
CSC 2426: Fundamentals of Cryptography Fall 2023

Lecture 1: Introduction, Negligible Functions
Instructor: Akshayaram Srinivasan Scribe: Ziyang Jin

Date: 2023-09-11

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1.1 What is cryptography?

Modern cryptography is about building secure systems that hide private information from adversaries.

Example 1. Suppose we have two people, Alice and Bob. Alice tries to send a secret message m to Bob
through a public channel. Eve, the adversary, has access to all communication sent between Alice and Bob
through the channel. Cryptography can be used to ensure that Eve learns no information about m.

Example 2. Alice tries to send a message m to Bob through a public channel. This time, Eve not only has
access to m through the public channel, but she can also tamper the message m. How does Bob know that
the message he gets is not tampered? Cryptography can be used to protect the integrity of messages.

Example 1 and 2 are about protecting the data. In addition to this, cryptography is also concerned about
protecting secrecy and integrity of computation. See examples 3 and 4 below.

Example 3. Alice has some data stored by a cloud service provider (say AWS, Azure, Google Cloud, etc),
and she wants to compute some function f on the data stored in the cloud. However, Alice neither wants
the cloud service provider to learn any useful information about the data nor she wants to download the
complete data; she only wants to learn the output of the computation. How can Alice achieve it?

Example 4. Alice asks the cloud service provider to compute some function f on the data stored in the
cloud. How does Alice make sure that function f is computed correctly?

1.2 What is this course about?

This course talks about the theoretical foundations of cryptography. In this course, we will:

• Develop a mathematical framework that allows us to precisely define the properties to be satisfied by
secure systems.

• Look at constructions of secure systems.

• Prove that these systems satisfy the required properties.

1.3 Negligible function

Definition. Given a function µ : N → [0, 1]. We say µ is negligible if for all polynomials p, there exists

1-1



1-2 Lecture 1: Introduction, Negligible Functions

n0 ∈ N, such that ∀n ≥ n0, µ(n) ≤ 1
p(n) .

Let’s consider a couple of functions and see if they are negligible or non-negligible.

• µ1(n) =
1
n2 is not negligible since we can take p(n) = n3 and for all n ≥ 1, µ(n) = 1

n2 ≥ 1
n3 = 1

p(n) .

• µ2(n) = 2−n is negligible since for any polynomial p(n), there always exists n0 such that ∀n ≥
n0, µ2(n) ≤ 1

p(n) . This is because µ2(n) is exponential, so it is asymptotically smaller than any inverse

polynomial 1/p(n).

Theorem. If µ1, µ2 are negligible functions, then µ = µ1 + µ2 is also negligible.

Proof: For any polynomial q(n), consider 2q(n), which is also a polynomial. Since µ1 is negligible, there
exists a n1 ∈ N such that ∀n ≥ n1, µ1(n) ≤ 1

2q(n) . Since µ2 is negligible, there exists a n2 ∈ N such that

∀n ≥ n1, µ1(n) ≤ 1
2q(n) . Let n0 = max(n1, n2). Then we have for all n ≥ n0, µ = µ1 + µ2 ≤ 1

2q(n) +
1

2q(n) =
1

q(n) , which proves that µ is negligible.

Theorem. If µ1, µ2, ..., µc are negligible functions for some c ∈ N, then µ = µ1 + µ2 + ...+ µc is negligible.

The proof is similar. For any polynomial q(n), instead of consider 2q(n), we just need to consider cq(n), and
take n0 = max(n1, ..., nc).

1.4 One-way functions

Informally speaking, a Probabilistic Polynomial-time Turing machine (abbr. PPT) M(x; r) is a Turing
machine that takes x as input and random variable r (can think of it as random coins), and runs in polynomial
time and outputs a random variable.

Definition 1.1 A non-uniform probabilistic polynomial-time Turing machine (abbr. nuPPT) is a set of
infinite P.P.T’s A = {M1,M2, ...,Mn, ...} where we use Mi to compute the output on inputs of length i.

Definition 1.2 Let f = {fn : {0, 1}k(n) → {0, 1}m(n)}n∈N be a family of functions. We say f is a one-way
function if:

• Easy to evaluate: There exists a polynomial algorithm that for every n ∈ N takes x ∈ {0, 1}k(n) and
outputs fn(x).

• Hard to Invert: For all non-uniform PPT A,

Pr
x←{0,1}k(n)

[A(1k(n), fn(x)) = y s.t. f(y) = f(x)] is negligible

The first condition ensures that f is easy to compute. The second condition says that given the output of
f on a randomly chosen input (x ← {0, 1}k(n) means x is sampled from the set of all binary strings of size
k(n)), it is hard to invert f .

Remark 1.3 We need 1k(n) as an additional input to A to ensure that A has enough time to write down
a pre-image. In case m(n) is very small, like log n, if we only allow A to run in time polynomial to m(n),
then A might not even have enough time to write down the entire input x.


