
CSC 2426: Fundamentals of Cryptography Fall 2023

Lecture 6: Secret-key Encryption and Digital Signature
Instructor: Akshayaram Srinivasan Scribe: Qin Qin

Date: 23 October, 2023

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Recap Last class we talked about:

Pseudo-random Function: functions that seem indistinguishable to a computationally bounded attacker.

Secret-key Encryption:

KeyGen(1n)→ Key sk

Enc(sk,m)→ Ciphertext c

Dec(sk, c)→ m

This is also known as ”Symmetric-key Encryption” because for both side the key SK is pre-shared(identical).

Two properties for secret-key encryption:

• Correctness:

∀m, Pr
sk←KeyGen(1n),c←Enc(sk,m)

[Dec(sk, c) = m] = 1

• Security (Multi-message):∀(m0,1,m1,1), . . . (m0,q,m1,q) for any polynomial q:

sk ← KeyGen(1n), {Enc(sk,m0,1), . . . ,Enc(sk,m0,q)} ≈c

sk ← KeyGen(1n), {Enc(sk,m1,1), . . . ,Enc(sk,m1,q)}

The Multi-message Secure Encryption is also known as ”Left-Right Encryption” because the encryp-
tions of the left and right messages should be computationally indistinguishable.

Good Exercise: Suppose we are playing the following game between Adversary and Challenger:

Adv Challenger, sk ← KeyGen(1n)

Adv
(m0,1,m1,1), . . . (m0,q,m1,q)−−−−−−−−−−−−−−−−−−−−−→ Challenger

Adv
{Enc(sk,mb,i)} i ∈ [1, q]
←−−−−−−−−−−−−−−−−−−−−− Challenger, b← {0, 1}

Adv
b′−→ Challenger, and we want Pr[b′ = b] ≤ 1

2
+ negl

6-1

6-2 Lecture 6: Secret-key Encryption and Digital Signature

Note the fact that Pr[b′ = b] ≤ 1
2 + negl is equivalent to the security property above.

What do we have so far? Based on what we did in the past few lectures, we have the following transfor-
mations:

Figure 6.1: Our Transformation Tree So Far

6.1 Secret-key Encryption (Multi-message):

Secret-key Encryption: (Setup, Eval) be a PRF.

• KeyGen(1n): k ← Setup(1n), sk = k

• Enc(sk,m): m ∈ {0, 1}n, r ← {0, 1}n, c = (r,Eval(k, r)⊕m)

• Dec(sk, c): c = (c1, c2), where c1 = r, c2 = Eval(k, r)⊕m, output c2 ⊕ Eval(k, c1)

Proof of Correctness: We can tell this from the decryption method where it outputs: c2 ⊕ Eval(k, c1)
then the Eval() term got cancelled out because it’s been XORed by itself and we can obtain the message
m. Therefore, as long as we have the pre-shared key, we are able to retrieve the message m, the encryption
method is correct.

Proof of Security: We will prove this using Hybrid Argument.

Lecture 6: Secret-key Encryption and Digital Signature 6-3

• Left Hybrid (LH):

sk ← KeyGen(1n)

Enc(sk,m0,1) . . .Enc(sk,m0,q)

Then:

k ← Setup(1n), r1 ← {0, 1}n, r2 ← {0, 1}n,

(r1,Eval(k, r1)⊕m0,1), (r2,Eval(k, r2)⊕m0,2),

Here the only primitive is the PRF.

It guarantees that its output is computationally indistinguishable from the output of a RF

• H1:

r1 ← {0, 1}n, rq ← {0, 1}n

y1, yq sampled conditioned on yi = yj if ri = rj

(r1, y1 ⊕m0,1), , (rq, yq ⊕m0,q)

Suppose LH and H1 are distinguishable, that is:

∃D, s.t. |Pr[D(LH) = 1]− Pr[D(H1) = 1]| = µ(n), which is non-negligible

We can then construct D′ that breaks PRF:
1. D′ randomly samples r1,...rq ∈ {0, 1}n
2. D′ queries the oracle on O(r1),...O(rq), denoted as s1,...sq
3. D′ outputs D((r1, s1 ⊕m0,1), . . . , (rq, sq ⊕m0,q))

Note the probability thatD′ distinguishes between the two outputs of O(.) is the same as the probability
that D distinguish between LH and H1.(When D’ uses Eval(), it is the same case as LH, and when it
uses f(.), f ∈ Fn, it is the same case as H1.)

•• H2: Suppose ∃i, j s.t. ri = rj , we abort.

Note that fix some i, j: Pr[ri = rj] =
1
2n , then Pr[∃i, j s.t. ri = rj] ≤ q2

2n , where q is a poly(), which
indicates that H1 and H2 are computationally indistinguishable.

•• H3:

r1 ← {0, 1}n, rq ← {0, 1}n

y1, yq sampled conditioned on yi = yj if ri = rj

(r1, y1 ⊕m1,1), , (rq, yq ⊕m1,q)

Note that H3 is identically distributed to H2 since each y1, . . . , yq are sampled uniformly and indepen-
dently.

• H4: Revert the change made in H2. Via a similar argument, we can show that H3 and H4 are
indistinguishable.

6-4 Lecture 6: Secret-key Encryption and Digital Signature

• H5: Switch to Eval(k,r), then we can tell that: H5 ≈c Right Hybrid

From above, for each step, the consecutive pair of Hybrids are computationally indistinguishable, so
at the end we can get Left Hybrid ≈c Right Hybrid, which is then a contradiction to our assumption,
the proof is done.

6.2 Digital Signature

This can be used to check the integrity of the data.

Motivation/Real-life Example:

Figure 6.2: Real-life Example for Digital Signature

Functions:

KeyGen(1n)→ (sk, vk)

Sign(sk,m)→ σ

Verify(vk, (m,σ))→ accept/reject

We require the signature scheme to satisfy two properties: namely, correctness and security.

Correctness: This requires that Verify(vk, (m,σ)) will all signatures σ that are properly generated using
sk. And the probability that it will accept a correct signature is 1.

Security: To prove this, consider the following game:
The challenger generates a pair of keys: sk and vk, it gives the adversary vk, but keeps the sk secret.The
adversary can now make signing queries, where it send a message m to the challenger, and the challenger
returns the signature of the message. After q number of queries, the adversary tries to produce a new valid
signature on a new message. The adversary wins the game if it can produce a valid signature on a new

Lecture 6: Secret-key Encryption and Digital Signature 6-5

message without access to the sk.

Adv
vk←− Challenger, (sk, vk)← KeyGen(1n)

Adv
m1−−→ Challenger

Adv
σ1←− Challenger, σ1 ← Sign(sk,m1)

.

Adv
mq−−→ Challenger

Adv
σq←− Challenger, σq ← Sign(sk,mq)

Adv
(m∗,σ∗),m∗ /∈{m1...mq}−−−−−−−−−−−−−−−→ Challenger, if Verify(vk, (m∗, σ∗)) = accept, Adv wins.

To show security, we need to prove that for any PPT adversary A, we have Pr[Adv wins] ≤ negl(n)

One-time Signature(q = 1): We will start with a weaker version where we only require security to
hold as long as q = 1. We call such a signature scheme to be one-time secure signature.

•• Let {fn : {0, 1}n → {0, 1}n} be a one-way function.

• KeyGen(1n): sample a 2 ∗ n matrix where each entry is xi,b ← {0, 1}n[
x1,0 . . . xn,0

x1,1 . . . xn,1

]
= sk,

[
fn(x1,0) . . . fn(xn,0)
fn(x1,1) . . . fn(xn,1)

]
= vk (6.1)

• Sign(sk,m ∈ {0, 1}n): m = (m1, ...mn), σ = (x1,m1 , ...xn,mn)

• Verify(vk, (m,σ)): fn(σi) = vki,mi
for all (σ1, ...σn)

Proof of One-time Security: Consider the following game, note that we are only able to query once
instead of q times as above.

Adv
vk←− Challenger

Adv
m−→ Challenger

Adv
σ←− Challenger

Adv
(m∗,σ∗)−−−−−→ Challenger m∗ ̸= m

Suppose we have B that knows fn(x): B will play the challenger role and try to invert fn(x), and we will
use this to break one-wayness of fn(x)

6-6 Lecture 6: Secret-key Encryption and Digital Signature

i∗ ∈ {1, ...n}, b∗ ∈ {0, 1}, vki∗,b∗ = f(x), B
vk−→ Adv

B
m←− Adv, if mi∗ = b∗ abort 1

B
σ−→ Adv

B
(m∗,σ∗)←−−−−− Adv, if m∗i∗ ̸= b∗ abort 2

if not σ∗i∗ is a pre-image of f(x)

Normal game: By contrast, if a normal game is played: Adv
(m∗,σ∗)−−−−−→ Challenger, now suppose Pr[Adv wins] =

µ(n), which is non-negligible.

H1:

Adv
vk←− Challenger, i∗ ∈ {1, ..n}, b∗ ∈ {0, 1}

Adv
m−→ Challenger, if mi∗ = b∗ abort 1

Adv
σ←− Challenger, note that σ doesn’t give any information of i∗

Adv
(m∗,σ∗)−−−−−→ Challenger, if m∗i∗ ̸= b∗ abort 2

The probability Pr[Adv wins in H1] =
1
2 ×

1
n × µ(n) = µ(n)

2n , because i∗ ∈ {1, ...n}, b∗ ∈ {0, 1}. We can use
the adversary in H1 to invert the one-way function by embedding the one-way function challenge at position
(i∗, b∗). This is a contradiction.

