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In the last class, we argued that if {hn}n∈N is a hard-core predicate for {fn}n∈N, then {fn}n∈N is a one-way
function. This shows that one-way functions are necessary for the existence of hard-core predicates. In this
lecture, we will show that they are sufficient.

Theorem 3.1 (Goldreich-Levin [GL89]) If one-way functions (OWFs) exist, then there ∃{gn, hn}n∈N
s.t. and {hn}n∈N is a hard-core predicate for {gn}n∈N.

3.1 Proof of Theorem 3.1

Let f = {fn}n∈N be a one-way function where

fn : {0, 1}k(n) −→ {0, 1}m(n)
,∀n ∈ N

Let’s define another family of functions g = {gn}n∈N where

gn = {0, 1}2k(n) → {0, 1}k(n)+m(n),∀n ∈ N

where input to gn is split in 2 parts x and r, each consisting of k(n) bits. We use (x1, ..., xk(n)) to denote
the bit representation of x and (r1, . . . , rk(n)) denote the bit representation of r.

We define gn in the following way:

gn(x, r) = fn(x) || r, ∀n ∈ N, where || represents concatenation operation

We also define h = {hn}n∈N in the following way:

hn(x, r) = ⟨x, r⟩, ∀n ∈ N, where ⟨x, r⟩ represents (
k(n)∑
i=1

xi · ri) mod 2

We will now prove that h is a hard-core predicate for g. A necessary condition for this to happen is that g
is one-way. Let’s verify that this is indeed the case.

Claim 3.2 g is one-way if f is one-way.
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Figure 3.1: Construction of inverter for fn to prove the one-wayness of gn.

Proof: Suppose by contradiction that g is not a OWF. This means that there exists a non-uniform PPT A
that can invert g with non-negligible probability. We will use A to design an inverter B for f .

The construction of B is given in Figure 3.1. On input (1k(n), fn(x)), B samples r randomly. It passes
(12k(n), fn(x)∥r) to A. A outputs (x′, r) and B outputs x′.

It can be easily verified that the probability that B inverts f is at least the probability that A inverts g,
which is assumed to be non-negligible. This contradicts the one-wayness of f .

We just verified that g is a one-way function. But this doesn’t still prove that h is a hard-core predicate for
g. Assume for the sake of contradiction that h is not a hard-core predicate. This means that there exists a
nuPPT A and polynomial p such that for infinitely many n, we have:

Pr
(x,r)←{0,1}2k(n)

[A(12k(n), fn(x)∥r) = hn(x, r)] ≥
1

2
+

1

p(n)

We will use A to design an inverter B for f .

3.1.1 Easy Case

Let’s first consider the case where A predicts h with probability 1:

Pr
(x,r)←{0,1}2k(n)

[A(12k(n), f(x)||r) = hn(x, r)] = 1

We will design B as follows. Let ei = (0, 0, 0, ..., 0, 1, 0, ..., 0) be a vector of length k(n) that has 1 in the
i-th position. If we pass a value fn(x)∥ei to A, A would always correctly compute the value of i-th bit of x
correctly due to the fact that A is always correct. We can pass e1, . . . , ek(n) through A to compute each bit
of x. This inverter always succeeds and this contradicts the one-wayness of f .
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3.1.2 Non-Trivial Case

Let’s now weaken the requirements that A predicts h. Specifically, let us consider the case where

Pr
(x,r)←{0,1}2k(n)

[A(12k(n), fn(x)∥r) = hn(x, r)] ≥
3

4
+

1

p(n)

for infinitely many n.

The previous approach does not work anymore due to the fact that inverter A might fail on some of the
instances of fn(x) and r = ei, giving false information about x, therefore, x will be inverted incorrectly.

To solve this we define a set Goodn, which is:

Goodn = {x ∈ {0, 1}k(n)| Pr
r←{0,1}k(n)

[A(12k(n), fn(x)∥r) = hn(x, r)] ≥
3

4
+

1

2p(n)
}

Claim 3.3 Prx←{0,1}k(n) [x ∈ Goodn] ≥ 1
2p(n)

Proof:

3

4
+

1

p(n)
≤ Pr

x,r
[A predicts hn]

= Pr
x
[x ∈ Goodn] · Pr

r
[A predicts hn |x ∈ Goodn]

+Pr
x
[x /∈ Goodn] · Pr

r
[A predicts hn |x /∈ Goodn]

≤ Pr
x
[x ∈ Goodn] + Pr

r
[A predicts hn |x /∈ Goodn]

≤ Pr
x
[x ∈ Goodn] +

3

4
+

1

2p(n)

This shows that Prx[x ∈ Goodn] ≥ 1
2p(n) .

We now try to mimic the procedure from the easy case of the theorem. For that, we use the fact that
⟨x, r⟩⊕ ⟨x, r⊕ ei⟩ = ⟨x, r⊕ r⊕ ei⟩ = xi . Note that if r is randomly generated, r⊕ ei is also random, despite
being correlated to r.

This property of inner product allows us to try to probabilistically invert i-th bit of x by trying multiple r
values, for each of them performing 2 queries ⟨x, r⟩, ⟨x, r ⊕ ei⟩ to the inverter, taking XOR of the answers
and doing a majority vote afterwards.

If x ∈ Goodn, each query with randomly chosen r errs with probability 1
4 − 1

2p(n) . Due to the union bound,

probability that both queries are correct is 1− ( 14 − 1
2p(n) ) · 2 = 1

2 + 1
p(n) >

1
2 .

We can model each attempt with a random variable Zj , j = 1...m (m is yet to be estimated) that takes
the value 1 iff xi obtained through the above process is correct. Therefore, Pr[Zj = 1] ≥ 1

2 + 1
p(n) . Let

Z =
∑m

i=1 Zi.

E[Z] = (
1

2
+

1

p(n)
) ·m =

m

2
+

m

p(n)

Pr[Z ≤ m

2
] ≤ Pr[|Z − E(Z)|≥ m

p(n)
] =≤ 2e

−2( m
p(n)

)2

m
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For m = n · p(n)2, the probability of being wrong on i-th bit is ≤ 2e−2n.

Therefore, the probability that we don’t err in computing any xi :

Pr[inverter succeeds|x ∈ Goodn] ≥ 1− 2ne−2n

Hence,

Pr[inverter succeeds] ≥ Pr[x ∈ Goodn] · Pr[inverter succeeds|x ∈ Goodn]

≥ 1

2p(n)
· (1− 2ne−2n)

where RHS is non-negligible.
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