
CSC 2426: Fundamentals of Cryptography Fall 2023

Lecture 9: Public-key Encryption
Instructor: Akshayaram Srinivasan Scribe: Haohua Tang

Date: 20 November, 2023

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

9.1 Public-Key Encryption

We assume Alice and Bob are communication via a public channel, and they have not meet prior to this,
so they do not share a secret key. We would like to construct a encryption scheme that works under this
scenario, and it should be composed by the following:

KeyGen(1n)→ (pk, sk) which generates the public and secret key

Enc(pk,m)→ Ciphertext c

Dec(sk, c)→ Message m

Bob would run KeyGen and send the public key to Alice publicly. Alice then would encrypt her message
with Enc using the public key, and Bob can decrypt them with Dec using the secret key.

Now, let us define the correctness and CPA-security of public-key encryption.

Correctness.

∀m, Pr
(pk,sk)←KeyGen(1n),c←Enc(pk,m)

[Dec(sk, c) = m] = 1

CPA-security. We define this by the following security game:

Adv
pk←− Challenger, (pk, sk)← KeyGen(1n)

Adv
m0,m1−−−−−−−→
|m0|=|m1|

Challenger

Adv
c∗←Enc(pk,mb)←−−−−−−−−−− Challenger, b← 0, 1

Adv
b′−→ Challenger

The scheme is CPA-secure if for any computationally bounded adversary

Pr[b′ = b] ≤ 1

2
+ negl(n)

Remark 1. We require |m0|= |m1| since if their length is very different (e.g. exponentially), the output of
Enc, which runs in polynomial time, must also be very different on length and thus trivially distinguishable.

Remark 2. Enc must be randomized since otherwise the adversary can just encrypt m0 and m1 with the
public key and Enc (which is also public), thus trivially being able to identify their ciphertext c0 and c1.

9-1

9-2 Lecture 9: Public-key Encryption

9.2 Multi-message security

We know that in secret-key encryption one-time security does not imply multi-message security. However
this is not the case for public-key encryption.

Claim 9.1 For public-key encryption, one-time security implies multi-message security.

Proof: Suppose there exists an adversary A that breaks multi-message security. Let the messages A produces
be −→m0 = {m0,1,m0,2, ...,m0,p} and −→m1 = {m1,1,m1,2, ...,m1,p}. Then given the random bit b sampled by
the challenger, the ciphertext being send to A would be {Enc(pk,mb,1), Enc(pk,mb,2), ..., Enc(pk,mb,p)},
and A distinguishes whether b is 0 or 1 from this with an advantage of µ(n) which is non-negligible. Now
consider the following hybrids:

H0 : {Enc(pk,m0,1), Enc(pk,m0,2), ..., Enc(pk,m0,p)}
H1 : {Enc(pk,m1,1), Enc(pk,m0,2), ..., Enc(pk,m0,p)}
H2 : {Enc(pk,m1,1), Enc(pk,m1,2), ..., Enc(pk,m0,p)}
...

Hp : {Enc(pk,m1,1), Enc(pk,m1,2), ..., Enc(pk,m1,p)}

By pigeonhole principle, there must exist an i ∈ 0, 1, ..., p− 1 such that Hi and Hi+1 can be distinguished

with an advantage of µ(n)
p . With this we construct following adversary B that breaks one-time security.

Here we may assume that B knows what i would be since B is in nuPPT.

A
pk←− B

pk←− Challenger, (pk, sk)← KeyGen(1n)

A
−→m0,
−→m1−−−−→ B

m0,i,m1,i−−−−−−→ Challenger

A
{Enc(pk,m0,1),...,Enc(pk,m0,i−1),c←−−−−−−−−−−−−−−−−−−−−−−−
,Enc(pk,m1,i+1)...,Enc(pk,m1,p)}

B
c←Enc(pk,mb,i)←−−−−−−−−−− Challenger, b← 0, 1

A
b′−→ B

b′−→ Challenger

The adversary B would encrypt everything else needed to construct Hi and Hi+1, and send them to A, thus

using A to distinguish Enc(pk,mb,i) by an advantage of µ(n)
n . Hence, we proved the contrapositive of the

original claim.

9.3 Some Computational Hardness Assumptions

First let us make some computational assumptions on group asthmatics. For a cyclic group (G, ·) with order
p ≈ exp(n) and g ∈ G being a generator, we assume the following:

• Multiplication, i.e. the · operation can be computed in poly(n) time.

• Given g and any x ∈ Zp, g
x can be computed in poly(n) time.

Now we can define the assumption on discrete logarithm.

Lecture 9: Public-key Encryption 9-3

Proposition 9.2 (Assumption on Discrete Logarithm, DLOG) For any PPT A,

Pr
x∈Zp

[A(G, p, g, gx) = x] ≤ negl(n)

Remark 3. This directly gives us an one-way function if DLOG is true.

Claim 9.3 If DLOG is true, we can construct a collision resistance hashing from it.

Proof: We will construct a hashing that maps x ∈ {0, 1}m to G as follow:

Setup(1n)→ hk = (gr1,0 , ..., grm,0 , gr1,1 , ..., grm,1)

where
∀i, b, ri,b ← Zp

and

Eval(hk,x) =

m∏
i=1

gri,xi

where x = (x1, ..., xm).

Suppose this is not a CRH. Then there exists an adversary A that given hk sent from a challenger, outputs
x,x′ s.t. with non-negligible probability

Eval(hk,x) = Eval(hk,x′)

Now we will construct B such that computes discrete logarithm efficiently.

A
hk′

←−−−−−−−−
∀i,b,ri,b←Zp

B
(G,p,g,gs)←−−−−−−

A
x,x′

−−−→
x̸=x′

B

where
hk′ = (gr1,0 , ..., gri−1,0 , gs, gri+1,0 , ..., grm,0 , gr1,1 , ..., gri−1,1 , gri,1 , gri+1,1 , ..., grm,1)

Since x ̸= x′, there must be a bit that is different, and since B is nuPPT we may assume it is the i-
th bit and B knows this will be the case in advance. We also know that with non-negligible probability
Eval(hk′,x) = Eval(hk′,x′). Thus B computes

s′ =
∑
j

rj,1 −
∑
j ̸=i

rj,0

and we know with some non-negligible probability s′ = s.

Now we introduce another assumption. Let the setup for cyclic group be the same with the previous section.

Proposition 9.4 (Decisional Diffie–Hellman Assumption, DDH)

{G, p, g, gx, gy, gxy}x,y←Zp ≈c {G, p, g, gx, gy, gz}x,y,z←Zp

Remark 4. It is clear that the above proposition implies DLOG.

9-4 Lecture 9: Public-key Encryption

Claim 9.5 DDH implies PKE, that is, we can construct a public-key encryption scheme given DDH is true.

Here is a high-level proof to this claim.

Proof: Let us first construct this PKE scheme.

KeyGen(1n) = (pk, sk) = (gx, x), x← Zp

Enc(pk,m) = c = (c1, c2) = (gr, gxr ·m), r ← Zp

Dec(sk, c) = c−sk1 · c2
Since Dec(sk, c) = c−sk1 · c2 = g−rx · gxr ·m = m, we have the correctness. Now we prove security.

Suppose there exists an adversary A that breaks CPA-security of this scheme. For z ← Zp, we know that
gz ·m0 ≈c g

z ·m1. However we know that A distinguishes grx ·m0 and grx ·m1 with non-negligible advantage,
this it must distinguish at least one of (gxr ·m0 and gz ·m0) or (gz ·m1 and gxr ·m1) with non-negligible
advantage. Hence it distinguishes

{G, p, g, gr, gx, grx} and {G, p, g, gr, gx, gz}

which contradicts DDH.

Remark 5. The above construction has rate= 1
2 , that is, the cyphertext has double the length of the message.

9.4 Trapdoor One-Way Permutation

A trapdoor one-way permutation is composed by the following:

Setup(1n)→ pk, td (which stands for trapdoor)

Eval(pk, x)→ y

where the function Eval(pk, ·) is an one-way function and is a permutation. Also it can be inverted given
td, that is:

Invert(td, y)→ x

Claim 9.6 Given a trapdoor one-way permutation, we can construct a PKE scheme.

We provide this construction here. Let h be a hardcore predicate for the one-way permutation Eval(pk, ·).

KeyGen(1n) = (pk, td)

Enc(pk,m) = c = (c1, c2) = (Eval(pk, r), h(r)⊕m), r ← Zp

Dec(td, c) = h(Invert(td, c1))⊕ c2

Remark 5. The above construction has rate= 1
n+1 , that is, to encrypt one bit, it needs to send a ciphertext

with length n+ 1.

