E(v,h))
h

G(h) =log) expCE(v,h))

logR (x) =G (x) —log Z,

|=L-1

09p() 2 G+ Y. (Ga(h)=G())op ~109ZL

=1
This has simple derivatives that give a more justifiable

fine-tuning algorithm than contrastive wake-sleep.

Using backpropagation for discriminative
fine-tuning

* Greedily learning one layer at a time scales well to really
big networks, especially if we have locality in each layer.

 We do not start backpropagation until we already have
sensible weights that already do well at the task.

— So the initial gradients are sensible and backprop only
needs to perform a local search.

* Most of the information in the final weights comes from
modeling the distribution of input vectors.

— The precious information in the labels is only used for
the final fine-tuning. It slightly modifies the features. It
does not need to discover features.

First, model the distribution of digit images

The top two layers form a restricted 2000 units

Boltzmann machine whose free energy

landscape should model the low I

dimensional manifolds of the digits.
The network learns a density model for 500 units
unlabeled digit images. When we generate I 1
from the model we often get things that look :
like real digits of all classes. 500 units
But do the hidden features really help with I l
digit discrimination? 28 x 28

: Ixel

Add 10 softmaxed units to the top and do Plxe
backpropagation. mage

Results on permutation-invariant MNIST task

« Very carefully trained backprop net with 1.6%
one or two hidden layers (Platt; Hinton)

« SVM (Decoste & Schoelkopf) 1.4%

* Generative model of joint density of 1.25%
Images and labels (+ generative fine-tuning)

* Generative model of unlabelled digits 1.15%
followed by gentle backpropagation

Summary so far

Restricted Boltzmann Machines provide a simple way to
learn a layer of features without any supervision.

Many layers of representation can be learned by treating
the hidden states of one RBM as the visible data for
training the next RBM (a composition of experts).

This creates good generative models that can then be
fine-tuned.

— Backpropagation can fine-tune discrimination.
— Contrastive wake-sleep can fine-tune generation.

The same ideas can be applied to high-dimensional
sequential data.

Deep Autoencoders
(Ruslan Salakhutdinov)

 They always looked like a really
nice way to do non-linear
dimensionality reduction:

— But it is very difficult to
optimize deep autoencoders
using backpropagation.

 We now have a much better way
to optimize them:

— First train a stack of 4 RBM'’s
— Then “unroll” them.
— Then fine-tune with backprop.

28x28
T
W T
1000 neurons
=
W, 1]
500 neurons
=
W][
250 neurons
A
30
W, I
250 neurons
W, i
500 neurons
W, '
1000 neurons
W, 1

28x28

A comparison of methods for compressing
digit images to 30 real numbers.

real
data

30-D
deep auto

30-D logistic
| PCA

J@ 30-D
& PCA

Do the 30-D codes found by the
autoencoder preserve the class
structure of the data?

 Take the 30-D activity patterns in the code layer
and display them in 2-D using a new form of
non-linear multi-dimensional scaling (UNI-SNE)

 Will the learning find the natural classes?

=25

=0

15

10

=10

-15

-Z0

-Z5

entirely

- unsupervised
except for the

colors

