
CSC 2419: Lattice-based Cryptography Fall 2025

Lecture 8: Attribute-based Encryption
Instructor: Akshayaram Srinivasan Scribe: Ismael Gharbi

Date: 2025-11-10

8.1 Recap

In the last lecture, we discussed secure computation: Alice holds an input x, Bob holds an input y, and
the goal is to design two two-round secure protocol such that Alice learns f(x, y) and no other information
about Bob’s input, and Bob learns no information about Alice’s input. We then compared two lattice-based
approaches for designing secure protocols with communication complexity succinct in the size of function.

8.2 Attribute-Based Encryption

We can observe that in both public-key encryption (PKE) and fully homomorphic encryption (FHE), se-
mantic security guarantees an “all-or-nothing” property: without the secret key, a ciphertext reveals no
information about the underlying message, and with the secret key, one recovers the entire message. In
other words, access to the message is tied completely to possession of the single decryption key.

In contrast, Attribute-Based Encryption (ABE) offers a more flexible notion of access. The message are
encrypted with respect to an attribute x. Secret keys skf are generated with respect to function f (this can
be thought of as embedding policies in the secret key). A user, holding the secret key skf can decrypt the
message encrypted with respect to attribute x iff the attribute satisfies the policy i.e. f(x) = 0. This variant
is also referred to as Key-Policy Attribute Based Encryption (KP-ABE)

Let x ∈ {0, 1}l and F be a class of function F ⊆
{
f : {0, 1}l → {0, 1}

}
An Attribute-Based Encryption

scheme for the class of functions F is defined by a tuple of efficient algorithms (Setup,Enc,KeyGen,Dec)
where

• Setup(1λ)→ (mpk,msk)

Generate a public key mpk and a master secret key msk, which is used to issue policy-specific secret
keys.

• Enc(mpk, x,m)→ ct

On input the public key mpk, message m ∈ {0, 1}, and attribute x ∈ {0, 1}l, the encryption algorithm
returns a ciphertext ct.

• KeyGen(msk, f)→ skf

Given a master secret key msk and a function f ∈ F , the key generation algorithm returns a decryption
key skf with respect to function f

• Dec(skf , ct) → m On input the secret key skf and a ciphertext ct. the decryption algorithm returns
m ∈ {0, 1}.

8-1

8-2 Lecture 8: Attribute-based Encryption

Correctness. For all x ∈ {0, 1}l, f ∈ F , and m ∈ {0, 1} such that f(x) = 0

Pr

Dec(skf , ct) = m|
(mpk,msk)← Gen(1λ)
ct← Enc(mpk, x,m)

skf ← KeyGen(msk, f)

 = 1

Security. Consider the following selective security game between adversary and challenger:

Adversary Challenger

x∗ ← A(1sec) (mpk,msk)← Setup(1λ)

x∗

−−−−−−−−−→
mpk

←−−−−−−−−−
Adversary has oracle access to

KeyGen(msk, x∗, ·) where

KG(msk, x∗, f) =

{
skf = KeyGen(msk, f), if f(x∗) ̸= 0

⊥, otherwise

(m0,m1, state)← AKeyGen(msk,x∗,·)(mpk)

x∗

−−−−−−−−−→
b $← {0, 1}

ct← Enc(mpk, x∗,mb)

ct
←−−−−−−−−−

b′ ← AKeyGen(msk,x∗,·)(ct, state)

b′

−−−−−−−−−→

An ABE scheme is (selectively) secure if in the game above,

Pr[b′ = b] ≤ 1/2 + negl(λ)

8.3 Attribute Based Encryption from LWE

We recall some preliminaries on lattice trapdoors and the key equation.

8.3.1 Building Blocks

Trapdoor Sampling. We recall the notion of Trapdoor generator. A trapdoor generator is defined by the
tuple of algorithms (TrapSamp,ExtendRight) where

• TrapSamp(1λ, 1m, 1n)→ (A,TA): The Trapdoor generator algorithm returns the tuple (A,TA) where
A ∈ Zn×m is a full rank matrix that is negl(λ)-close to a uniform matrix and TA ∈ Zm×m such that

Lecture 8: Attribute-based Encryption 8-3

– ATA = 0m×m

– The column of TA have low norm

– TA has full rank over Z

• ExtendRight(A,TA,B)→ TA||B: Given full rank matrix A ∈ Zn×m
q and B ∈ Zn×k

q and the trapdoor
TA for matrix A, the deterministic algorithm returns the trapdoor TA||B for the full-rank matrix
A||B.

• ExtendLeft(A,S,TG) → TA∥AS−G: Given a full rank matrix A ∈ Zn×m
q , a low-norm matrix S and

the trapdoor TG, this deterministic algorithm returns a trapdoor TA∥AS−G. Specifically, given the

trapdoor TG for the matrix G, we can construct the trapdoor TA∥AS−G as

(
STG I+ SR
−TG −R

)
where

R is a low norm matrix such that GR = −A. It is easy to observe that TA∥AS−G is low-norm and
has full rank.

Key-Equation. We summarise the notion of Key-Equation from Lecture 7. There exist algorithms
(EvalPK,EvalCT) such that:

• EvalPK(A1, . . . ,Al, f): On input Ai ∈ Zn×m
q and function fL {0, 1}l → {0, 1}, the (deterministic

algorithm) returns Af ∈ Zn×m
q

• EvalCT(cT1 , . . . , c
T
l ,A1, . . . ,Al, f, x): On input vectors cTi = sT (Ai + xiG) + eTi , function f and input

x, the deterministic algorithm returns a LWE sample cTf = sT (Af + f(x)G) + eT such that

(cT1 ||. . . ||cT)Hx,f = sT (Af + f(x)G) + eT

and Hx,f is a low-norm matrix

• EvalSim(f, x, {Ai}): If we can write Ai = A · Si − xiG where Si ∈ {±1}m×m
, then, this algorithm

returns a low norm matrix Sf such that Af = ASf − f(x)G. Note that EvalSim is essentially how we
do GSW homomorphic evaluation.

8.3.2 Construction

We provide a construction of the Attribute-Based Encryption scheme assuming the hardness of LWE.

• Setup(1λ):

1. Sample (A,TA)← TrapSamp(1λ, 1m, 1n).

2. Sample A1, . . . ,Al
$← Zn×m

q and v $← Zm
q .

3. Return (msk,mpk) where

mpk = (A,A1, . . . ,Al,v)

msk = TA

• KeyGen(msk, f)

1. Compute Af = EvalPK(A1, . . . ,A, f)

8-4 Lecture 8: Attribute-based Encryption

2. Sample trapdoor extension TA||Af
= ExtendRight(A,TA,Af). Use the trapdoor to sample low

norm vector rT such that (A||Af) · r = v.

3. Define the secret key skf = r

• Enc(mpk, x,m)

1. Compute Ax = [A||A1 + x1G||. . . ||Al + xlG].

2. Sample LWE secret sT ← Zn
q , e← χm(ℓ+1) and e1 ← χ.

3. Compute the ciphertext as

ct = (sTAx + eT , sTv + e1 +m⌊q/2⌋)

. Output ciphertext ct

• Dec(skf , x, ct)

1. Parse

ct = (ct1, ct2)

ct1 = cTin||cT1 ||cT2 ||. . . ||cTl
skf = r

2. Compute cTf = EvalCT(
{
cTi

}
, {Ai} , f, x)

3. Return Round(ct2 − (cTin||cTf) · r)

Correctness Observe that a valid ciphertext ct = (ct1, ct2) is of the form

ct1 = sT (A||A1 + x1G||. . . ||Al + xlG) + eT)

= cTin||cT1 ||. . . ||cTl

where cTin = sT (A) + eT0 and cTi = sT (Ai + xiG) + eT0 Si = sT (Ai + xiG) + eTi
′
where eTi

′
is a low-norm

error. If we have (f, x) such that f(x) = 0, then, from the correctness of EvalCT, the decryption algorithm
computes cTf = sT (Af + f(x)G) + eT = sTAf + eT

=⇒ cTin||cTf = sT (A||Af) + eT0 ||eT

=⇒ (cTin||cTf)r = sT (A||Af)r+ (eT0 ||eT)r
= sTv + e′

=⇒ ct2 − (cTin||cTf)r = m⌊q/2⌋+ e

=⇒ Round(ct2 − (cTin||cTf)r) = m

where the last equality holds with high probability.

Security We want to prove that the ciphertext of message m and attribute x reveals no information about
the message given access to secret keys skf such that f(x) = 1. We provide a brief security proof sketch
below:

Lecture 8: Attribute-based Encryption 8-5

• Hybrid 0 : This is the security game defined between adversary and challenger.

• Hybrid 1 : In this hybrid, the challenger samples the public matrices Ai as follows: it samples A∗
i

$←
Zn×m
q and sets Ai = A∗

i − xiG. This hybrid is indistinguishable from Hybrid 0 since the public
matrices are still random.

• Hybrid 2: In this hybrid, the matrices are samples as follows: A∗
i = A · Si where Si

$← {±1}m×m
and

set Ai = A · Si − xiG. Using Leftover Hash Lemma, we can conclude that this hybrid is statistically
indistinguishable from the previous hybrid.

• Hybrid 3: In this hybrid, we generate ct1 as follows:

ct1 =sTAx + eT0 (S0||. . .Sl)) + eT

=sTA(I||S0||. . . ||Sl) + eT0 (S0||. . .Sl)) + eT

=(sTA+ eT0) · (I||S0||. . . ||Sl) + eT

This hybrid is statistically close to the previous hybrid from the Gaussian noise smudging.

• Hybrid 4 In this hybrid, whenever the adversary queries the oracle KeyGen(msk, x∗, f), the oracle
response is as follows:

– Compute Sf ← EvalSim(f, x, {Si}) such that ASf − f(x)G = ASf −G = Af .

– The oracle can now sample the secret key r given that we can compute the trapdoor of matrix
(A||ASf − G) from ExtendLeft without requiring the trapdoor for A. If TA||ASf−G be the
trapdoor, then r is sampled such that

(A||ASf −G)r = v

This approach of sampling the secret key is statistically close to the normal way from the trapdoor
presampling lemma. Subsequently, we note that the ciphertext is of the form:

ct1 =(sTA+ eT0) · (I||S0||. . . ||Sl) + eT

ct2 =sTv + e1 +m⌊q/2⌋

we can equivalently think of this ciphertext as an LWE sample ct = sTA′ + eT + [0, 0, . . . ,m⌊q/2⌋]
where A′ = A||v and eT

′
= eT ||e1. By invoking the hardness of LWE, we can see that this ciphertext

reveals no information about m

Remark 8.1 It is important to note that we cannot directly invoke hardness of LWE and have to go through
the hybrids described above. This is because we want to show that information that adversary gains in the
security game, namely skf can be simulated without the adversary learning the trapdoor for matrix A.

