
CSC236H1F Lecture Summary for Week 10 Fall 2015

Deterministic Finite State Automata (DFA or DFSA)

DFA/DFSA: A DFA is a quintuple (Q,Σ, q0, F, δ) where Q is a fixed, finite, non-empty set of states. Σ is a
fixed (finite, non-empty) alphabet (Q∩Σ = {}). q0 ∈ Q is the initial state. F ⊆ Q is the set of accepting (“final”)
states. δ : Q × Σ → Q is a transition function (i.e., for each q ∈ Q, a ∈ Σ, δ(q, a) is the next state of the DFA
when processing symbol a from state q)

Given a state and a single input symbol, a transition function gives a new state. Extended transition
function δ∗(q, s) gives new state for DFA after processing string s ∈ Σ starting from state q ∈ Q. It can be
defined recursively, as follows:

δ∗(q, s) =

 q if s = ε (empty)

δ(δ∗(q, s′), a) if s = s′a for some s′ ∈ Σ∗ and a ∈ Σ

Example 1. Remember our vending machine example from the previous session

0 5 10 15 20 25 30+

n 5 10 15 20 25 30+ 30+

d 10 15 20 25 30+ 30+ 30+

q 25 30+ 30+ 30+ 30+ 30+ 30+

For this machine, we have:

δ∗(5, ndn) = δ(δ∗(5, nd), n) = δ(δ(δ∗(5, n), d), n) = δ(δ(δ(δ∗(5, ε), n), d), n)

= δ(δ(δ(5, n), d), n) = δ(δ(10, d), n) = δ(20, n) = 25

Acceptance: A string s ∈ Σ∗ is accepted by a DFA A iff δ∗(q0, s) ∈ F ; otherwise, s is rejected. The language
accepted by a DFA A is defined as

L(A) = {s ∈ Σ∗ : A accepts s (i.e., δ∗(q0, s) ∈ F )}

Example 2. Come up with a DFA that accepts L = {s ∈ {a, b}∗ : s contains an even number of a’s}.
In the DFA the states should represent the information about the string processed so far. In this case, only need
to remember if number of a’s seen so far is even or odd, so only need two states “even” and “odd”. Before reading
any symbol, the number of a’s processed so far is 0, which is even. Hence, the initial state should be even. We
want the DFA to accept the strings in L (strings with even number of a). Hence, we should choose even to also
represent our accepting state.

To represent transition function, transition diagrams are a useful notation. Each state represented by a node
(hallow circle), transitions represented by directed edges labelled with input symbol (i.e., δ(q, a) = q′ represented
by edge from q to q′ labelled with a). Initial state has an in-edge, and accepting states have double circles for
nodes.

evenstart odd

a

b

a

b

Therefore we can describe the following transition function for the DFA represented by the transition diagram.
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δ(even, a) = odd, δ(even, b) = even

δ(odd, a) = even, δ(odd, b) = odd

Let’s call the DFA associated with the above transition diagram A. We have to prove that L(A) = L.

Proof. In order to prove L(A) = L, we just need to prove the following state invarance.

δ∗(even, s) =

 even if s contains even number of a’s

odd if s contains odd number of a’s

We will prove this by induction on |s|.

Base Case: δ∗(even, ε) = even and ε contains an even number of a’s (zero is even). Hence, state invariance holds
for s = ε.

Induction Step: Suppose n ∈ N and state invariance holds for all s ∈ Σn (IH) –recall that Σn is the set of all
strings of length n over Σ. We want to show that state invariance holds for all s ∈ Σn+1.

Suppose s ∈ Σn+1. Since n ≥ 0, n + 1 ≥ 1 so s = t ◦ c for some t ∈ Σn and c ∈ Σ. Then, by definition,
δ∗(even, s) = δ(δ∗(even, t), c). Consider the possible values of δ∗(even, t).

Case 1: Suppose δ∗(even, t) = even. Then, t contains an even number of a’s (by the IH, since t has length n).
Consider the possible values of c.

Subcase A: Suppose c = a. Then δ∗(even, s) = δ(even, a) = odd, and s = t ◦ a contains an odd number of a’s
(since t contains an even number).

Subcase B: Suppose c = b. Then δ∗(even, s) = δ(even, b) = even, and s = t ◦ b contains an even number of a’s
(same as t). In both subcases, state invariance holds.

Case 2: Suppose δ∗(even, t) = odd. Then, t contains an odd number of a’s (by the IH, since t has length n).
Consider the possible values of c.

Subcase A: Suppose c = a. Then δ∗(even, s) = δ(odd, a) = even, and s = t ◦ a contains an even number of a’s
(since t contains an odd number).

Subcase B: Suppose c = b. Then δ∗(even, s) = δ(odd, b) = odd, and s = t ◦ b contains an odd number of a’s
(same as t). In both subcases, state invariance holds. We can conclude, in both cases, state invariance holds.
Hence, by induction, state invariant holds for all strings s ∈ Σ∗.

NOTE: The proof has one case for each possible state and one sub-case for each possible input symbol.

From state invariant, we can now conclude:

• If A accepts s, then δ∗(even, s) = even so by state invariance, s contains an even number of a’s, i.e., s ∈ L.

• If A rejects s, then δ∗(even, s) = odd so by state invariance, s contains an odd number of a’s, i.e., s /∈ L.

Hence, A accepts s iff s ∈ L, i.e., L(A) = L.

Exercise. See textbook for other detailed examples.
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To simplify transition diagrams, we will introduce the following additional conventions:

• Combine multiple transitions from one state to another labelled with different input symbols into one edge
with a compound label consisting of symbols separated by commas; (e.g., for vending machine’s DFA, instead
of having three edges from state 25 to state 30 – one for each input symbol n, d, q – have single edge with
label “n,d,q”)

• Dead states (states from which an accepting state can never be reached) are not drawn. Be Careful! With
this additional convention, a “missing” transition in a diagram does NOT mean DFA stays in that state: it
means DFA goes to dead state and rejects.

Example 3. DFA to accept floating-point numbers of the form +/− n or +/− n.m, where n and m are decimal
integers (non-empty strings over the digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}). E.g., +3.0, +2, −0.01 are acceptable but 3.,
−.5, 4.2.3, −− 1 are not.

q0start q1 q2 q3 q4
+,− 0− 9

0− 9

. 0− 9

0− 9

Note that we have used 0− 9 for 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 in the above diagram.

Consider how the above DFA processes − − 1. The DFA starts in state q0 and after processing the − sign,
it will jump to state q1. Then, it processes the other − sign; however, there is no transition associated with this
input in the diagram. In other words, the DFA has gone to a dead state. Hence the DFA rejects −− 1.

Regular Expressions

Regular expressions describe sets of strings using a small number of basic operators.

Regular Expression: The set of regular expressions (regexps or REs) over alphabet Σ is defined as (with usual
convention {} /∈ Σ, ε /∈ Σ):

• {} (empty set symbol), ε (empty string symbol) are regexps

• a is a regexp for all symbols a ∈ Σ

• if R and S are regexps over Σ, then so are:

– R+ S (union) – lowest precedence

– RS (concatenation)

– R∗ (star) – highest precedence

• nothing else is a regexp over Σ

Remark. This should look familiar: it is a recursive definition of the type we used when we were discussing
structural induction.
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L(R): For each regexp R, recursively define the language described by R (L(R)) as follows:

• L({}) = {}

• L(ε) = {ε}

• L(a) = {a} for every symbol a ∈ Σ

• If R is a regular expresssion then either R = (S + T ), or R = ST or R = S∗ for some regular expressions S
and T . Then:

– L(S + T ) = L(S) ∪ L(T )

– L(ST ) = L(S) ◦ L(T )

– L(S∗) = L(S)~

Remark. This definition is weaker (more limited) than set of regular expression operators commonly found in
programming libraries and UNIX command-line utilities. That’s because they are expanded versions with additional
operations.

Remark. Why do we need regexps when we have operations on languages? The idea is to study what types of
languages can be defined with restricted set of operations.

Example 4. Examples of regular expressions:

• L(a+ b) = {a, b}

• L(ab) = {ab}

• L((a+ b)a) = {aa, ba} = L(aa+ ba)

• L(a∗) = {ε, a, aa, aaa, · · · } (zero or more repetitions of a)

• L(aa∗) = {a, aa, aaa, · · · } = L(a∗a) (one or more repetitions of a)

• L((ab)∗) = {ε, ab, abab, ababab, · · · } (zero or more repetitions of ab)

• L(a∗b∗) = {ε, a, aa, aaa, · · · , b, ab, aab, aaab, ..., bb, abb, aabb, · · · } (any number of a’s followed by any number
of b’s)

• L((a+ b)∗) = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, · · · } (zero or more repetitions of a’s or b’s,
i.e., every string of a’s and b’s)

• L(a∗ + b∗) = {ε, a, b, aa, bb, aaa, bbb, aaaa, bbbb, · · · } (every string consisting entirely of a’s or entirely of b’s)

• L((a+ b)(a+ b)∗) = {a, b, aa, ab, ba, bb, · · · } (every nonempty string of a’s and b’s)

• L(a(ba+ c)∗) = {a, aba, ac, ababa, abac, acba, acc, · · · }

• All strings of a’s and b’s that have the same first and last symbol: ε+ a+ b+ a(a+ b)∗a+ b(a+ b)∗b

• RE for L = {all strings of a’s and b’s that contain at least one a}: (a+ b)∗a(a+ b)∗ or b∗a(a+ b)∗ or (a+
b)∗ab∗
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