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Recap.

• Negligible Functions: A function µ : N → [0, 1] is said to be negligible if ∀ polynomials p, ∃ n0 ∈
N s.t. ∀ n ≥ n0, where µ(n) < 1/p(n). In other words, negligible functions are smaller than any inverse
polynomial for large enough n.

• Non-uniform PPT machines: It is given by an infinite family of TMs {M0,M1, . . . ,Mn, . . .} where
Mi is used on inputs of length i. Specifically, there is no bound on time needed to generate the
description of Mn for each n ∈ N. This distinguishes it from uniform PPT machines. We will use
nuPPT to denote non-uniform PPT machines.

2.1 One-Way Functions

Recall the definition of One-Way Functions (OWFs) from last class.

Definition. Let f = {fn : {0, 1}k(n) → {0, 1}m(n)}n∈N be a family of functions. We say f is a one-way
function if:

• Easy to evaluate: There exists a polynomial algorithm that for every n ∈ N takes x ∈ {0, 1}k(n) and
outputs fn(x).

• Hard to Invert: For all non-uniform PPT A,

Pr
x←{0,1}k(n)

[A(1k(n), fn(x)) = y s.t. f(y) = f(x)] is negligible

Note on k(n). Suppose 2k(n) = p(n) for some polynomial p(·) for infinitely many n. In that case, we will
argue that the function cannot be one-way. Specifically, for every such n, we can build a polynomial-size
table containing the inverse of each possible image of the OWF. This table can be built in polynomial time
and can be used to trivially invert the one-way function. Hence, it is necessary that 2k(n) > p(n) for every
polynomial p(·) for large enough n. In other words, we require 2−k(n) to be negligible.

No string has many pre-images. Suppose there exists a string z ∈ {0, 1}m(n) such that |{x ∈ {0, 1}k(n) :
fn(x) = z}|≥ 2k(n)

p(n) for some polynomial p(·) for infinitely many n. Then, we will now argue that the function

cannot be one-way. Specifically, for every such n, we can non-uniformly find a pre-image of z and hardwire
that pre-image in the description of the adversary. If we sample x ← {0, 1}k(n) and evaluate fn on the

2-1



2-2 Lecture 2: One-Way Functions

sampled input, we get z with 1/p(n) probability. In that case, we can trivially output the hardwired inverse
and invert the one-way function with non-negligible probability. Hence, for any z ∈ {0, 1}m(n), we have
|{x∈{0,1}k(n)}:fn(x)=z|

2k(n) is negligible.

Existance of OWFs. If OWFs exist then P ̸= NP. Note that checking if a candidate inverse is valid or
not can be done in polynomial time. Hence, if P = NP, then any function can be inverted in polynomial time
and hence, OWFs cannot exist. Therefore, proving the existence of OWFs is at least as hard as separating
P from NP.

Candidates for OWFs. Given that we are very far from proving P ̸= NP (which is a necessary condition
for the existence of OWF), we do not know if OWFs exist. However, we have several candidates for OWFs.
The security of these candidates is based on conjectured hardness of certain mathematical problems. These
mathematical problems have been analysed by many mathematicians and computer scientists over several
decades and we do not yet have polynomial-time solutions for these problems. Some examples of hard
problems that give rise of one-way functions are: (1) Factoring, (2) Discrete Logarithm (DLog) (Factoring
and DLog are in BQP via Shor’s algorithm and hence, do not give rise to candidate one-way functions that
are secure against quantum computers), (3) Decoding random linear codes, and (4) Finding short vectors in
lattices (the last two candidates are conjectured to be secure against quantum computers).

2.2 Composition of OWFs

Let f = {fn : {0, 1}k(n) 7→ {0, 1}k(n)} be a one-way function. Here, we assume that m(n) = k(n) and such
one-way functions are said to be length-preserving. What can we say about g = {gn = fn(fn(·))}n∈N? Is it
one-way or is there a one-way function f for which g is not one-way?

Theorem 2.1 If length-preserving one-way functions exist, then there exists a one-way function f such that
g is not one-way.

Proof: Let h = {hn : {0, 1}k(n) → {0, 1}k(n)} be a length-preserving OWF. We will define another length-
preserving one-way function f and prove that f is one-way assuming h is one-way. However, for this particular
f , we will prove that composition of f with itself is not one-way.

Define f = {fn : {0, 1}2k(n) → {0, 1}2k(n)}n∈N where

fn(x1, x2) =

{
02k(n) if x1 = 0k(n)

0k(n)∥hn(x2) otherwise

Here, x1 ∈ {0, 1}k(n) denotes the first k(n) bits and x2 ∈ {0, 1}k(n) denotes the last k(n) bits of the input.
∥ denotes concatenation.

We must prove:

1. f is one-way.

2. g is NOT one-way
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The second part is trivial to prove. Note that fn(x1, x2) for any x1, x2 ∈ {0, 1}k(n) is either the bitstring
02k(n) or bitstring 0k(n)∥hn(x2). As the first half of both the strings is 0k(n), fn(fn(x1, x2)) = 02k(n). A
constant function cannot be one-way as any domain point is a valid inverse.

Let us now prove the first part. Suppose f is not one-way. Then, there must exist a nuPPT A such that

µ(n) = Pr
(x1,x2)←{0,1}2k(n)

[A(12k(n), fn(x1, x2)) = (x′1, x
′
2), s.t. fn(x1, x2) = fn(x

′
1, x
′
2)]

(i.e., Pr[A inverts f ]) is non-negligible. We will use A to design an inverter B for h that succeeds with
non-negligible probability. This would contradict the one-wayness of h.

Define B(1k(n), hn(x)) as follows:

1. B runs A(12k(n), 0k(n)∥hn(x)) to obtain x′1∥x′2.

2. B outputs x′2.

If A runs in polynomial time, then so does B. We now prove that B produces a valid inverse for h with
non-negligible probability. To see why this is the case,

µ(n) = Pr[x1 = 0k(n)] Pr[A inverts f |x1 = 0k(n)] + Pr[x1 ̸= 0k(n)] Pr[A inverts f |x1 ̸= 0k(n)]

≤ 1

2k(n)
+ Pr[A inverts f |x1 ̸= 0k(n)]

Note that:

Pr[A inverts f |x1 ̸= 0k(n)] = Pr[hn(x2) = 0k(n)] Pr[A inverts f |x1 ̸= 0k(n), hn(x2) = 0k(n)]

+Pr[hn(x2) ̸= 0k(n)] Pr[A inverts f |x1 ̸= 0k(n), hn(x2) ̸= 0k(n)]

≤ Pr[hn(x2) = 0k(n)] + Pr[A inverts f |x1 ̸= 0k(n), hn(x2) ̸= 0k(n)]

≤ ν(n) + Pr[B inverts h]

Note that ν(n) is negligible as any particular image cannot have a non-negligible probability of occurring
(see earlier discussion about this in Section 2.1). Also, whenever A inverts f conditioned on x1 ̸= 0k(n) and
hn(x2) ̸= 0k(n), B produces a valid inverse for h.

Hence, Pr[B inverts h] ≥ µ(n) − 1
2k(n) − ν(n). Note that 1

2k(n) and ν(n) are negligible while µ(n) is non-
negligible. Hence, Pr[B inverts h] is non-negligible and this concludes the proof.

2.3 Hard-core Predicate

Definition 2.2 Let h = {hn : {0, 1}k(n) → {0, 1}}n∈N be a family of predicates. We say that h is a hard-core
predicate for f = {fn : {0, 1}k(n) → {0, 1}m(n)}n∈N if:

• Easy to Evaluate: There exists a polynomial-time that for every n ∈ N takes x ∈ {0, 1}k(n) and
outputs hn(x).
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• Hard to predict given the output of f : For all nuPPT A:

Pr
x∈{0,1}k(n)

[A(1k(n), fn(x)) = hn(x)] ≤ 1/2 + negl(n)

In the rest of the discussion, we will restrict ourselves to the case where fn is injective for each n ∈ N. If
this was the case, then fn(x) completely determines x and hence, hn(x). However, the definition of hard-
core predicate guarantees that hn(x) is almost like a random bit to all computationally-bounded machines.
In other words, even if hn(x) is determined information-theoretically, it is computationally random (a.k.a.
pseudorandom).

Our next observation is that if h is a hard-core predicate for f then f is necessarily one-way. Suppose f is
not one-way, then there exists an inverter for f that succeeds with non-negligible probability ϵ(n). We can
use this inverter to predict hn(x) with probability non-negligibly more than 1/2. Specifically, whenever the
inverter succeeds, we can compute hn(x) correctly. Whenever the inverter fails, we output a random bit.
This predictor manages to correctly predict hn(x) with probability ϵ(n) + 1/2(1− ϵ(n)) = 1/2 + ϵ(n)/2. As
ϵ(n)/2 is non-negligible, this contradicts the definition of hard-core predicate.


