
CSC 2426: Fundamentals of Cryptography Fall 2023

Lecture 5: Pseudorandom Functions, Secret-key Encryption
Instructor: Akshayaram Srinivasan Scribe: Srisht Fateh Singh

Date: 16 October, 2023

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

In the last lecture, we saw that:

• A PRG extends a string (seed) to a computationally indistinguishable random string.

• If there exists a PRG with a stretch of 1 − bit, we can construct a PRG with a polynomially large
stretch.

In this lecture, we will construct a single-bit stretch PRG using one-way permutation functions.

5.1 Single-bit Stretch PRG using One-way Permutation

One-way permutation functions are bijective one-way functions. Let {fn : {0, 1}n −→ {0, 1}n}n∈N be a one-
way permutation. Define gn(x, r) = fn(x)||r and let hn(x, r) = ⟨x, r⟩ be its hardcore predicate as defined in
Goldreich-Levin Theorem. Define Gn(x, r) = fn(x)||r||hn(x, r).

Since fn(x) is a permutation from {0, 1}n −→ {0, 1}n, this implies fn(x) forms a uniform distribution for
uniformly sampled x← {0, 1}n. Therefore, fn(x)||r is a uniformly distributed bit-string of size 2n. Now, we
will prove that Gn(x, r) is a PRG.

Proof: If Gn(x, r) is not a PRG, ∃ n.u.PPT A such that

∣∣∣ Pr
x,r←{0,1}n

[A(12n, Gn(x, r)) = 1]− Pr
y←{0,1}2n+1

[A(12n, y) = 1]
∣∣∣ = µ(n)

for some non-negligible function µ(n).

The first 2n − bits of Gn(x, r) are completely random. Therefore, the Pr[A(y) = 1] can be conditioned on
the last bit as follows:

Pr[A(y) = 1] = Pr[y2n+1 = hn(x, r)] Pr[A(fn(x)||r||hn(x, r)) = 1]+Pr[y2n+1 = hn(x, r)] Pr[A(fn(x)||r||hn(x, r)) = 1]

= 0.5Pr[A(fn(x)||r||hn(x, r)) = 1] + 0.5Pr[A(fn(x)||r||hn(x, r)) = 1]

Here, Pr[y2n+1 = hn(x, r)] = Pr[y2n+1 = hn(x, r)] = 0.5 since we are assigning a deterministic value to a
uniform random bit. Therefore, the difference between distinguisher probabilities is

0.5
∣∣∣Pr[A(fn(x)||r||hn(x, r)) = 1]− Pr[A(fn(x)||r||hn(x, r)) = 1]

∣∣∣ = µ(n)

Let’s assume w.l.o.g. Pr[A(fn(x)||r||hn(x, r)) = 1] − Pr[A(fn(x)||r||hn(x, r)) = 1] > 0. Intuitively, A
succeeds slightly higher when the last bit is hn compared to hn. Therefore, we define the predictor

5-1

5-2 Lecture 5: Pseudorandom Functions, Secret-key Encryption

B(fn(x)||r) = hn(x, r) as follows: pick b ← {0, 1} and evaluate A(fn(x)||r||b). If the value is 1, output
b, else output b. Therefore

Pr[B(fn(x)||r) = hn(x, r)] = Pr[b = hn] Pr[A(fn(x)||r||hn(x, r)) = 1]+Pr[b = hn] Pr[A(fn(x)||r||hn(x, r)) = 0]

= 0.5Pr[A(fn(x)||r||hn(x, r)) = 1] + 0.5(1− Pr[A(fn(x)||r||hn(x, r)) = 1])

= 0.5 + µ(n)

which is contradicts the unpredictability of hn.

[HILL99] showed that it is possible to construct a PRG from any one-way function.

5.2 Pseudorandom Functions

Let Fn = {f : {0, 1}n −→ {0, 1}n} represent all functions from {0, 1}n −→ {0, 1}n. One can note that
there exists a total of (2n)2

n

functions. If we want to represent all of these functions, we require a total of
log2((2

n)2
n

) bits or n · 2n bits which are exponential in n.

Instead, we shall try to construct a function that seems indistinguishable to a computationally bounded
attacker. We use 2 algorithms for this:

Setup(1n) −→ Key k (efficient and probabilistic)

Eval(k, x ∈ {0, 1}n) = y ∈ {0, 1}n (Deterministic)

such that for all n.u.PPT A and f ← Fn∣∣∣ Pr
k←Setup(1n)

[AEval(k,·) = 1]− Pr[Af(·) = 1]
∣∣∣ ≤ negl(n)

The above inequality implies that if an attacker is given oracle access to Eval(k, ·) and f(·) to query on
a polynomial number of inputs, it cannot distinguish our constructed random function from a randomly
sampled function.

The following theorem gives a way to construct a P.R.F from a P.R.G.

Theorem (Goldreich-Goldwasser-Micali): Given a length-doubling P.R.G Gn : {0, 1}n −→ {0, 1}2n

Setup(1n) : k ← {0, 1}n

Eval(k, x ∈ {0, 1}n) is constructed as follows:

Let x = [x1, x2 . . . xn] be the bit representation of a query of an attacker. Then

i0 ← k
for r from 0 to n− 1 do

or,left||or,right ← Gn(ir)
if xr == 0 then

ir+1 ← or,left
else

ir+1 ← or,right
end if

end for

Lecture 5: Pseudorandom Functions, Secret-key Encryption 5-3

 i0
1=k

O1,l
1=Gn,l(k) O0,r

1=Gn,r(k)

O2,l
1=Gn,l(O1,l

1) O2,r
1=Gn,r(O1,l

1)

O3,l
1=Gn,l(O2,l

1) O3,r
1=Gn,r(O2,l

1) O3,l
2=Gn,l(O2,r

1) O3,l
2=Gn,r(O2,r

1)

… …

q1=[0,0,0,...] q2=[0,1,0,...]

Figure 5.1: An example consisting of two queries.

After n steps, in is the output of our pseudorandom function.

Proof: We need to prove that the final generated output in is pseudorandom. One approach is to build
a binary tree with 2n inputs. At each level r, switch ir’s (which are 2r in count) from pseudorandom to
random and proceed to the next level until we cover all leaf nodes. However, this approach does not work
as we end up using the hybrid argument for all leaf nodes which are 2n and thus not polynomial in n.

Instead, we use the fact that the attacker makes a polynomial number of queries and build a random looking
tree on-the-fly. We use the following algorithm: Let q1, q2, . . . , qn be the queries of the attacker.

• For q1, switch or,left and or,right ∀r ∈ [0, n − 1] to random while traversing along the path from root
to the leaf labeled q1. Specifically, we switch the two children of the root to random. This change
is indistinguishable to attacker from the security of PRG. This creates two sub-tress that are rooted
at the left and the right child of the root. We continue to answer the rest of queries as in the real
algorithm. In the next sub-hybrid, we choose either the left sub-tree or the right sub-tree depending
on the first bit of q1 and repeat the above step by replacing both its children with random strings and
creating two more sub-tress. At each step, the we create one more sub-tree and at the end, we have a
forest of n trees. In each step, we continue to answer the rest of queries as in the real algorithm.

• For qj j ∈ [2, n], we repeat the process we did for the first query. However, if at any level r, the value
of or was computed during previous queries, we reuse them and do not create new sub-tress. Only
when we find a new child that has not yet been switched to random, do we break into sub-trees. This
ensures that our pseudorandom function gives the same output if queried with the same input multiple
times.

The above reduction invokes the security of PRG poly(n) times. Hence, to the attacker, our function seems
indistinguishable from a randomly sampled function.

Figure 5.1 shows an example with two queries of the form q1 = [0, 0, 0 . . .], q2 = [0, 1, 0, . . .] which share the
same first bit. Since, o1,l and o2,r were computed during the first query (shown in bold black path), these
values are reused for q2 (shown in bold red path) as well.

5-4 Lecture 5: Pseudorandom Functions, Secret-key Encryption

5.3 Secret-key Encryption

Suppose Alice and Bob know a secret k beforehand. Now, they want to communicate (send message m) over
a public channel such that nobody else can eavesdrop on their conversation. Formally, we want to create an
encryption scheme Enc and a corresponding decryption scheme Dec such that:

KeyGen(1n) −→ Key K

Enc(k,m) −→ Ciphertext c

Dec(k, c) −→ m

For all messages m, and k ← KeyGen(1n), SKE should always conform to the following correctness con-
straints:

c← Enc(k,m)

Dec(k, c) −→ m

SKE is known as single-message CPA secure if for k ← KeyGen(1n), c← Enc(k,m), and ∀ messages m0,m1:

{k ← KeyGen(1n) : Enc(k,m0)} =c {k ← KeyGen(1n) : Enc(k,m1)}

SKE is known as multi-message CPA secure if for all q pair of messages (m0,1,m1,1), . . . , (m0,q,m1,q)

{k ← KeyGen(1n) : Enc(k,m0,1), . . . ,Enc(k,m0,q)} =c {k ← KeyGen(1n) : Enc(k,m1,1), . . . ,Enc(k,m1,q)}

Note that multi-message CPA security requires Enc to be randomized. If Enc is a deterministic function,
then an attacker with the knowledge of Enc(k,m0) and Enc(k,m1) (which can be obtained by settings
m0,1 = m1,1 = m0 and m0,2 = m1,2 = m1) can then trivially distinguish (Enc(k,m0),Enc(k,m1)) thus
breaking the multi-message CPA security.

References

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom gener-
ator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

