
CSC 2426: Fundamentals of Cryptography Fall 2023

Lecture 10: Oblivious Transfer and Secure Two-party Computation
Instructor: Akshayaram Srinivasan Scribe: Yuntao Cai

Date: 27 November, 2023

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

10.1 Introduction

Last class we saw DDH - Assumption. A Recap: Given a cyclic group (G, ·) generated by generator g ∈ G.

G = {g0, ...gp−1}

Any element gx can be mapped to x ∈ Zp = {0, 1, ...p−1} There are two operations that are easy to compute.

1) h, h
′ ∈ G, one can compute h ∗ h′

in polynomial time (in the description size of h)
2) h ∈ G and x ∈ Zp, h

x ∈ G can be computed in polynomial time.

The Decisional Diffie-Hellman Assumption (DDH) states that:

{G, p, g, gx, gy, gxy}x,y←Zp
≈c {G, p, g, gx, gy, gz}x,y,z←Zp

In the last class, we saw how to construct a public-key encryption scheme from DDH assumption. Let us
recall the construction here.
The key generation algorithm outputs pk = gx, sk = x (where x← Zp). To encrypt a message m ∈ G, we sample r ←
Zp, c = (gr, gx·r ·m). The view of the adversary is given by:

{G, p, g, gx, gr, gx·r ·m)}x,r←Zp
≈c {G, p, g, gx, gr, gz}x,r,z←Zp

(from the DDH assumption)

To encrypt a single bit message, encode m = 0 =⇒ g0, m = 1 =⇒ g1

10.2 Oblivious Transfer

In this lecture, we will look at another key cryptographic primitive called Oblivious Transfer. Oblivious
transfer is a protocol that is run between two parties: a receiver and a sender.

Receiver Sender

Input b ∈ {0, 1} (m0,m1) ∈ {0, 1}2

Output mb no output

10-1



10-2 Lecture 10: Oblivious Transfer and Secure Two-party Computation

At the end of the interaction, receiver will have learned content of mb.

Consider the trivial example where sender sends (m0,m1) to receiver. This reveals m1−b to receiver.

Consider another example. Receiver sends b to sender, and sender sends mb. This reveals b to sender.

We want receiver to learn mb, not m1−b, and sender does not learn b. This protects both receiver and sender.

Correctness: At the end of protocol, receiver learns mb.

Semi-honest security: By semi-honest security, we mean that the parties follow the protocol but try
to learn additional information about the private inputs of the other parties from their view.

• Receiver security: ∀(m0,m1):

V iewS⟨R(0), S(m0,m1)⟩ ≈c V iewS⟨R(1), S(m0,m1)⟩

• Sender security: ∀b ∈ {0, 1},∀(m0,m1) ∈ {0, 1}2:

V iewR⟨R(b), S(m0,m1)⟩ ≈c V iewR⟨R(b), S(mb,mb)⟩

Here, V iew of a party includes its private input, the private random coin tosses, and the messages received
from the other party.

We now show that a simple correlation called random OT correlation is sufficient to realize an OT protocol
between the sender and the receiver on any input. In the random OT correlation, the sender receives two
random bits (s0, s1) and the receiver obtains a random bit r along with sr. We now show how to realize OT
on any private input using such random OT correlation.

Receiver Sender

Input : b ∈ {0, 1} (m0,m1) ∈ {0, 1}2

Correlation : (r, sr), r ← {0, 1} (s0, s1) ∈ {0, 1}2

b⊕ r−−→
c0 = m0 ⊕ sb⊕r, c1 = m1 ⊕ s1⊕b⊕r←−−−−−−−−−−−−−−−−−−−−−−−−−

mb = cb ⊕ sr

It is easy to see that the above protocol is information-theoretically secure if r and s0, s1 are randomly
chosen. We now show that how to build oblivious transfer protocol from the DDH assumption.

The main intuition behind this construction is the following. The receiver samples two public keys pk0 and
pk1 for the public-key encryption described above. These public keys are sampled such that the receiver
knows the secret-key for pkb where b is its private input but it does not know any information about the
secret key for pk1−b. If that was the case, the sender can send an encryption of m0 under pk0 and m1



Lecture 10: Oblivious Transfer and Secure Two-party Computation 10-3

under pk1. The receiver can use the secret key for pkb to recover mb. Further, we can use the security of
the encryption scheme to switch the encrypted message under pk1−b from m1−b to mb. However, the key
challenge here is how to ensure that receiver samples pk1−b without knowing the corresponding secret key.
Consider the following interaction.

Receiver Sender

x← Zp

gx
←−

y ← Zp

pkb = gy, pk1−b = gx−y

(pk0, pk1)−−−−−−→
c0 ← Enc(pk0,m0), c1 ← Enc(pk1,m1)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Dec(y, cb) = mb

Correctness: trivial.

Receiver security:

pk0 ≡ pk1

b = 0 : (pk0, pk1) = (gy, gx−y)

b = 1 : (pk0, pk1) = (gx−y, gy)

Let x− y = y′

b = 1 : (pk0, pk1) = (gy
′
, gx−y

′
)

Since y is randomly distributed, x − y is randomly distributed. Hence, y′ is identically distributed to y.
Thus, the two public-keys when b = 0 and when b = 1 are identically distributed. Therefore, the receiver
security holds unconditionally.

Sender security: We will prove sender security assuming the DDH assumption. Suppose the sender security
does not hold. That is, there exists a distinguisher that can distinguish between

V iewR⟨R(b), S(m0,m1)⟩ and V iewR⟨R(b), S(mb,mb)⟩

with non-negligible advantage. We will use this distinguisher to break the security of the encryption scheme.
Specifically, we give a reduction that contradicts the security of the encryption scheme. The reduction
obtains b (which is receiver’s private input) and m0,m1 which are sender’s private inputs. The reduction
chooses a uniform random tape for the receiver. Note that this random tape includes the coins for sampling
y. By setting the random tape, the reduction knows y that the receiver samples.



10-4 Lecture 10: Oblivious Transfer and Secure Two-party Computation

Receiver Reduction Challenger

pk · gy
←−−−−−

pk
←−

pkb = gy, pk1−b = pk

(pk0, pk1)−−−−−−→
mb,m1−b−−−−−−→

c∗←−
cb = Enc(pkb,mb), c1−b = c∗

(c0, c1)←−−−−
The reduction generates the messages in the protocol as described above and generate the view of the receiver.
It runs the distinguisher on this view and outputs whatever it outputs. If c∗ is an encryption of m1−b, then
the input to the distinguisher is identically distributed to V iewR⟨R(b), S(m0,m1)⟩. Else, it is distributed
identically to V iewR⟨R(b), S(mb,mb)⟩. Since we assumed that the distinguisher distinguishes between the
above two views with non-negligible advantage, the reduction breaks the security of the encryption scheme
which is a contradiction. This completes the proof of security.

10.3 Secure Two-party Computation

In this section, we are going to see how to use oblivious transfer to let two parties compute an arbitrary
circuit on their private inputs while only leaking the output and nothing else.

Consider two parties: P0 and P1. P0 has a private input x ∈ {0, 1}n and P1 has a private input y ∈ {0, 1}n.
The parties have a circuit C (comprises of AND and XOR gates) as common input. The parties wish to
compute the output of C on (x, y).

This task is trivial if the parties exchange their inputs in the clear with each other. That is, the party P0

can send x to P1 and P1 can in turn send y to P0 and the parties compute the output of the circuit locally.
However, in this approach, the private inputs of each party is revealed to the other in the clear. Is there a
way to ensure that the parties only learn the output of the circuit on their private inputs without leaking
any other information? This is possible using secure computation.

Toy Example-1: AND gate. Suppose the parties want to compute an AND gate on their private inputs.
That is, the party P0 has a bit a and party P1 has a bit b and the parties wish to learn a·b. We can accomplish
this using an OT protocol. Specifically, P0 plays the role of the receiver with its private input set to a and
P1 plays the role of the sender with its two inputs bits set to (0 · b, 1 · b). The output of OT reveals a · b to
P0 and it can send this result back to P1.

Toy Example-2: AND-XOR gate. Suppose P0’s private input is a bit a and P1’s private inputs are two
bits (b, r). The parties wish to compute a · b⊕ r. We will again use an OT protocol to accomplish this. P0

plays the role of the receiver with its private input set to a and P1 plays the role of the sender with its two
inputs bits set to (0 · b⊕ r, 1 · b⊕ r). The output of OT reveals a · b⊕ r to P0 and it can send this result back
to P1. If P0 does not send back the result, then P0 holds a · b⊕ r and P1 holds r. If r is randomly sampled,
then neither party knows any information about a · b but using a · b⊕ r and r, they can recover a · b.

We will now show how to use the above simple example to securely compute every circuit. The protocol
proceeds as follows:



Lecture 10: Oblivious Transfer and Secure Two-party Computation 10-5

• Input Sharing Phase. For each i ∈ [n], P0 chooses a random bit ri and P1 chooses a random bit si.
P0 sends r1, . . . , rn to P1 and P1 sends s1, . . . , sn to P0. The parties locally compute ri⊕xi and si⊕yi.
Note that for every input wire P1 and P0 holds two bits such that the XOR of these two bits give the
value carried by that wire. This is called as an additive secret sharing of the wire values. Note that
each party learns no information about the value carried by the wire belonging to the other party.

• Computing the Circuit. For every wire in the circuit, we will maintain the invariant that the parties
will compute an additive sharing of the wire value and each party learns no information about the value
carried by this wire unless it is an input wire belonging to this party. For the input wires, the invariant
holds after the input sharing phase. This is the base case and we will ensure that the invariant holds
using induction on the levels of the circuit. Assume that invariant holds for each wire up to level i− 1
from the input level. Let g be an arbitrary gate in level-i. Let α and β be the values carried by the
input wires to this gate. Since these two wires belong to lower levels, by induction hypothesis, the
parties P0 and P1 hold (α0, β0) and (α1, β1) respectively such that α0 ⊕ α1 = α and β0 ⊕ β1 = β and
the parties have no information about α and β respectively (in a computational sense). If g was an
XOR gate, then the parties maintain the invariant by setting the shares of the output wire value of g
to be α0 ⊕ β0 and α1 ⊕ β1 respectively. If g was an AND gate, then the goal is to have an additive
secret sharing of α · β = (α0 ⊕ α1) · (β0 ⊕ β1) = α0 · β0 ⊕ α0 · β1 ⊕ α1 · β0 ⊕ α1 · β1. Note that if the
parties generate an additive secret sharing of each of the four terms, then we are done. For the two
outer terms, the party Pi can set its share to be αi · βi and the other party can set its share to be
0. To compute shares of each of the two inner terms, one party (say, P0) chooses random bits γ1, γ2
and uses Toy example-2 to reveal α0 · β1 ⊕ r1 and α1 · β0 ⊕ γ2 to P1. This corresponds to an additive
sharing of two inner terms.

• Reconstructing the Output: The parties exchange the shares of the output wire to reconstruct the
outpu by XORing the shares together.


