
CSC 2426: Fundamentals of Cryptography Fall 2023

Lecture 11: Secure Multiparty Computation
Instructor: Akshayaram Srinivasan Scribe: Vedic Sharma

Date: December 5, 2023

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

11.1 Previous Class Review

In the previous class we covered oblivious transfer (OT) between a sender and a receiver. The main idea
was as follows. Suppose a sender has two messages m0 and m1. The receiver has a bit b ∈ {0, 1}. How can
the receiver (without sharing b) learn the value of mb without learning m1−b? The solution known as the
OT protocol uses a DDH assumption.

This can be used to construct a secure two-party computation. In such a scenario, party P0 and P1 each
having a private input x0, x1 ∈ {0, 1} respectively wish to compute an arbitrary circuit C. We assumed that
the circuit consists of purely XOR and AND gates. Each party keeps track of a value for each of the wires
in the circuit. The invariant is the additive secret sharing of the wire values is equal to the actual value of
the wire. Parties share using OT and compute their own wire values at each level while maintaining the
invariant. On the final output wire, parties share their values to determine the computation of the circuit.

11.2 Secure MultiParty Computation Using OT

We have seen how two parties can compute an arbitrary circuit on their private inputs while only leaking
the output and nothing else. In this section, we will extend this idea to multiple parties. Consider n
parties: P1, P2, ..., Pn with private inputs x1, x2, ..., xn ∈ {0, 1}n. The parties want to compute the function
f(x1, x2, ..., xn). Here f is a function that is composed of only two operations (AND and XOR). Similar to
the two party assumption, the output of f is a single public value. We require that the method we construct
should both follow:

11-1

11-2 Lecture 11: Secure Multiparty Computation

Correctness: Each party learns the true value of f(x1, x2, ..., xn)

Privacy: Each party does not learn the private inputs of other parties. For example P1 does not learn
x2, x3, ..., xn.

11.2.1 Input Sharing Phase

Each party Pi splits their private input xi as follows. They randomly sample n− 1 values xi,1, xi,2, ..., xi,n−1

from {0, 1}. Then they set

xi,n = xi ⊕ xi,1 ⊕ xi,2 ⊕ ...⊕ xi,n−1

Notice that xi can be computed if a party has xi,j for all j = 1, 2, ..., n, but cannot be computed with even
one less value. A party Pi shares xi,j to party Pj .

11.2.2 Maintaining Wire Values and Invariant

The function can be broken down to a electric circuit. Thus computing the function is equivalent to applying
multiple different AND or XOR operations through wires. The value after a particular operation can be
visualized as a wire and will be denoted by w.

During each step of the computation, each party Pi maintains a wire value wi for each wire. This value may
not be w, but these values follow an important invariant. That is,

w = w1 ⊕ w2 ⊕ ...⊕ wn

Further, they satisfy that for any subset S of size n− 1, {wi}i∈S provides no information about w. The idea
is that once all the operations in f are performed, parties can share their wire values (of the output wire) to
determine the function value.

11.2.3 Computing the Function Value

We will show that parties determine their wire values using a recursive method. As there are two gates, we
split this into two cases. One where the gate is XOR and the other where the gate is AND.

Initial Conditions For a input wire w for an arbitrary party Pi, the wire values are given by wj = xi,j .
From the way we constructed these values, observe that the invariant is preserved.

Case 1: The gate is XOR gate.
Suppose the gate takes input α and β and computes α⊕β. How can the parties determine their wire values?
In this case suppose αi and βi are the corresponding wire value for party Pi. Then consider the following
equations.

α = α1 ⊕ α2 ⊕ ...⊕ αn

β = β1 ⊕ β2 ⊕ ...⊕ βn

α⊕ β = (α1 ⊕ β1)⊕ (α2 ⊕ β2)⊕ ...⊕ (αn ⊕ βn)

A party Pi can do the operation αi⊕βi locally to compute the value of the wire corresponding to α⊕β. As
we see from the operation above, this is enough to retain the invariant.

Lecture 11: Secure Multiparty Computation 11-3

Case 2: The gate is AND gate.
Now let’s suppose that the gate in question is an AND gate. Thus

αβ = (α1 ⊕ α2 ⊕ ...⊕ αn)(β1 ⊕ β2 ⊕ ...⊕ βn)

=
∑
i

αiβi ⊕
∑
j ̸=i

αiβj

where the

∑
represents the addition over modulo 2 (i.e. XOR operation). Note that it is sufficient for the

parties to compute an XOR secret sharing of each of the terms in the above equation. Since αi and βi are
available to Pi, it sets its share to be αi ·βi and the rest of the parties set their shares to be 0. αi is available
with Pi and βj is available with Pj . These two parties use the OT-based protocol from the previous lecture
to compute an XOR secret secret sharing of αi · βj . The rest of the parties set their share of this term to
be 0. This ensures that the parties hold an XOR secret sharing of αβ such that any subset of n− 1 parties
learn no information about αβ.

11.2.4 Reconstructing the Output

The parties exchange their output wire value with all the other parties. Then each party simply applies the
XOR operation on all of them to get the desired function value.

11.3 Shamir’s Secret Sharing

Shamir’s secret sharing or threshold secret sharing is an efficient secret sharing scheme. To understand how
the algorithm works we first what (t, n) secret sharing is, then discuss polynomial interpolation, and finally
Shamir’s protocol.

11.3.1 t-out-of-n Secret Sharing

A t-out-of-n secret sharing scheme is a pair of PPT algorithms (Share, Recon) having the following properties

• Share(x) outputs (s1, s2, ..., sn).

• Recon({si}i∈T) outputs x if T ⊆ [n] of size at least t.

• For any x and x′ and a set S ⊂ [n] of size at most t− 1, the two distributions

{(s1, ..., sn)← Share(x) : (si|i ∈ S)} ≡ {(s1, ..., sn)← Share(x′) : (si|i ∈ S)}

11.3.2 Shamir’s Secret Sharing Protocol

Shamir’s secret sharing protocol is a (t, n) secret sharing scheme given by two PPTs. The Share(s) is executed
as follows. Let F be a finite field of size > n. Let α1, . . . , αn be distinct non -zero elements from F. Share
samples t− 1 elements a1, a2, ..., at−1 ← F. It then defines a polynomial

p(x) = s+ a1x+ a2x
2 + ...+ at−1x

t−1.

Share(x) outputs p(α1), . . . , p(αn).

11-4 Lecture 11: Secure Multiparty Computation

The reconstruction function corresponds to polynomial interpolation since any degree t − 1 polynomial is
uniquely determined from any set of t evaluation points. The security follows since for any subset of t − 1
points, the evaluations of p are just random elements from the finite field.

11.4 Information-Theoretic Multiparty Secure Computation

Previously we used OT which required cryptographic assumptions. In this section we will use Shamir’s secret
sharing protocol to show a method for multi-party secure computation without using any cryptographic
assumptions. However, the catch will be that the number of parties that we allow the adversary to corrupt
is at most n/2.

Let t be the number of adversarial corruptions and let n = 2t + 1 be the total number of parties in the
protocol. Let xi ∈ F be the private input of the corrupt party. Similar to before, parties wish to determine
f(x1, x2, ..., xn) without revealing their private inputs. We will use a circuit to compute f with + and ∗
gates.

11.4.1 Input Sharing Phase

Each party Pi computes a (t+ 1)-out-of-n secret sharing of its input.

11.4.2 Maintaining Wire Values and Invariant

Similar to 11.2.2, parties maintain wire values for each corresponding operation result. The invariant in this
case is given as follows. The output wire value of a computation given on a wire w is individually computed
as wi by party Pi and has the following property. Let the polynomial of degree t passing through the points

(α1, w1), (α2, w2),, (αn, wn)

be denoted by q. Then the wire value w = q(0). Further, no set of t parties learn any information about w.

11.4.3 Computing the Function Value

We will show that parties determine their wire values using a recursive method. As there are two operations,
we split this into two cases. One where the operation is addition and the other where the operation is
multiplication.

Initial Conditions For a input wire w for an arbitrary party Pi, the wire values are given by wj = qi(αj).
From the way we constructed these values, observe that the invariant is preserved.

Case 1: The operation is addition.
Suppose the operation takes input two values p(0) and q(0). Then the result of the operation is p(0) + q(0)
and parties compute the wire values as follows

wi = pi + qi

A party Pi can do the operation pi+qi locally to compute the value of the wire corresponding to p(0)+q(0).
One can see that the function passing through the points (αi, pi+qi) passes through the point (0, p(0)+q(0))
thus the invariant is preserved.

Lecture 11: Secure Multiparty Computation 11-5

Case 2: The operation is multiplication.
Now let’s suppose that the operation in question is multiplication. Thus the result of the operation is
p(0)q(0). The parties first compute

w′
i = piqi

Observe that the polynomial pq is of degree 2t and hence, the parties hold a (2t+1)-out-of-n secret sharing.
However, we want the parties to hold a (t + 1)-out-of-n secret sharing of the wire values. To solve this
problem, we use a degree reduction technique.

Degree Reduction. Let’s say that the parties have a (2t+1)-out-of-n and (t+1)-out-of-n secret sharing
of the same random value r. Let us denote them by (r′1, . . . , r

′
n) and (r1, . . . , rn) respectively. The parties

compute w′
i − r′i and exchange this with other parties. The parties reconstruct this to obtain p(0)q(0) − r.

This is random and provides no information about p(0)q(0) as r is random. The parties now compute
p(0)q(0)− r − ri. This is a (t+ 1)-out-of-n secret sharing of p(0)q(0).

The parties can generate a (2t+ 1)-out-of-n and (t+ 1)-out-of-n secret sharing of a random value and then
add these shares together to generate (r′1, . . . , r

′
n) and (r1, . . . , rn).

11.4.4 Reconstructing the Output

The parties exchange their output wire value with all the other parties. Then each party inputs these values
into the Recon PPT to determine the function value.

