1

Programming Hierarchical Task Networks
in the Situation Calculus

ALFREDO GABALDON

ABSTRACT. Hierarchical Task Networks (HTNs) is a successful approach for plan-
ning where domain specific knowledge is used in order to make the search for plans
more efficient. Similarly, high-level action programming languages like Golog provide
a way to use procedural domain knowledge as a search control mechanism in plan-
ning. In this work, we present a systematic encoding of HTNs into Golog/ConGolog,
allowing one to use both forms of search control under the same framework and also
shedding some light on the relationship between the two formalisms.

Foreword

Some years ago, on Hector’s suggestion' a research effort was begun that has resulted in the
Golog family of action programming languages and the new field of Cognitive Robotics.
It also led to the creation of the Cognitive Robotics Group where as a student I had the
fortune of interacting with and learning from Hector. I am pleased to make a contribution
to this collection in honor of Hector’s 60th birthday.

1 Introduction

Recognizing the intractability of domain-independent planning, researchers have proposed
various approaches to take advantage of frequently available domain specific knowledge,
to speed up the search for a plan. One of these approaches is Hierarchical Task Network
planning, which originated in the work of Sacerdoti [Sacerdoti 1974] and Tate [Tate 1977].
This approach, to which we will refer to as HTN-planning, computes a set of primitive
actions or operators just as in (classical) planning. However, instead of a goal condition to
be achieved by the actions, in HTN-planning problem is described as a set of tasks to be
performed. The domain specific knowledge is provided in the form of task decomposition
directives, that is, the HTN-planning system is given a set of methods that tell it how a high-
level task can be decomposed into lower-level tasks. The HTN-planning problem is solved
when a sequence of primitive tasks is found that corresponds to performing the original set
of tasks.

The intractability of classical planning, in particular for high-level robotic control, was
one of the motivations [Levesque and Reiter 1998] behind the introduction of the action
programming language Golog [Levesque, Reiter, Lespérance, Lin, and Scherl 1997]. In this
approach, instead of relying on classical planning, high-level control is driven by programs
written in a language with procedural constructs like conditionals, loops and procedure
definitions and calls, and whose primitive statements are actions from an underlying action

las recounted in [Reiter 2001].

Alfredo Gabaldon

theory. Although there is more to these programs, one way to see them is as providing a
means to give the robot a more specific idea of how to do what it needs to do.

Yet another approach was advanced by Bacchus and Kabanza [2000] in their TLPlan
planning system. Their approach consists in providing a planning system with domain spe-
cific knowledge in the form of Linear Temporal Logic formulae, to help the system discard
early some of the unpromising partial plans. Here we will not consider this approach, but
see Section 5 for some comments on related work.

Our aim here is to look at the relationship between HTN-planning and high-level ac-
tion programming languages such as Golog. More specifically, we present an encoding of
HTN-planning problems in Golog and ConGolog [De Giacomo, Lesperance, and Levesque
2000]—an extension of Golog with concurrency and interrupts. In addition to the formal
result itself showing that HTN-planning can be embedded into Golog, there are several
practical benefits from the embedding. One obvious benefit is that instead of having to
manually re-encode knowledge given in the form of an HTN, one can use the systematic
encoding introduced here to incorporate or mix it with procedural knowledge given in the
form of Golog programs. Second, the encoding brings to HTN-planning a considerable
set of new features which have been formalized and are available in the Golog family of
languages. For instance: explicit time, sensing actions, exogenous events, execution mon-
itoring, incomplete information about the initial state and stochastic actions, to mention
a few, all within a single, coherent logical framework. Thus the range of problems that
can be tackled potentially becomes much larger. As an illustration of this, we will use the
ConGolog encoding of a logistics domain HTN, and add to it run-time package delivery
requests (exogenous actions).

2 Preliminaries
2.1 The Situation Calculus

The Situation Calculus [McCarthy 1963] is a logical language for describing and reasoning
about dynamic worlds. It has three main components which are used to talk about change in
a dynamic world: actions, which are assumed to be the cause of all change in the world and
are treated as first-class objects in the language; situations, which correspond to possible
states the world may evolve into and are also treated as fist-class objects; and fluents, rela-
tions or functions representing the properties of the world that change as the world evolves
due to the occurrence of actions.

In this work we use the particular axiomatization of the Situation Calculus that has
been developed by Levesque, Reiter and their colleagues and students in the Cognitive
Robotics group at the U. of Toronto [Reiter 1991; Levesque, Pirri, and Reiter 1998; Reiter
2001]. This axiomatization uses a classical logic language with sorts action, situation
and object. A special constant Sy is used to denote the initial situation, and the function
symbol do of sort (action, situation) — situation is used to represent situations that
result from executing actions, that is, a term do(«, o), where « is an action term and o a
situation term, represents the situation that results from doing « in situation o. By nesting
function do, it is possible to build sequences of actions. For instance, a sequence consisting
of actions a1, as, as is represented by the term do(as, do(az, do(a1, So))).

Fluents are represented by means of relations F'(Z, s) where & is a tuple of arguments of
sorts object or action and the last argument, s, is always of sort situation. For example,
a fluent atTruck(trk,loc, s) could be used to represent the location loc of a tuck ¢rk in

Programming HTNss in the Situation Calculus

situation s.

Function symbols of sort object — action are used for terms A(Z) that represent action
types. For instance, a function loadTruck(obj, trk) could be used to represent the action
of loading an object obj onto a truck trk. They are called action fypes because a single
function symbol can be used to create multiple instances of an action, e.g. the instances
loadTruck(Boxy,Trky), loadTruck(Boxo, Trks), etc. We will use ag, as, ... to denote
action variables, a1, s, . . . to denote action terms, and s1, s, . . . to denote situation vari-
ables.

A Basic Action Theory D consists of the following sets of axioms (variables that appear
free are implicitly universally quantified. & denotes a tuple of variables z1, ..., x,):

1. For each action type A(Z), there is exactly one Action Precondition Axiom (APA)
of the form:

Poss(A(Z),s) =114 (Z, s)

where variable s is the only term of sort situation in formula IT4 (%, s). The latter
formula represents the conditions under which an action A(Z) is executable. The
restriction that the only situation term mentioned in this formula be s intuitively
means that these preconditions depend only on the situation where the action would
be executed.

2. For each fluent F'(Z, s), there is exactly one Successor State Axiom (SSA) of the
form:

F(Z,do(a,s)) = ®r(Z,a,s)

where s is the only term of sort situation in formula ® 7 (Z, a, s). This formula rep-
resents all and the only conditions under which executing an action « in a situation s
causes the fluent to hold in situation do(a, s). These axioms embody Reiter’s solution
to the frame problem [Reiter 1991; Reiter 2001].

3. The Initial Database Dg, which is a finite set of sentences whose only situation
term is Sy and describe the initial state of the domain, i.e. before any actions have
occurred. Any sentence is allowed as long as the only situation term that appears
in it is Sy, so one can write sentences such as (Jbox)atLoc(box, L, Sp), reflecting
incomplete information about the initial state of a domain.

4. The Foundational Axioms X which define situations in terms of the constant .5y and
the function do. Intuitively, these axioms define a tree-like structure for situations
with Sy as the root of the tree. They also define relation C on situations. Intuitively,
s C s’ means that the sequence of actions s is a prefix of sequence s’.

5. A set of unique names axioms (UNA) for actions. For example,

loadTruck(o,t) # driveTruck(t,ly,12),
loadTruck(o,t) = loadTruck(o',t') D (o =0 ANt =1t')

Alfredo Gabaldon

EXAMPLE 1. Through out this chapter we will use the well known logistics domain as
an example. In this domain, there are objects that need to be moved between locations
by truck or plane. Cities contain different locations some of which are airports. Primitive
actions include loading/unloading an object onto a truck or plane, driving a truck and flying
a plane. A basic action theory for this domain is comprised of a set of axioms that includes
the following:

Action Precondition Axioms:

Poss(loadTruck(o, tr), s) = (A).atTruck(tr,l,s) A atObj(o,l, s),
Poss(unloadTruck(o,tr), s) = inTruck(o, tr, s),
Poss(loadAirplane(o,p), s) = (31).atObj(o,1, s) A atAirplane(p, 1, s),
Poss(unloadAirplane(o,p), s) = inAirplane(o,p, s),

Poss(driveTruck(tr, or,de), s) = atTruck(tr, or, s) A (3c).inCity(or, c)A
inCity(de, c).

Poss(fly(p,or,de), s) = atAirplane(p, or, s) A airport(de).

Successor State Axioms:

atObj(o,1,do(a, s)) = (3tr)[a = unloadTruck(o,tr) A atTruck(tr,l, s)] V
(3p)[a = unloadAirplane(o, p) A at Airplane(p, 1, s)] V
atObj(o,1, s) A =(3tr)a = loadTruck(o, tr) A
—(3p)a = load Airplane(o, p).

atTruck(tr,l,do(a, s)) = (Jor)a = driveTruck(tr, or,l) V
atTruck(tr,l,s) A =(Jor, de)a = driveTruck(tr, or, de),

at Airplane(p, ap, do(a, s)) = (Joap)a = fly(p, oap, ap) V
at Airplane(p, ap, s) A =(Joap, dap)a = fly(p, oap, dap),

inTruck(o,tr,do(a, s)) = a = loadTruck(o,tr) V
inTruck(o,tr, s) A a # unloadTruck(o, tr),

inAirplane(o, p,do(a, s)) = a = load Airplane(o,p) V
inAirplane(o, p, s) A a # unloadAirplane(o, p).

Initial situation. These would include sentences such as:

Programming HTNss in the Situation Calculus

atAirplane(p,l, So) = p = Plane; ANl = Locs 1 V p = Planea ANl = Locy 1.
atTruck(t,l,S0) =t =Truckiy ANl = Locig Vit =Trucks1 ANl =Loca1 V...
airport(loc) = loc = Locy 1 V loc = Locg 1 V loc = Locg 1 V . ..

inCity(l,c) =1 = Loci11 ANc=Clity; VI = Locg1 Ne=Clitya V ...

atObj(p,1, So) = p = Packagey Nl = Locs 3V p = Packagea Nl = Locs 1 V ...

The above set of axioms is almost a complete basic action theory for the logistics do-
main. The only axioms missing are the domain independent foundational axioms and the
unique names axioms for actions. Note that the initial situation includes non-fluent relations
such as airport(loc) and inCity(l, c¢). It may also include other “utility” sentences such as
formulae specifying that different constants denote different objects, e.g. Locy,1 # Locy 2.

Basic action theories in the Situation Calculus is one of the established formalisms for
reasoning about actions. It has been used to formalize various reasoning problems in terms
of logical deduction, including the classical planning problem: given a basic action theory,
D, describing the planning domain and including a description of the initial state, and given
also a goal formula G(s), the planning problem is specified in terms of logical entailment
as follows:

D [(3s).executable(s) A G(s)

where executable(s) intuitively means that the situation s, i.e. the plan, includes only
actions whose preconditions are satisfied.

2.2 Golog and ConGolog

The high-level action programming languages Golog [Levesque, Reiter, Lespérance, Lin,
and Scherl 1997] and ConGolog [De Giacomo, Lesperance, and Levesque 2000] are de-
fined on top of a basic action theory and provide a set of programming constructs that allow
one to define compound actions in terms of simpler ones. These constructs are the typical
constructs of an imperative programming language. Golog includes the following:

e Test condition: ¢?. Test whether ¢ is true in the current situation.
e Sequence: 67;do. Execute §; followed by da.
e Non-deterministic action choice: d;|d2. Execute d; or da.

e Non-deterministic choice of arguments: (7z)d. Choose a value for = and execute §
for that value.

e Non-deterministic iteration: 6*. Execute ¢ zero or more times.

e Procedure definitions: proc P(Z) 6 endProc . P(Z) is the name of the procedure, ¥
its parameters, and ¢ is the body.

Alfredo Gabaldon

ConGolog includes the above constructs plus the following:

e Synchronized conditional: if ¢ then 0; else 5.
e Synchronized loop: while ¢ do 6.
e Concurrent execution: &y || da.

e Prioritized concurrency: d1))d2. Execute d; and 5 concurrently but d5 executes only
when 47 is blocked or done.

e Concurrent iteration: /. Execute & zero or more times in parallel.

e Interrupt: ¢ — §. Execute § whenever condition ¢ is true.

EXAMPLE 2. In the logistics domain, moving an object to a new location may be achieved
by transporting it within a city, or it may require flying it to another city. So it may be useful
to define a complex action moveObj (o, loc) that invokes the required actions to move o to
the new location loc.

Such a complex action can be defined as a Golog procedure as follows:

proc moveObj(o, loc)
(7 oloc, ocity).
[atObj (0, oloc) A inCity(oloc, ocity)]? ;
if inCity(loc, ocity) then
inCity Deliver(o, oloc, loc)
else
(m dcity).
inClity(loc, dcity)? ;
(7 oap, dap).
[inClity(oap, ocity) A inCity(dap, dcity)]? ;
inCityDeliver(o, oloc, oaprt) ;
air Deliver (o, oaprt, daprt) ;
inCityDeliver (o, daprt,loc)
endProc

This procedure calls procedures inCityDeliver(---) and airDeliver(- - -) according
to the origin and destination of the object being moved.

ConGolog is clearly a more complex language than Golog, and that is fairly evident
in the logical formalization of the semantics. In fact, the semantics of Golog is defined
through a set of "macros’ that stand for standard Situation Calculus formulae [Levesque,
Reiter, Lespérance, Lin, and Scherl 1997; Reiter 2001]. However, since we will need the
features of ConGolog to encode HTNs with partially ordered tasks and ConGolog includes
all the constructs of Golog, we will only give an overview of the ConGolog semantics.

The formal semantics of ConGolog is defined in terms of a relation Trans(d, s,d’, s")
that defines single computation steps of a program. Intuitively, the relation defines a single
step transition from a configuration 9, s into a configuration ', s’ that results from executing
one step of program ¢ in situation s. An additional relation Final(d,s) defines those
configurations that are terminating, i.e. where the computation may end successfully.

Programming HTNss in the Situation Calculus

The full axiomatization of Trans(d, s,¢’,s') and Final(d, s) can be found in [De Gi-
acomo, Lesperance, and Levesque 2000]. Below we show a sample of the axioms, which
provide some idea of how it captures the semantics of each construct.

Trans(nil, s,0',s") = False,
Trans(a, s, 5’ ’) = Poss(a,s) A& =nil As' = do(a, s),
Trans(¢? 55’ sS)=@ls) N =nil NS’ = s,
Tmns(él,ég,s 8,8 =
(F7)d" = (v; 62) A Trans(d1,s,7v,s") V Final(d1,8) A Trans(da,s,0",s"),

Trans((mv)d, s,d',s") = (Iz)Trans(dY, s, 8, s'),
Trans(if ¢ then §; else d3, 5,0, s') =
o[s] AN Trans(01,s,0',s") V—dls] A Trans(da,s,d’,s'),
Trans(while ¢ do 6, 5,6, s') =
(Fy).(6" =~ ; while ¢ do §) A ¢[s] A Trans(d,s,,s’),
Trans(d1 || d2,s,0',s") =
(3 = (v || 62) A Trans(d1,s,7v,5)] V(I = (61 || v) A Trans(da, s,7, s)].

Final(nil,s) = True,

Final(a, s) = False,

Final(¢?,s) = False,

Final(d1; 92,) = Final(61, s) A Final(da, s),

Final((wx)d, s) = (3x) Final(4, s),

Final(if ¢ then d; else 02, s) = ¢[s] A Final(d1,s) V =p[s] A Final(dz, s),
Final(while ¢ do 0, s) = —¢[s] V Final(9, s),

Final(01 || 92, s) = Final(d1, s) A Final(da, s).

An abbreviation Do(d, s, s"), meaning that executing § in situation s is possible and it
legally terminates in situation s, can then be defined in terms of the transitive closure of
Trans and of relation Fiinal:

Do(3,s,s') < (38").Trans* (6, s,8',8') A Final(§', s').

The axiom defining T'rans*, as well as one of the foundational axioms which recur-
sively defines sequences of actions, requires second order quantification (for details see
[De Giacomo, Lesperance, and Levesque 2000]). The intention with these axiomatizations
is not to use them directly in implementations. The are meant to semantically characterize
dynamic wolds and programs. Nevertheless, under suitable assumptions, various practi-
cal interpreters have been devised. In Section 4 we shall use on of these interpreters to
demonstrate some sample runs with our HTN encoding in ConGolog.

2.3 HTN Planning

In this section we give a brief overview of HTN-planning. Our discussion is based on the
definitions of HTN-planning from [Erol, Hendler, and Nau 1996], where an operational
semantics of HTN-planning is given. HTNs are defined over a first-order language with a
vocabulary consisting of sets symbols for variables, constants, predicates, primitive tasks,

Alfredo Gabaldon

compound tasks, and some other symbols. Here we will take the language from a basic
action theory and just add symbols for compound tasks. The only assumption we need to
make is that the set of constants is finite and denote the elements of the domain. We will
then talk about ground instances of tasks with the usual meaning. Furthermore, instead of
new symbols for primitive tasks, we will use action terms from an underlying basic action
theory as the primitive task symbols. Finally, we use situations instead of state symbols.

A primitive task is an action term A(Z). A compound task is a term of the form
tname(Z) where tname is a compound task (function) symbol. A task network is a pair
(T, ¢) where T is a list of tasks and ¢ a boolean formula of constraints of the forms (¢ < t'),
(t,), (1,¢), (t,1,t'), (v ="2") and (v = ¢) where ¢, ¢’ are tasks from T, [is a fluent literal,
v, v’ are variables and c is a constant. A task network consisting only of primitive tasks is
called a primitive task network. An HTN method is a pair (h,d) where h is a compound
task and d is a task network. Methods are the HTN construct for building complex tasks
from primitive ones.

An HTN planning problem is a tuple (d, s, D) where d is a task network, s is a situation,
and D is a planning domain consisting of a set of methods plus a basic action theory (which
includes an initial database Dg,). The parameter s is the the situation from where planning
starts and in general it can be any situation. If a situation different from the initial situation,
So, is given, then the problem involves planning after some actions have already occurred.
Nevertheless, for brevity, we will only consider problems where the situation parameter is
So. A plan is a sequence of ground primitive tasks.

Let d be a primitive task network, s a situation, and D a planning domain. A sequence
of primitive tasks o is a completion of d in s, denoted by o € comp(d, s, D), if ¢ is a
total ordering of a ground instance of the primitive task network d, it is executable in s and
satisfies the constraint formula in d. For d containing a non-primitive task, comp(d, s, D)
is defined to be the empty set.

Let d be a task network that contains a compound task ¢ and m = (h,d’) be a method
such that € is a most general unifier of ¢ and h. Define reduce(d,t,m) to be the task
network obtained from df by replacing t0 with the tasks #10,...,t;0 from d’ and in-
corporating (see [Erol, Hendler, and Nau 1996] for details) the constraints in d’ with
those in d. Define red(d, D) as the set of all reductions of d by methods of D, that is
red(d,D) = {d’ | tisataskin d, m is a method in d and d’' = reduce(d,t, m)}.

A solution, sol(d, s, D), of a planning problem (d, s, D) is defined recursively as fol-
lows:

soli(d, s, D) = comp(d, s, D)
solpt1(d, s, D) = soln(d, 5, D) UUyereaqa, py 0ln(d', s, D)
sol(d,s,D) =, __ sol,(d,s,D)

n<w

The set sol(d, s, D) contains all plans that can be derived in a finite number of steps.

EXAMPLE 3. The following are methods for a task moveObj(o, loc) for moving an ob-
ject in the logistics domain as described in Example 2. The first method works for moving
an object within the same city. The second is for moving an object between cities.?

2For improved readability, we use the labelling notation ¢; = tname(&) and labels ¢; to refer to tasks.

Programming HTNss in the Situation Calculus

(moveObj(o,loc)

[t = inCityDeliver(o, oloc, loc)]

(atObj(o,0loc), t) A (inCity(oloc, ocity), t) A (inCity(loc, ocity),t)
)

(moveObj(o,loc)
[t1 = inClityDeliver(o, oloc, oaprt),
to = air Deliver(o, oaprt, daprt),
ts = inCityDeliver(o, daprt,loc)]
(atObj(0,0loc),t1) A (inCity(oloc, ocity),t1) A (inCity(loc, deity), t1)A
(inCity(oaprt, ocity), t1) A (inCity(daprt, deity), t1) A
(tl < tg) AN (tg < tg)

)

3 Programming HTNs in Golog/ConGolog

In this section we show how HTN-planning problems can be encoded in Golog/ConGolog.
We will considered two versions of the HTN-planning: totally ordered and partially or-
dered. In totally ordered HTNs, the task networks of all methods must be totally ordered.
Considering totally ordered and partially ordered HTNs separately is interesting because
they have different computational complexity which will indeed allow us to use the simpler
language Golog to encode totally ordered HTNs. Moreover, implemented planning systems
exist for each type of problem, namely, systems SHOP [Nau, Cao, Lotem, and Munoz-Avila
1999] for totally ordered HTNs and SHOP2 [Nau, Munoz-Avila, Cao, Lotem, and Mitchell
2001] for partially ordered HTNs. These systems have been very successfully applied to
real world domains. Also, it is probably useful in practice to have separate solutions for
each class of problem.

3.1 Totally ordered task networks

Let us then first consider totally ordered HTNs. A task network (7', ¢) is totally ordered if
the boolean formula ¢ includes precedence constraints (t1 < t2), (t2 < t3),..., (tn—1 <
t,,) on the tasks in 7. We will further assume that ¢ is a conjunction of the precedence
constraints ¢; < t; and of a set of constraints of the form ([, t) representing task precondi-
tions. An HTN-planning problem (d, s, D) is totally ordered if d and all the task networks
in the methods of D are totally ordered. This corresponds to the form of task network that
the SHOP system handles.

We show an encoding of totally ordered HTN-planning problems in Golog. Consider an
HTN-planning problem P = (d, Sy, D). For each compound task 5, with a set of methods
(h,d1), (h,dz),...,(h,dg) in D, we define the following Golog procedure:

proc h

(mZ)[(L11)? 5t o5 (L)75t |
(mZ2)[(L21)7? 5 ta1 5.5 (L2,in)? 5 tais] |
(T) [(Le,1)? st s (Lkyig)? 5 troiy)

endProc

Alfredo Gabaldon

where t; ; is the jth task in d; according to the ordering, L; ; is the conjunction of the
literals { such that (I,¢; ;) is a constraint in d; and &; are the variables that appear free
in the constrains and tasks of method d;. Intuitively, the procedure non-deterministically
chooses one of the methods to execute. Each line in the procedure non-deterministically
chooses values for the free variables and then executes the sequence of precondition tests
and tasks.

Let Ap denote the resulting set of Golog procedure declarations. To complete the en-
coding of the HTN-planning problem P we include a Golog program ¢, obtained from the
task network d. This program has the same form as the subprogram for a single method:

(mZ).(L1)?5 t1 o5 (Ln)? 5t

EXAMPLE 4. The procedure in Example 2 is in fact a simplified version of the encoding
of the methods in Example 3. The procedure that results by following exactly the encoding
described above is as follows.

proc moveObj(o, loc)
(7 oloc, ocity)[
(atObj (0, oloc) N inClity(oloc, ocity) A inCity(loc, ocity))? ;
inCityDeliver(o, oloc, loc)] |
(7 oloc, ocity, dcity, oap, dap)|
(atObj (o, oloc) N inClity(oloc, ocity) A inClity(loc, ocity) N
inCity(loc, deity) A inCity(oap, ocity) A inCity(dap, dcity))? ;
inCity Deliver(o, oloc, oaprt) ;
air Deliver (o, oaprt, daprt) ;
inClityDeliver (o, daprt, loc)]
endProc

Given the above encoding of (totally ordered) HTNs in Golog, we can formulate a spec-
ification of the HTN-planning problem in terms of the axiomatization of primitive tasks (a
basic action theory) and Golog, and of logical entailment, as follows. Let P be a totally
ordered HTN-planning problem, then

Dp ': (HS)DO(AP 3 (5(1, 5078). (1)

Here, Dp is the basic action theory of P and it would also include the axioms defining
the semantics of the Golog constructs shown in Section 2.2. However, we would like to
remark again that the logical formalization of Golog is much simpler than that of ConGolog
and the axiomatization of T'rans and F'inal is not really necessary. This means that, unlike
the case of partially ordered HTN-planning, the formalization of totally ordered HTN-
planning requires only a standard basic action theory in the Situation Calculus plus a set of
macros for the Golog constructs.

The following theorem formalizes the relationship between the operational semantics of
totally ordered HTN-planning and the Golog encoding described above. For a sequence
o of ground primitive tasks, i.e. ground action terms «s, ..., ay,, let do(o, s) denote the
situation term do(ay,, do(ap—1, .. .,do(aq,s) ...).

Programming HTNss in the Situation Calculus

THEOREM 5. Let P = (d, Sy, D) be a totally ordered HTN-planning problem, Ap and
04 be the corresponding Golog procedures and program. Then

o € sol(d, So, D) iff Dp |= Do(Ap ; 04, So,do(c,s)).

3.2 Partially ordered task networks

Let us next considered partially ordered HTNs. The only difference with the HTNs of
the previous subsection is that the boolean formulae ¢ in task networks specify through
constraints ¢ < ¢’ a partial instead of a total ordering on the tasks. Thus, formulae ¢ will
be assumed to be arbitrary conjunctions of constraints of the form ¢ < ¢’ and (I, t).

This form of HTN corresponds to the HTNs the SHOP2 system handles, except that
SHOP?2 additionally allows so-called protection requests and protection cancellations. These
are used, for example, to ensure that some condition be maintained from the time one task
finishes executing and another starts. These constraints are not difficult to add to our en-
coding, however, they are a side issue which for clarity of presentation we prefer not to
address here.

The main motivation behind allowing the tasks to be partially ordered is the possibility of
allowing multiple tasks to execute concurrently, that is, to allow their subtasks to interleave
when there is no precedence ordering specified between them. Interleaved concurrency is
exactly the type of concurrency that the construct || of ConGolog provides.

Let us then consider encoding partially ordered HTN-planning problems in ConGolog.
As before, for each compound task we will define a procedure. But in this case we will need
to introduce some auxiliary fluents and actions that will help enforce the task precedence
constraints.

First, we need a fluent terminated;,qme(Z, s) for every compound task tname(Z) or
primitive task (action) A(Z). Given a task, let 7 stand for symbol tname if a compound
task and for A if a primitive task. Intuitively, terminated, (%, s) holds when task 7(&)
has already executed and terminated in situation s. We also need to introduce an auxiliary
primitive task end, (Z). For compound tasks, end, (Z) will be added as a sub-task of 7(Z)
and will be the last sub-task to execute. The intention obviously is that this task will set the
fluent terminated., (Z, s) to true when 7(Z) finishes executing.

Formally, the successor state axioms for fluents terminated, (Z, s) are as follows:

terminated.(Z,do(a,s)) = a=7(Z)Va=end,(Z)V
terminated, (Z, s).

These fluents are all initially false, i.e. (Va)-terminated.(Z,Sp) is included in the
initial database Dg,. Since these fluents and the actions end.,(Z) are auxiliary “system
actions,” so to speak, they can be kept transparent from the “user”.

Before we introduce the ConGolog encoding, we need to introduce one last notation.
Let (T, ¢) be a task network and 7(Z) be one of its tasks. We define pred, (¥, s) as the
following conjunction:

pred, (&, s) def /\ terminated. (7', s).
{7/:(r"(2")<7(Z)) €D}

Alfredo Gabaldon

=

If there is no constraint (7'(Z') < 7(Z)) in ¢ then pred,(Z, s) ' Prue. Intuitively,
pred, (&, s) holds in s if all tasks which precede 7 according to the constraints have already
executed.

We are now ready to present the encoding. For the sake of readability we omit term
arguments. The ConGolog procedure that encodes the methods (h,d), (h,da), ..., (h,d)
for a compound task A is:

proc h
((51|52| e |5k) N
endy,

endProc

where each §; stands for a program as follows:

(m)f [preds; ,)? 5 (Lin)? 5 tia] |
[(preds, ,)? 5 (Li2)? 5 tio] |

[(predti,k,i)?) (Ll7k1)?) tl}’%] }

The t; ; are the tasks in d; and L; ; is as before the conjunction of the literals [such that
(I,t; ;) is a constraint in d;. Intuitively, each J; encodes the task network d; of the cor-
responding h method. The program ¢, essentially executes all the subtasks concurrently.
But each subtask must first successfully test that all the subtasks that precedes it have al-
ready terminated, before it can execute. The semantics of construct || captures the intended
meaning that the execution of a task is suspended until the preceding tasks, according to
the ordering constraints, have executed.

One aspect of the above encoding is not completely faithful to the HTN semantics of
[Erol, Hendler, and Nau 1996]. The intended meaning of a constraint (I, t) is that the literal
! must hold immediately before task ¢ executes. In the above ConGolog encoding, the
corresponding code is [?7 ; ¢t. This encoding and interleaved concurrency with other tasks
means that some other tasks may execute after the test [7 and before the execution of ¢. It
would not be difficult to add to ConGolog a new programming construct for synchronized
test-and-execute or use interrupts as in [Gabaldon 2002]. However, requiring a condition
to hold immediately before a task begins executing seems to us to make sense only for
primitive tasks, since the subtasks of a compound task would be interleaved anyway. Then
in the case of a primitive task, a condition required to hold before the task executes can be
encoded in the action precondition axiom instead, since primitive tasks are actions from the
basic action theory. We will therefore proceed with the relaxed form of the constraint.

EXAMPLE 6. This is a simple blocks world example method for moving a block v from
on top a block v onto a block v3:

(move(vy,va, vs)
clear(vy), clear(vs), unstack(vy,vs), stack(vy, vs)
(clear(v1) < unstack(v,v2)) A (clear(vs) < unstack(vy,va))A
(unstack(vy,ve) < stack(vy, vs))

)

Programming HTNss in the Situation Calculus

The encoding as a ConGolog procedure is as follows. Assuming the above method is the
only method for task move(vy,va, v3), the procedure declaration is:

proc move(vy, vg, U3)
015
endmove (U17 V2, US)
endProc

where 07 is the following program (the tests (T'rue)? can obviously be removed):

True)? ; clear(vy) ||

True)? ; clear(vs) ||

terminatedeeqr (V1) A terminatedeeqr(vs))? 5 unstack(vy,va) ||
terminatedynstack (V1,v2))? ; stack(vy,vs)

A~ NS

If the options of writing task networks or ConGolog programs are both available, in
some cases it may be easier to write ConGolog directly instead of an HTN and then trans-
late. Writing ConGolog directly had an additional advantage that the direct encoding may
require a simpler theory compared to the result of an automatic translation of an HTN into
ConGolog. The reason is that there may be less overhead in the form of auxiliary fluents
and actions. For instance, consider again the method for move(vy, vg, v3). This could have
been encoded as the following much simpler ConGolog program:

(clear(vy) || clear(vs));
unstack(vy, vs) ;
stack(vy, vs)

On the other hand, for more complex methods it may be much easier and more natural
to write instead a task network with partial ordering constraints. In that case, ConGolog
procedures can be obtained automatically by applying the above encoding.

The logical specification (1) of HTN-planning is the same in the case of partially ordered
HTNs encoded in ConGolog as shown above. The only difference is that in this case, the
theory Dp must include the axiomatization of the Trans and F'inal relations, so it is
necessarily a more complex theory.

A similar result on the correspondence between the operational semantics of HTNs and
the ConGolog encoding can be obtained.

THEOREM 7. Let P = (d, Sy, D) be a partially ordered HTN-planning problem, A p and
04 be the corresponding ConGolog procedures and program. Then

o € sol(d, So, D) iff Dp |= Do(Ap ; 04, So,do(c,s)).

4 On-line Execution with Exogenous Actions

As we mentioned earlier, one of the benefits of the encoding is that it brings to HTNs
a number of additional features that already exist for the Golog family of languages. The
purpose of this section is 1) to show some sample runs obtained with the Prolog interpreters
of ConGolog and some translated HTNs shown earlier, and 2) to demonstrate one particular

Alfredo Gabaldon

feature of the Golog family of languages that is normally not available in HTN systems,
namely, online execution with exogenous events. To this end, we will resort again to the
logistics domain example and its ConGolog encoding, and extend it for modeling online
execution with exogenous events in the form of run-time package delivery requests. Of
course, once a set of HTNs has been translated into ConGolog, features like exogenous
actions become an orthogonal issue. Nevertheless, this section also illustrates the use of
the translated logistics domain HTNs discussed earlier and shows a sample run obtained
with the implementation.

Online execution of a ConGolog program means that once the next primitive action to
execute is determined according to the control structure of the program, which due to non-
determinism may involve randomly choosing one, this action is actually executed “in the
world.” This entails that once such an action is chosen, the ConGolog interpreter cannot
backtrack since it is not possible to backtrack from actually executing an action in the phys-
ical world. This behaviour is in fact very easy to model with the interpreters by means of
the Prolog cut operator. The offline interpreter from [De Giacomo, Reiter, and Soutchanski
1998] includes the rule:

offline(Prog,S0,Sf):- final (Prog, S0), S0=Sf ;
trans (Prog, S0,Progl, sl),
offline (Progl,Sl,Sf).

To prevent the interpreter from backtracking on primitive actions, including exogenous
ones, De Giacomo et al. simply add a cut after a one-step transition of the program. This
one-step transition involves, among other things, choosing the next primitive action to ex-
ecute, according to the program and the current situation. Hence, an online interpreter
should not backtrack after such a step. The modified rule of the online interpreter is as
follows:

online (Prog,S0,Sf):- final (Prog,S0), S0=Sf ;
trans (Prog,S0,Progl,sl), !,
online (Progl,S1,Sf).

This rule results in an interpreter called brave because after choosing an action it im-
mediately commits and executes it. Alternatively, a cautious online interpreter may check,
offline, before committing to execute an action, whether it is possible for the remainder of
the program to terminate successfully. This behavior is captured by the following rule:

online (Prog,S0,Sf):- final (Prog,S0), S0=Sf ;
trans (Prog, S0,Progl, Sl),
offline(Progl,Sl, Soff), !,
online (Progl,S1,Sf).

Online vs offline execution interpreters are further discussed in [De Giacomo, Reiter, and
Soutchanski 1998; Reiter 2001]. An extension of ConGolog that includes a programming
construct for offline deliberation was introduced in [De Giacomo and Levesque 1999].

Let us now turn to exogenous actions. Although an agent, or in our case the logistics
program, does not have control over when exogenous actions occur, the standard assump-
tion is that the agent has complete knowledge about the possible exogenous actions that

Programming HTNss in the Situation Calculus

can occur and what their effects are. In other words, the background basic action theory
includes precondition and successor state axioms for exogenous actions too, but the agent
does not control those actions. In our logistics example, we will consider one exogenous
action: requestDelivery(obj, loc), intuitively meaning that a request to deliver obj to loc
has been issued. In our Prolog implementation, we simulate the occurrence of these ex-
ogenous requests by having the interpreter prompt the user to input them. Instead of this
interactive approach to exogenous actions, another possibility would be to have the exoge-
nous actions generated at random.

Following [De Giacomo, Lesperance, and Levesque 2000], a special procedure, exoProg
models the “observation” of exogenous actions. This procedure executes concurrently with
the main logistics procedure shown below. The exoProg procedure is defined as follows
using the ConGolog construct for interrupts:

proc exoProg
(me)(exoActionOccurred(e) — €)
endProc

The condition exzoActionOccurred(e) always succeeds when evaluated and it comes
back with a user supplied value for e, which can be an exogenous action, nil, a dummy
action with no effects meaning that no exogenous action occurred, or endSim which has
no effect either but instructs the interpreter to stop requesting the user to enter exogenous
actions.

The main logistics procedure, called deliveryDaemon, is a recursive program that re-
acts to the occurrence of exogenous actions by triggering the execution of a moveObj(0bj, loc)
task. Anexogenous action requestDelivery(obj, loc) causes fluent deliveryReq(pck, loc)
to become true, which in turn causes an interrupt to fire.

proc deliveryDaemon
(3pck, loc)deliveryReq(pck, loc) —

(mpck, loc){deliveryReq(pck,loc)? ;
startDelivery(pck, loc) ;
moveObj(pck,loc) ;
endDelivery(pck,loc)}

|| deliveryDaemon

endProc

Note that the number of delivery requests that will need to be served concurrently cannot
be anticipated. What the above procedure does when a delivery request arrives (the inter-
rupt fires) is to concurrently start serving the request and recursively invoke itself. Through
the recursive call the procedure continues to wait for the arrival of new requests. This is
admittedly a bit of a hack. What we really would like to use is a fork construct, which is
not (yet) available in the Golog family.

Finally, the main ConGolog program for running the simulation of the logistics domain
with run-time delivery requests consists of the parallel execution of the logistics procedure

and the exogenous actions procedure:

exoProg || deliveryDaemon.

Alfredo Gabaldon

The full Prolog implementation is available online.® Here is a sample run:

[eclipse 2]: runSim.
startSim
Enter an exogenous action: requestDelivery (packagel, loc5_1).

requestDelivery (packagel, loc5_1)

startDelivery (packagel, loc5_1)
Enter an exogenous action: nil.

driveTruck (truck3_1, loc3_1, loc3_3)

Enter an exogenous action: nil.
loadTruck (packagel, truck3_1)
Enter an exogenous action: nil.

driveTruck (truck3_1, loc3_3, loc3_1)
unloadTruck (packagel, truck3_1)

Enter an exogenous action: nil.
fly(planel, loc5_1, loc3_1)

Enter an exogenous action: requestDelivery (package2, loc3_2).
requestDelivery (package2, loc3_2)
loadAirplane (packagel, planel)
fly(planel, loc3_1, loc5_1)
unloadAirplane (packagel, planel)
startDelivery (package2, loc3_2)

Enter an exogenous action: nil.
endDelivery (packagel, loc5_1)
loadTruck (package2, truck3_1)
driveTruck (truck3_1, loc3_1, loc3_2)
unloadTruck (package2, truck3_1)

Enter an exogenous action: requestDelivery (package3, locl_3).
requestDelivery (package3, locl_3)
Enter an exogenous action: nil.

startDelivery (package3, locl_3)
endDelivery (package2, loc3_2)
driveTruck (truck2_1, loc2_1, loc2_3)
Enter an exogenous action: nil.
loadTruck (package3, truck2_1)
driveTruck (truck2_1, loc2_3, loc2_1)
unloadTruck (package3, truck2_1)
Enter an exogenous action: nil.
loadAirplane (package3, plane2)

Enter an exogenous action: nil.
fly(plane2, loc2_1, locl_1)

Enter an exogenous action: nil.

Enter an exogenous action: endSim.
endSim

unloadAirplane (package3, plane2)
loadTruck (package3, truckl_1)
driveTruck (truckl_1, locl_1, locl_3)
unloadTruck (package3, truckl_1)
endDelivery (package3, locl_3)

Plan length: 32 More? n.

The non-indented lines above are primitive tasks listed in the order they occur. The user
is prompted for an exogenous action every time the condition exoActionOccurred(e) is
evaluated. This happens every time the interpreter computes a transition for the exoProg
procedure.

3http://centria.di.fct.unl.pt/~ag/exologistics/

Programming HTNss in the Situation Calculus

5 Conclusion

Our main goal in this chapter was to look at the relationship of HTN-planning and the
Golog family of high-level action programming languages. We have shown that it is possi-
ble to encode HTN-planning problems into these languages without adding new constructs.
In particular, totally ordered HTNs in Golog and partially ordered HTNs, which allow tasks
to execute concurrently, in ConGolog. We showed that the operational semantics of an
HTN-planning problem, i.e. the set of solutions, corresponds to the set of execution traces
derived from the Situation Calculus formalization and (Con)Golog. We also showed a log-
ical specification of the HTN-planning problem in terms of logical consequence from a
basic action theory and the (Con)Golog axioms. Furthermore, we illustrated how through
the translation one can combine HTNs with other features of the Golog family by taking the
logistics domain example, adding exogenous delivery requests and running it on an online
interpreter.

As we discussed in the introduction, HTNs and high-level action languages like Golog
are two complementary ways of incorporating domain specific knowledge into automated
planning. We also mentioned a third alternative that has been introduced by Bacchus and
Kabanza [2000]. In their approach, domain specific knowledge is expressed in terms of
Linear Temporal Logic, and is used to instruct their planning system, TLPlan, what al-
ternatives not to explore. There is a consensus that this type of control knowledge and
procedural knowledge as in HTNs and ConGolog, are both useful. Although we did not
consider TLPlan style control knowledge here, we have considered it elsewhere [Gabaldon
2003; Gabaldon 2004]. In that work, we introduced a procedure for “compiling” TLPlan
style control knowledge into a Situation Calculus basic action theory in a way that achieves
the same pruning of unpromising plans as in TLPIlan. That work together with our encoding
of HTNs presented here, amount to a combination of both types of control knowledge into
the single formal framework of the Situation Calculus. This combination is much further
explored and developed in [Sohrabi, Baier, and Mcllraith 2009].

References

Bacchus, F. and F. Kabanza [2000]. Using temporal logics to express search control
knowledge for planning. Artificial Intelligence 116, 123—-191.

De Giacomo, G., Y. Lesperance, and H. Levesque [2000]. ConGolog, a concurrent pro-
gramming language based on the situation calculus. Artificial Intelligence 121, 109—
169.

De Giacomo, G. and H. J. Levesque [1999]. An incremental interpreter for high-level
programs with sensing. In Logical Foundations for Cognitive Agents: Contributions
in Honor of Ray Reiter, pp. 86—102. Springer.

De Giacomo, G., R. Reiter, and M. Soutchanski [1998]. Execution monitoring of high-
level robot programs. In A. Cohn and L. Schubert (Eds.), 6th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR’98), pp. 453—
465.

Erol, K., J. A. Hendler, and D. S. Nau [1996]. Complexity results for hierarchical task-
network planning. Annals of Mathematics and Artificial Intelligence 18, 69-93.

Gabaldon, A. [2002]. Programming hierarchical task networks in the situation calculus.
In AIPS’02 Workshop on On-line Planning and Scheduling, Toulouse, France.

Alfredo Gabaldon

Gabaldon, A. [2003]. Compiling control knowledge into preconditions for planning in
the situation calculus. In G. Gottlob and T. Walsh (Eds.), 18th International Joint
Conference on Artificial Intelligence (IJCAI’03), pp. 1061-1066.

Gabaldon, A. [2004]. Precondition control and the progression algorithm. In D. Dubois,
C. Welty, and M.-A. Williams (Eds.), 9th International Conference on Principles of
Knowledge Representation and Reasoning (KR’04), pp. 634—643.

Levesque, H., F. Pirri, and R. Reiter [1998]. Foundations for the situation
calculus. Electronic Transactions on Artificial Intelligence 2(3-4), 159-178.
http://www.ep.liu.se/ej/etai/1998/005/.

Levesque, H. and R. Reiter [1998]. High-level robotic control: beyond planning. Posi-
tion paper. In Cognitive Robotics AAAI Fall Symposium, pp. 106—108.

Levesque, H., R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl [1997]. Golog: A logic
programming language for dynamic domains. Journal of Logic Programming 31(1—
3), 59-83.

McCarthy, J. [1963]. Situations, actions and causal laws. Technical report, Stanford Uni-
versity. Reprinted in Semantic Information Processing (M. Minsky ed.), MIT Press,
Cambridge, Mass., 1968, pp. 410-417.

Nau, D., H. Munoz-Avila, Y. Cao, A. Lotem, and S. Mitchell [2001]. Total-order plan-
ning with partially ordered subtasks. In B. Nebel (Ed.), 17th International Joint Con-
ference on Artificial Intelligence (IJCAI’01), pp. 425—430.

Nau, D. S., Y. Cao, A. Lotem, and H. Munoz-Avila [1999]. SHOP: Simple hierarchi-
cal ordered planner. In Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI’99), pp. 968-975.

Reiter, R. [1991]. The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In V. Lifschitz (Ed.), Artifi-
cial Intelligence and Mathematical Theory of Computation, pp. 359-380. Academic
Press.

Reiter, R. [2001]. Knowledge in Action: Logical Foundations for Describing and Imple-
menting Dynamical Systems. Cambridge, MA: MIT Press.

Sacerdoti, E. [1974]. Planning in a hierarchy of abstraction spaces. Artificial Intelli-
gence 5, 115-135.

Sohrabi, S., J. A. Baier, and S. A. Mcllraith [2009]. HTN planning with preferences.
In C. Boutilier (Ed.), 21st International Joint Conference on Artificial Intelligence
(IJCAI’09), pp. 1790-1797.

Tate, A. [1977]. Generating project networks. In R. Reddy (Ed.), 5th International Joint
Conference on Artificial Intelligence (IJCAI’77), pp. 888—893.

