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ABSTRACT

In this paper, a new multiplicative image watermarking sys-

tem is presented. As human visual system is less sensitive

to the image edges, watermarking is applied in the contourlet

domain, which represents image edges sparsely. In the pre-

sented scheme, watermark data is embedded in the most en-

ergetic directional subband. By modeling General Gaussian

Distribution (GGD) for the contourlet coefficients, the distri-

bution of watermarked noisy coefficients is analytically cal-

culated. At the receiver, based on the Maximum Likelihood

(ML) decision rule, the optimal detector is proposed. Ex-

perimental results show the imperceptibility and high robust-

ness of the proposed method against Additive White Gaussian

Noise (AWGN) and JPEG compression attacks.

Index Terms— Multiplicative image watermarking, con-

tourlet transform, maximum likelihood detector

1. INTRODUCTION

Digital watermarking is progressively applied to several pur-

poses such as broadcast monitoring, data authentication, data

indexing, and secret communication [1]. A digital water-

mark must have special features to guarantee desired func-

tionalities. Perceptual transparency, data rate and robustness

against attacks are three major requirements of any water-

marking system. However, depending on the application, the

importance of these features varies. For example, for secret

communication the robustness against the noise and data rate

are the most important features while for data authentication,

imperceptiblity and robustness against different processing

attacks are the most significant ones.

Multiplicative watermarking is one of the most popular

approaches for copy right protection where the watermark is

served as a verification code. Since this technique is image

content dependent, higher robustness is achieved than other

techniques such as additive watermarking methods. The cor-

relation detector is used for multiplicative watermarking in

[2]; however, this type of detection is not suitable when the

watermarking is performed in the transform domain. Hence,

for the Barnie’s multiplicative watermarking method in the

transform domain [1], several optimum and locally optimum

decoders have been proposed so far [3],[4]. In [3], a robust

optimum detector for the multiplicative rule yi = xi(1 +
αiwi) in the DCT, DWT and DFT domains is proposed.

In this paper, in order to achieve better robustness spe-

cially against AWGN and JPEG compression attacks, the

multiplicative watermarking approach in the contourlet trans-

form domain is used. It is noteworthy that since in our

application, the watermark serves as a transmission code

not a verification one, we adopt a new multiplicative wa-

termarking scheme to embed message bits. The contourlet

coefficients are multiplied by two special functions depend-

ing on the value of the watermark bits. For data extraction,

similar to [1],[5], the ML detector has been used. To this

aim, the density function of the noisy contourlet coefficients

is analytically computed. In order to decrease the complex-

ity of the receiver, the distribution of these coefficients are

approximated with a suitable function. Under this estima-

tion, the optimum threshold of the proposed multiplicative

watermarking method is evaluated.

2. SYSTEM MODELING

As natural images are not simply stacks of 1-D piecewise

smooth scan-lines and have many discontinuity points along

smooth curves and contours, many directional image repre-

sentations have been proposed such as curvelet and contourlet

[6]. Implementing the idea of combining subband decompo-

sition with a directional transform, Do and Vetterli [6] intro-

duced a multi-directional and multi-scale transform, known as

the contourlet transform, which consists of two major stages:

the subband decomposition and the directional transform.

As studied in [7], contourlet coefficients are well modeled

by i.i.d. random variables with Generalized Gaussian Distri-

bution (GGD):

GGσx,β(x) = C(σx, β)e−[α(σx,β)|x|]β

,−∞ < x < ∞, σx > 0, β > 0 (1)

where α(σx, β) = σ−1
x [

Γ( 3
β )

Γ( 1
β )

]
1
2 , C(σx, β) = βα(σx,β)

2Γ( 1
β )

, and
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σx is the standard deviation of x, β is the shape parameter,

and Γ(t) =
∫ ∞
0

e−uut−1 du is the Gamma function.

In our watermarking approach, as will be discussed in the

next section, the contourlet coefficients x is multiplied by a

monotonous strength function f(x). Thus, if we show the

watermarked coefficients by w, we have w = xf(x). As dis-

cussed in the next section, the f(x) is selected in such a way

that this xf(x) function is still monotonous in the practical

range of x. Therefore, the distribution of y can be defined as:

P (w) =
P (x)

xf ′(x) + f(x)
(2)

At the receiver, we receive the coefficients attacked by noise

or other kinds of attacks. We assume that the attacked noise

is zero mean AWGN with the distribution of N(0, σ2
n). Thus,

the received coefficients are y = w + n. Since the con-

tourlet coefficients are considered to be independent of the

noise term, we have P (y) = P (w) ∗ P (n), where ∗ is the

convolution operator. Thus, considering the GG distribution

of contourlet coefficients x, we have:

P (y) =
∫ ∞

−∞

Ce−[α|g(z)|]β

g(z)f ′(g(z)) + f(g(z))
· 1√

2πσ2
n

e
− (y−z)2

2σ2
n dz

(3)

where g(x) is the inverse function of the w = xf(x) in the

practical range of x; that is, g(w) = x.

To find a closed form answer for P (y), we estimate the

Gaussian function with a triangular function, as follows:

ΛG(x) =

⎧⎪⎨
⎪⎩

−x+3σn

9σ2
n

0 < x ≤ 3σn
x+3σn

9σ2
n

−3σn ≤ x < 0
0 |x| > 3σn

(4)

Then, substituting this function in (3), and using the trape-

zoidal rule, we can compute the integral as:

P (y) � 3σn

2
· [...

...
K(y + 3σn

2 )ΛG(− 3σn

2 ) + K(y + 3σn)ΛG(−3σn)
2

+
K(y)ΛG(0) + K(y + 3σn

2 )ΛG(− 3σn

2 )
2

+
K(y)ΛG(0) + K(y − 3σn

2 )ΛG( 3σn

2 )
2

+
K(y − 3σn

2 )ΛG( 3σn

2 ) + K(y − 3σn)ΛG(3σn)
2

] (5)

where,

K(y) =
Ce−[α|g(y)|]β

g(y)f ′(g(y)) + f(g(y))
(6)

Then, after some simplifications, (5) is converted to:

P (y) � 1
2
[
K(y − 3σn

2 )
2

+ K(y) +
K(y + 3σn

2 )
2

] (7)

Fig. 1. The distribution function of the noisy watermarked

contourlet signal, P(y) (3), compared with the five point (5)

estimation.

To verify the accuracy of the estimation used in calcula-

tion of P (y) in (7), we have simulated this estimation along

with (3) in Fig. 1 for an example case of β = 1.2, σx = 50,

and σn = 20. As we can see, the estimation is well matched

with the exact density function.

3. PROPOSED METHOD

3.1. Watermark Embedding

Imperceptibility of the watermarking algorithm is commonly

achieved by exploiting the weaknesses of the HVS. For this

purpose, we utilize N blocks with the highest entropy of the

image to embed the watermark code.

We then apply the contourlet transform to each selected

block. Then calculating the energy of the coefficients in each

directional subband of the finest scale, we choose the direc-

tional subband with the highest energy for embedding pur-

pose. This way, we hide the code in the most significant di-

rection of each block. We embed a single bit of ’0’ or ’1’

to each block by manipulating the contourlet coefficients xi

in this significant directional subband based on the following

strategy:

wi =
{

xi · f1(xi) For embedding 1

xi · f0(xi) For embedding 0
(8)

where f1(x) and f0(x) are strength functions which are cho-

sen to be monotonous exponentially functions. To achieve the

best performance, we define them as follows:

f1(x) = −0.3e−0.2|x| + 1.65; (9)

f0(x) = 0.15e−0.2|x| + 0.65; (10)

f1(x) is the exponentially ascending function for x > 0
which is larger than one and f0(x) is the exponentially de-

scending function for x > 0 which is smaller than one.

These functions are chosen exponentially in order that larger

coefficients changes more than smaller ones during the wa-

termarking process, as the larger coefficients are related to

the strong edges in the supposed directional subband. How-

ever, as we mentioned in Section 2, these functions must be
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defined in a way that the monotony of xf(x) is satisfied for

the practical range of x. The proposed functions in (10), (9)

satisfy these condition and xf0(x) and xf1(x) are ascending

monotonous function.

By applying the inverse contourlet transform, we recon-

struct the watermarked block. Repositioning each block in its

position in the image, we create the watermark embedded im-

age. The block positions and the GGD parameters (σx and β)

should be sent along with the watermarked image.

3.2. Watermark Detection

For detecting the watermark data in each block, we suggest a

detection scheme based on an optimum detector.

Suppose that xi represents the contourlet coefficients of

the most energetic directional subband of a specific block.

As discussed in Section 2, we considered these coefficients

to have an iid GG distribution. Besides, we approximated

the distribution of the watermarked coefficients attacked by

AWGN by (7).

In order to have ML decision we must have:

P (y1, y2, ..., yN |1) ≷1
0 P (y1, y2, ..., yN |0) (11)

where the left term is the distribution of the coefficients in a

specific block with N coefficients for ’1’ embedding and the

right term is the same distribution for ’0’ embedding. Consid-

ering the iid distribution of the contourlet coefficients, these

distributions are defined as:

P (y1, ..., yN |1) =
N∏

i=1

K1(yi − 3σn

2 ) + 2K1(y)i + K1(yi + 3σn

2 )
4

P (y1, ..., yN |0) =
N∏

i=1

K0(yi − 3σn

2 ) + 2K0(yi) + K0(yi + 3σn

2 )
4

(12)

where, K1(y) and K0(y) are computed using (6) by the

strength functions f1(x) and f0(x), respectively.

By inserting (12) in (11) we can find the watermarked bit

using the optimum detector.

As we can see, the best decision depends on the noise

standard deviation in the supposed directional subband, σn.

To estimate this parameter, we can use a Monte-Carlo method

as suggested in [7].

For the noise free environment, (11) can be simplified

more as:

N∑
i=1

[(α|g0(yi)|)β − (α|g1(yi)|)β ] ≷1
0 T (13)

where,

T =
N∑

i=1

ln
g1(yi)f ′

1(g1(yi)) + f1(g1(yi))
g0(yi)f ′

0(g0(yi)) + f0(g0(yi))

(a) Original Image

(b) Watermarked Image

Fig. 2. Original and watermarked test images; Left to right:

Baboon, Barbara, Bridge, and Couple

where, g1(y) and g0(y) are the inverse functions of xf1(x)
and xf0(x), respectively.

Considering (1), we need to estimate the standard devia-

tion σx and the shape parameter β of the GGD function for

the supposed directional subband in each block. The β para-

meter can be found using the kurtosis of the GGD. To find the

σx parameter we suggest an estimator which is fitted for our

ML detector.

Suppose we have N GGD coefficients in the current sub-

band. Thus, the distribution of these coefficients can be de-

fined as:

P (β, σx;x) =
N∏

i=1

GG(xi) (14)

By applying a logarithm function to both sides, we have:

L(β, σx;x) = N lnC(σx, β) − α(σx, β)β
N∑

i=1

|xi|β (15)

Computing the root of
∂L(β,σx;x)

∂σx
= 0, we have:

σ̂x = [
Γ( 3

β )

Γ( 1
β )

]
1
2 (

β

N

N∑
i=1

|xi|β)
1
β (16)

4. SIMULATION RESULTS

We have performed several experiments to test the proposed

algorithms and evaluate its performance against AWGN and

JPEG attacks which are common in our application. For the

contourlet transform, we use the 9-7 biorthogonal filters with

three levels of pyramidal decomposition for the multiscale de-

composition stage and the PKVA filters used in [6] for the

multidirectional decomposition stage. We partition the finest

scale to eight directional subbands. All the results are ob-

tained by averaging over 20 runs with 20 different pseudoran-

dom binary sequences as the watermarking signal.

For this study, we use various natural images of size

512×512. These images consist of Baboon, Barbara, Bridge,
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(a) (b)

Fig. 3. (a) AWGN attack for various noise variances. (b)

JPEG compression attack for various quality factors.

(a) (b)

Fig. 4. Comparison between our watermarking method and

(a) MWT-EMD method [8]: BER (%) under AWGN attack.

(b) ECPM method [9] : BER (%) under AWGN attack for

σ2
n = 5 with different message lengths.

and Couple. The original test images and their watermarked

version using the proposed method are shown in Fig. 2.

The mean Peak-Signal-to-Noise-Ratio (PSNR) of the water-

marked images are 39.53dB, 36.63dB, 42.40db, and 42.48dB,

respectively. We segment the image to 16 × 16 blocks; thus,

we have a 128 bit date rate.

In the first experiment, we investigate the effect of AWGN

to the proposed watermarking scheme. Fig. 3(a) shows the

Bit Error Rate of the proposed method for various images

versus different noise power. As we expect, the method has

a great resistance against noise attack. This is because the

receiver is optimized for noisy environment.

In the second experiment, the proposed technique is tested

against JPEG compression with different quality factor. As

demonstrated in Fig 3(b), the proposed method is highly ro-

bust against JPEG with different quality factor up to 10%.

To compare our watermarking algorithm with other wa-

termarking schemes, we use the same bit rate and PSNR as

the bit rate and PSNR used in other techniques. The simula-

tion results are shown in Fig. 4. We see that the robustness

of our method against AWGN attack are considerably better

than Multiband Wavelets and Empirical Mode Decomposition

(MWT-EMD) [8] and Ergodic Chaotic Parameter Modulation

(ECPM) [9] methods as our detector is optimized for the noisy

environment.

5. CONCLUSION

In this paper, we have presented a new robust multiplica-

tive image watermarking technique in the contourlet trans-

form domain. Since the contourlet transform concentrates

the image’s energy in the limited number of edge coefficients,

using multiplicative approach in this domain yields high ro-

bustness accompanied by great transparency. We model the

distribution of contourlet coefficients by GGD. Then, the dis-

tribution of watermarked noisy coefficients are calculated an-

alytically. Using ML decision rule, the optimum detector

has been proposed. The optimal detector guarantees the sug-

gested method is well suited for high noisy environment. Ex-

perimental results over several images confirm the impercep-

tibility and the excellent robustness of the proposed method

in comparison with other reported techniques.
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