
Subsystems of BPLK
$Id: subsys-bplk.tex,v 1.7 2003/12/17 06:01:50 alan Exp $ LATEX’d on January 3, 2005

Alan Skelley

January 3, 2005

1 Introduction

In this note we discuss a way of defining subsystems of BPLK which are possibly equivalent in
power to the subsystems Gi and G∗i of G. We do this by presenting a hierarchy of Boolean function
symbols which does correspond precisely in computational power to the levels of the Σq hierarchy
of quantified propositional formulas.

Definition 1.1 (BPLK). The system BPLK is like the propositional system PK, but with the
following changes:

1. In addition to sequents, a proof also includes a Boolean program which defines functions.
Whenever we refer to a BPLK-proof, we shall always explicitly write it as the pair < π,P >
of the proof (sequents) and the Boolean program defining the function symbols occurring in
the sequents.

2. Formulas in sequents are formulas in the context of Boolean programs, as defined earlier.

3. If the Boolean program contains a definition of the form

f(p) := A(p),

the new rules
f : left f : right

and
A(φ),Γ−→∆

f(φ),Γ−→∆

Γ−→∆,A(φ)

Γ−→∆,f(φ)

may be used, where φ are precisely as many formulas as p are variables.

4. (Substitution Rule) The new inference rule subst

∆(q, p) −→ Γ(q, p)
∆(φ, p) −→ Γ(φ, p)

may be used, where all occurrences of q have been substituted for.

The standard translations of G to and from BPLK from [2] are not precise with respect to
quantifier alternations and in fact a G∗1 proof translated into BPLK and back could have arbitrarily
large quantifier complexity. The problem seems to be that even a simple definition

f2(x) := f1(f1(x))

1

or
f5(x) := (f1(x) ∨ f2(x)) ∧ (f3(x) ∨ f4(x))

apparently requires several alternations of propositional quantifiers to translate properly without
incurring exponential blowup when repeated.

2 Restrictions of Boolean Programs

A solution to the above problem is to define some sharply restricted subsystems of BPLK. First,
we define a hierarchy of Boolean program function symbols:

Definition 2.1. Σbp
i and Πbp

i are defined as follows:

1. A function symbol f defined as
f(x) := φ(x),

with φ(x) purely propositional, is Σbp
0 and Πbp

0 .

2. (Σbp
i

⋃
Πbp
i) ⊆ (Σbp

i+1

⋂
Πbp
i+1).

3. If f is defined as
f(x) := g1(x1) ∨ ... ∨ gl(xl)

with each xj a list of variables and constants and each gj is Σbp
i , then f is Σbp

i .

4. If f is defined as
f(x) := g1(x1) ∧ ... ∧ gl(xl)

where the xj are as above and each gj is Πbp
i , then f is Πbp

i .

Now, Σq
i formulas can be translated into equivalent Σbp

i function symbols by placing them in
prenex form and translating quantifiers into disjunctions and conjunctions. Although the transla-
tion in [2] utilizes Hilbert ε-functions to translate quantifiers, we also noted an alternative trans-
lation suggested by Toniann Pitassi [1] which would translate quantifiers with conjunctions and
disjunctions. Observe that these translations (restricted to prenex formulas) would actually pro-
duce function symbols in the desired level of the Σbp hierarchy.

The converse is also true, in the following sense: For a Boolean program defining a number
of Σbp

i function symbols f1, ..., fm there exists a single Σq
i formula ψ(n, c) with the property that

ψ(pkq, c) holds exactly when fk(c) = 1, where pkq is the number k in binary, padded as required to
match the number of variables in n, which must obviously be enough to write pmq. Before giving
the final construction, observe the following points:

1. First, if f1, ..., fl are Σbp
0 function symbols defined as fj(x) := φj(x), then the desired formula

is
ψ(n, c) := (n = p1q ∧ φ1(c)) ∨ ... ∨ (n = plq ∧ φl(c)),

which is clearly Σq
0.

2. Next, assume for the purposes of induction that ψ is a Σq
i translation of several Σbp

i function
symbols in the above sense. Consider a new Σbp

i function symbol:

gj(x) := g1(x1) ∨ ... ∨ gl(xl),

2

where g1...gl are all translated by ψ. Then we can define the Σq
i formula ψ′ as follows to

translate all the function symbols of ψ and additionally gj :

ψ′(n, c) := ∃n′∃c′[ψ(n′, c′) ∧ [
[n = pjq ∧ [(n′ = p1q ∧ c′ = x1) ∨ ... ∨ (n′ = plq ∧ c′ = xl)]]]∨
[n′ = n ∧ c′ = c]

]].

3. Similarly, suppose that
gj(x) := g1(x1) ∧ ... ∧ gl(xl),

is a new Πbp
i where g1...gl are all translated by the Πq

i formula ψ. Then we can define the Πq
i

formula ψ′ as follows to translate all the function symbols of ψ and additionally gj :

ψ′(n, c) := ∀n′∀c′[[
[n′ = n ∧ c′ = c]∨
[n = pjq ∧ [(n′ = p1q ∧ c′ = x1) ∨ ... ∨ (n′ = plq ∧ c′ = xl)]]

] ⊃ ψ(n′, c′)].

Now the construction is as follows: First, using point 1 above, translate all the Σbp
0 function

symbols with one Σq
0 formula ψ0. Next, translate all Σbp

1 function symbols with one Σq
1 formula ψ+

1

by repeating point 2 above. Similarly, translate all Πbp
1 function symbols with one Πq

1 formula ψ−1 .
Finally, define

ψ1(n, c) := ψ+
1 (n, c) ∨ ψ−1 (n, c)

which is Σq
2

⋂
Πq

2. (A simple disjunction is appropriate here since the sense of our translations is that
the formula ψ, when supplied an invalid function symbol number, will be false). This process may
now be repeated for the Σbp

2 and Πbp
2 function symbols and each subsequent level of the hierarchy

as required. The size of the translation is linear in the size of the original Boolean program if all
symbols in the program are in a constant level Σbp

k

⋃
Πbp
k of the hierarchy. At each new level in the

construction the previous translation is doubled in size (As it is used for both disjuncts, ψ+
i and

ψ−i) and so more accurately the size of the translation is linear with a factor at least 2k.
An alternative method to avoid even this factor is as follows: First form ψ0, ψ

+
1 and ψ−1 as above.

As before, assume that ψ+
i (respectively, ψ−i) translates all Σbp

i (resp., Πbp
i) function symbols. Form

ψ+
i+1 starting with ψ−i and repeating point 2 above to translate first the Σbp

i and next the Σbp
i+1

function symbols. Likewise, form ψ−i+1 starting from ψ+
i and applying point 3. In this way the

doubling of size at each alternation is avoided. This latter translation may however complicate the
translation of proofs in that there will be two different translations of Σbp

i function symbols: That
provided by ψ+

i and also that provided by a subformula of ψ+
i+1. It would probably be necessary

to formalize the equivalence of these two translations in order to translate proofs.

3 Subsystems of BPLK

We are now able to define the subsystems of BPLK:

Definition 3.1. BPLKi is the subsystem of BPLK in which every function symbol is Σbp
i

⋃
Πbp
i

and additionally every formula containing rank-i function symbols is a valid defining formula for
a Σbp

i

⋃
Πbp
i function symbol. Additionally, BPLK∗i is the subsystem of BPLK restricted to treelike

proofs.

3

Conjecture 3.2. Although we do not prove it here, we believe that it should be straightforward to
prove that BPLKi p-simulates Gi for the case when the endsequent is in prenex form.

This would be done in two steps: First, the simulation from [2] would be revised using Pitassi’s
alternate translation. Then, a proof in Gi would be translated line-by-line by first converting every
formula to prenex form in a canonical way and then applying the translation of formulas. As in
the original translation from [2], there would be many technical details required to fill in the gaps
in the translated proof, since the names of function symbols would change after the introduction of
quantifiers. A further difficulty, not present in the original translation, is that now the introduction
of a propositional connective may also cause the names of function symbols to change. Therefore,
while the original translation required no extra steps to simulate a propositional inference, the
current translation will require a derivation. This derivation will be similar in nature to a proof
that a formula is equivalent to its prenex form.

Question 3.3. Does BPLK∗i p-simulate G∗i ?

The sub-derivations in the original translation are all treelike, and in fact most are proofs of
sequents of the form A −→ B when in fact A and B are equivalent. An obvious obstacle, though,
is how to translate the introduction of a quantifier without using subst twice on the same sequent,
and thus producing a non-treelike proof.

The simulations in the other direction seem to require many details and so for the moment we
can only pose the question:

Question 3.4. Does Gi p-simulate BPLKi? What about their treelike subsystems?

4 Conclusions

We originally posed the problem of stratifying BPLK in the hope that a solution might shed light
on the structure of G and BPLK; it seems, however, that it might simply be a technical exercise
without merit.

References

[1] Toniann Pitassi. Private communication, 2000.

[2] Alan Skelley. Relating the PSPACE reasoning power of Boolean programs and quantified
Boolean formulas. Master’s thesis, University of Toronto, 2000. Available from ECCC in
the ’theses’ section.

4

