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8.1 Recap

In the last lecture, we discussed secure computation: Alice holds an input z, Bob holds an input y, and
the goal is to design two two-round secure protocol such that Alice learns f(x,y) and no other information
about Bob’s input, and Bob learns no information about Alice’s input. We then compared two lattice-based
approaches for designing secure protocols with communication complexity succinct in the size of function.

8.2 Attribute-Based Encryption

We can observe that in both public-key encryption (PKE) and fully homomorphic encryption (FHE), se-
mantic security guarantees an “all-or-nothing” property: without the secret key, a ciphertext reveals no
information about the underlying message, and with the secret key, one recovers the entire message. In
other words, access to the message is tied completely to possession of the single decryption key.

In contrast, Attribute-Based Encryption (ABE) offers a more flexible notion of access. The message are
encrypted with respect to an attribute z. Secret keys sk; are generated with respect to function f (this can
be thought of as embedding policies in the secret key). A user, holding the secret key sk; can decrypt the
message encrypted with respect to attribute x iff the attribute satisfies the policy i.e. f(z) = 0. This variant
is also referred to as Key-Policy Attribute Based Encryption (KP-ABE)

Let = € {0,1}" and F be a class of function F C {f :{0,1}" = {0, 1}} An Attribute-Based Encryption

scheme for the class of functions F is defined by a tuple of efficient algorithms (Setup, Enc, KeyGen, Dec)
where

e Setup(1*) — (mpk, msk)

Generate a public key mpk and a master secret key msk, which is used to issue policy-specific secret
keys.

e Enc(mpk,z,m) — ct

On input the public key mpk, message m € {0,1}, and attribute z € {0, l}l, the encryption algorithm
returns a ciphertext ct.

o KeyGen(msk, f) — sky

Given a master secret key msk and a function f € F, the key generation algorithm returns a decryption
key sky with respect to function f

e Dec(sky,ct) — m On input the secret key sky and a ciphertext ct. the decryption algorithm returns
m € {0,1}.
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Correctness. For all z € {0,1}', f € F, and m € {0,1} such that f(z) =0

(mpk, msk) < Gen(1?)
Pr |Dec(sky,ct) =m| ct < Enc(mpk,z,m) =1
sky < KeyGen(msk, f)

Security. Consider the following selective security game between adversary and challenger:

Adversary Challenger
¥ A(1%%°) (mpk, msk) < Setup(1?)
.
mpk
%

Adversary has oracle access to

KeyGen(msk,z*, ) where

KG(msk.z*, f) sky = KeyGen(msk, f), if f(z*) #0
msk,z*, f) = .
1, otherwise

(o, my, state) < AKYGen(msk.a™s) (1 p)

R
b & {0,1}
ct + Enc(mpk, z*,my)
ct
(—
Y — AKeyGen('rnsk,x*,~)<Ct7State)
b/
—

An ABE scheme is (selectively) secure if in the game above,

Pr[t) = b] < 1/2 + negl()\)

8.3 Attribute Based Encryption from LWE

We recall some preliminaries on lattice trapdoors and the key equation.

8.3.1 Building Blocks

Trapdoor Sampling. We recall the notion of Trapdoor generator. A trapdoor generator is defined by the
tuple of algorithms (TrapSamp, ExtendRight) where

e TrapSamp(1*,1™,1") — (A, Ta): The Trapdoor generator algorithm returns the tuple (A, T a) where
A € 7Z™*™ is a full rank matrix that is negl(A)-close to a uniform matrix and T € Z™*™ such that
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— AT =0m*™
— The column of T o have low norm
— T A has full rank over Z
e ExtendRight(A,Ta,B) — T p: Given full rank matrix A € Z;*™ and B € Z:;Xk' and the trapdoor

Ta for matrix A, the deterministic algorithm returns the trapdoor Tap for the full-rank matrix
A||B.

o ExtendLeft(A,S,Tg) — Ta|as_a: Given a full rank matrix A € Z;*™, a low-norm matrix S and
the trapdoor Tgq, this deterministic algorithm returns a trapdoor Tajas—q- Specifically, given the

. T I
trapdoor T for the matrix G, we can construct the trapdoor Tp|as—g as STG +]§{R) where
S _
R is a low norm matrix such that GR = —A. It is easy to observe that Tajas_g is low-norm and

has full rank.

Key-Equation. We summarise the notion of Key-Equation from Lecture 7. There exist algorithms
(EvalPK, EvalCT) such that:

e EvalPK(A4,..., Ay, f): On input A; € Z3*™ and function fL {O,l}l — {0, 1}, the (deterministic
algorithm) returns Ay € Zy*™

e EvalCT(cf,...,c],A4,..., Ay, f,z): On input vectors ¢! = s’ (A; +2;G) + e!, function f and input
x, the deterministic algorithm returns a LWE sample ¢} = s” (A + f(2)G) + e’ such that

(il lle") e s = s"(Ay + f(2)G) +e"
and H; ; is a low-norm matrix
e EvalSim(f,z,{A;}): If we can write A; = A -S; — 2;G where S; € {+1}"""™ then, this algorithm

returns a low norm matrix Sy such that A; = AS; — f(2)G. Note that EvalSim is essentially how we
do GSW homomorphic evaluation.

8.3.2 Construction

We provide a construction of the Attribute-Based Encryption scheme assuming the hardness of LWE.

e Setup(1*):

1. Sample (A, Ta) < TrapSamp(1*,1™,17).
2. Sample Ay,..., Ay & 2™ and v & 7.

3. Return (msk, mpk) where

mpk = (A, Aq,..., A, V)
msk = Ta

o KeyGen(msk, f)

1. Compute Ay = EvalPK(A4,... A, f)
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2. Sample trapdoor extension Taja, = ExtendRight(A, T, Ayf). Use the trapdoor to sample low
norm vector r’ such that (A||Af) -r=v.

3. Define the secret key sky =r
e Enc(mpk,x,m)

1. Compute A, = [A||A1 + 1G]]... ||A; + 2,G].
2. Sample LWE secret s < Ly, €< XD and e + .
3. Compute the ciphertext as
ct = (sTA, + e, sTv +e +mlq/2])

. Output ciphertext ct

o Dec(sky,x,ct)
1. Parse
ct = (cty, cta)

ctr = cipllet e |- - [lef

sky=r

2. Compute cf = EvalCT({c] } , {A;}, [, )
3. Return Round(cty — (cz;l||C3:) ‘1)

Correctness Observe that a valid ciphertext ¢t = (cty, cta) is of the form
ct; = sT(A||A1 + 21G||...||A; + 2,G) +eT)
=cpllct |l |lef

where ¢ = sT(A) + el and ¢ = sT(A; + 2;G) + el'S; = sT(A; + 2;G) + eI where e’ is a low-norm

€erTor. Ifl Txsze have (f, ) such that f(xz) = 0, then, from the correctness of EvalCT, the decryption algorithm
computes c? =sT(A; + f(2)G) + el =sTA; +eT
= ci,llef =sT(AllAf) +eglle”
= (cillef)r =s" (A[|Af)r + (eg|le”)r
=slv+¢
= cty — (CZ;LHC?)I‘ =m|q/2] +€

= Round(cty — (cﬁﬂc?)r) =m

where the last equality holds with high probability.

Security We want to prove that the ciphertext of message m and attribute x reveals no information about
the message given access to secret keys sky such that f(z) = 1. We provide a brief security proof sketch
below:
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e Hybrid 0: This is the security game defined between adversary and challenger.

e Hybrid 1: In this hybrid, the challenger samples the public matrices A; as follows: it samples A} &
Zy*™ and sets A; = A} — x;G. This hybrid is indistinguishable from Hybrid 0 since the public
matrices are still random.

e Hybrid 2: In this hybrid, the matrices are samples as follows: A* = A - S; where S; & {£1}"™ and
set A; = A-S; —z;G. Using Leftover Hash Lemma, we can conclude that this hybrid is statistically
indistinguishable from the previous hybrid.

e Hybrid 3: In this hybrid, we generate ct; as follows:

ct; =sT A, + el (Soll...S))) +e”
=sTA(T||Soll...[|S:) + el (Soll...S) +e”
=(s"A+ej) - (X||Sol|-..|S) +e"

This hybrid is statistically close to the previous hybrid from the Gaussian noise smudging.

e Hybrid 4 In this hybrid, whenever the adversary queries the oracle KeyGen(msk,z*, f), the oracle
response is as follows:

— Compute Sy < EvalSim(f,z,{S;}) such that ASy — f(z)G = AS; — G = Ay.

— The oracle can now sample the secret key r given that we can compute the trapdoor of matrix
(A[|AS; — G) from Extendleft without requiring the trapdoor for A. If Tajas;—a be the
trapdoor, then r is sampled such that

(A||[AS; —G)r=v

This approach of sampling the secret key is statistically close to the normal way from the trapdoor
presampling lemma. Subsequently, we note that the ciphertext is of the form:

cty =(sTA +el) - (T||So]...||S:) + e’
cty =sTv +e; +ml|q/2]

we can equivalently think of this ciphertext as an LWE sample ¢t = sT A’ +eT +[0,0,...,m|q/2]]
where A’ = Al|v and 7’ = €7||e;. By invoking the hardness of LWE, we can see that this ciphertext
reveals no information about m

Remark 8.1 [t is important to note that we cannot directly invoke hardness of LWE and have to go through
the hybrids described above. This is because we want to show that information that adversary gains in the
security game, namely sky can be simulated without the adversary learning the trapdoor for matriz A.



