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Recap Last class we talked about:

Pseudo-random Function: functions that seem indistinguishable to a computationally bounded attacker.

Secret-key Encryption:

KeyGen(1n)→ Key sk

Enc(sk,m)→ Ciphertext c

Dec(sk, c)→ m

This is also known as ”Symmetric-key Encryption” because for both side the key SK is pre-shared(identical).

Two properties for secret-key encryption:

• Correctness:

∀m, Pr
sk←KeyGen(1n),c←Enc(sk,m)

[Dec(sk, c) = m] = 1

• Security (Multi-message):∀(m0,1,m1,1), . . . (m0,q,m1,q) for any polynomial q:

sk ← KeyGen(1n), {Enc(sk,m0,1), . . . ,Enc(sk,m0,q)} ≈c

sk ← KeyGen(1n), {Enc(sk,m1,1), . . . ,Enc(sk,m1,q)}

The Multi-message Secure Encryption is also known as ”Left-Right Encryption” because the encryp-
tions of the left and right messages should be computationally indistinguishable.

Good Exercise: Suppose we are playing the following game between Adversary and Challenger:

Adv Challenger, sk ← KeyGen(1n)

Adv
(m0,1,m1,1), . . . (m0,q,m1,q)−−−−−−−−−−−−−−−−−−−−−→ Challenger

Adv
{Enc(sk,mb,i)} i ∈ [1, q]
←−−−−−−−−−−−−−−−−−−−−− Challenger, b← {0, 1}

Adv
b′−→ Challenger, and we want Pr[b′ = b] ≤ 1

2
+ negl
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Note the fact that Pr[b′ = b] ≤ 1
2 + negl is equivalent to the security property above.

What do we have so far? Based on what we did in the past few lectures, we have the following transfor-
mations:

Figure 6.1: Our Transformation Tree So Far

6.1 Secret-key Encryption (Multi-message):

Secret-key Encryption: (Setup, Eval) be a PRF.

• KeyGen(1n): k ← Setup(1n), sk = k

• Enc(sk,m): m ∈ {0, 1}n, r ← {0, 1}n, c = (r,Eval(k, r)⊕m)

• Dec(sk, c): c = (c1, c2), where c1 = r, c2 = Eval(k, r)⊕m, output c2 ⊕ Eval(k, c1)

Proof of Correctness: We can tell this from the decryption method where it outputs: c2 ⊕ Eval(k, c1)
then the Eval() term got cancelled out because it’s been XORed by itself and we can obtain the message
m. Therefore, as long as we have the pre-shared key, we are able to retrieve the message m, the encryption
method is correct.

Proof of Security: We will prove this using Hybrid Argument.
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• Left Hybrid (LH):

sk ← KeyGen(1n)

Enc(sk,m0,1) . . .Enc(sk,m0,q)

Then:

k ← Setup(1n), r1 ← {0, 1}n, r2 ← {0, 1}n, . . . . . .

(r1,Eval(k, r1)⊕m0,1), (r2,Eval(k, r2)⊕m0,2), . . . . . .

Here the only primitive is the PRF.

It guarantees that its output is computationally indistinguishable from the output of a RF

• H1:

r1 ← {0, 1}n, . . . . . . rq ← {0, 1}n

y1, . . . . . . . . . . . . . . . . . . yq sampled conditioned on yi = yj if ri = rj

(r1, y1 ⊕m0,1), . . . . . . , (rq, yq ⊕m0,q)

Suppose LH and H1 are distinguishable, that is:

∃D, s.t. |Pr[D(LH) = 1]− Pr[D(H1) = 1]| = µ(n), which is non-negligible

We can then construct D′ that breaks PRF:
1. D′ randomly samples r1,...rq ∈ {0, 1}n
2. D′ queries the oracle on O(r1),...O(rq), denoted as s1,...sq
3. D′ outputs D((r1, s1 ⊕m0,1), . . . , (rq, sq ⊕m0,q))

Note the probability thatD′ distinguishes between the two outputs of O(.) is the same as the probability
that D distinguish between LH and H1.(When D’ uses Eval(), it is the same case as LH, and when it
uses f(.), f ∈ Fn, it is the same case as H1.)

•• H2: Suppose ∃i, j s.t. ri = rj , we abort.

Note that fix some i, j: Pr[ri = rj ] =
1
2n , then Pr[∃i, j s.t. ri = rj ] ≤ q2

2n , where q is a poly(), which
indicates that H1 and H2 are computationally indistinguishable.

•• H3:

r1 ← {0, 1}n, . . . . . . rq ← {0, 1}n

y1, . . . . . . . . . . . . . . . . . . yq sampled conditioned on yi = yj if ri = rj

(r1, y1 ⊕m1,1), . . . . . . , (rq, yq ⊕m1,q)

Note that H3 is identically distributed to H2 since each y1, . . . , yq are sampled uniformly and indepen-
dently.

• H4: Revert the change made in H2. Via a similar argument, we can show that H3 and H4 are
indistinguishable.
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• H5: Switch to Eval(k,r), then we can tell that: H5 ≈c Right Hybrid

From above, for each step, the consecutive pair of Hybrids are computationally indistinguishable, so
at the end we can get Left Hybrid ≈c Right Hybrid, which is then a contradiction to our assumption,
the proof is done.

6.2 Digital Signature

This can be used to check the integrity of the data.

Motivation/Real-life Example:

Figure 6.2: Real-life Example for Digital Signature

Functions:

KeyGen(1n)→ (sk, vk)

Sign(sk,m)→ σ

Verify(vk, (m,σ))→ accept/reject

We require the signature scheme to satisfy two properties: namely, correctness and security.

Correctness: This requires that Verify(vk, (m,σ)) will all signatures σ that are properly generated using
sk. And the probability that it will accept a correct signature is 1.

Security: To prove this, consider the following game:
The challenger generates a pair of keys: sk and vk, it gives the adversary vk, but keeps the sk secret.The
adversary can now make signing queries, where it send a message m to the challenger, and the challenger
returns the signature of the message. After q number of queries, the adversary tries to produce a new valid
signature on a new message. The adversary wins the game if it can produce a valid signature on a new
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message without access to the sk.

Adv
vk←− Challenger, (sk, vk)← KeyGen(1n)

Adv
m1−−→ Challenger

Adv
σ1←− Challenger, σ1 ← Sign(sk,m1)

. . . . . . . . . . . .

Adv
mq−−→ Challenger

Adv
σq←− Challenger, σq ← Sign(sk,mq)

Adv
(m∗,σ∗),m∗ /∈{m1...mq}−−−−−−−−−−−−−−−→ Challenger, if Verify(vk, (m∗, σ∗)) = accept, Adv wins.

To show security, we need to prove that for any PPT adversary A, we have Pr[Adv wins] ≤ negl(n)

One-time Signature(q = 1): We will start with a weaker version where we only require security to
hold as long as q = 1. We call such a signature scheme to be one-time secure signature.

•• Let {fn : {0, 1}n → {0, 1}n} be a one-way function.

• KeyGen(1n): sample a 2 ∗ n matrix where each entry is xi,b ← {0, 1}n[
x1,0 . . . xn,0

x1,1 . . . xn,1

]
= sk,

[
fn(x1,0) . . . fn(xn,0)
fn(x1,1) . . . fn(xn,1)

]
= vk (6.1)

• Sign(sk,m ∈ {0, 1}n): m = (m1, ...mn), σ = (x1,m1 , ...xn,mn)

• Verify(vk, (m,σ)): fn(σi) = vki,mi
for all (σ1, ...σn)

Proof of One-time Security: Consider the following game, note that we are only able to query once
instead of q times as above.

Adv
vk←− Challenger

Adv
m−→ Challenger

Adv
σ←− Challenger

Adv
(m∗,σ∗)−−−−−→ Challenger m∗ ̸= m

Suppose we have B that knows fn(x): B will play the challenger role and try to invert fn(x), and we will
use this to break one-wayness of fn(x)
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i∗ ∈ {1, ...n}, b∗ ∈ {0, 1}, vki∗,b∗ = f(x), B
vk−→ Adv

B
m←− Adv, if mi∗ = b∗ abort 1

B
σ−→ Adv

B
(m∗,σ∗)←−−−−− Adv, if m∗i∗ ̸= b∗ abort 2

if not σ∗i∗ is a pre-image of f(x)

Normal game: By contrast, if a normal game is played: Adv
(m∗,σ∗)−−−−−→ Challenger, now suppose Pr[Adv wins] =

µ(n), which is non-negligible.

H1:

Adv
vk←− Challenger, i∗ ∈ {1, ..n}, b∗ ∈ {0, 1}

Adv
m−→ Challenger, if mi∗ = b∗ abort 1

Adv
σ←− Challenger, note that σ doesn’t give any information of i∗

Adv
(m∗,σ∗)−−−−−→ Challenger, if m∗i∗ ̸= b∗ abort 2

The probability Pr[Adv wins in H1] =
1
2 ×

1
n × µ(n) = µ(n)

2n , because i∗ ∈ {1, ...n}, b∗ ∈ {0, 1}. We can use
the adversary in H1 to invert the one-way function by embedding the one-way function challenge at position
(i∗, b∗). This is a contradiction.


