
CSC 2419: Lattice-based Cryptography Fall 2025

Lecture 6: Non-Interactive Zero-Knowledge
Instructor: Akshayaram Srinivasan Scribe: William He

Date: 2025-10-20

6.1 Recap

In the previous lecture, we saw Rate-1 FHE, which allows compressing the size of ciphertexts.

Specifically, given an l-bit message (m1, . . . ,ml), Rate-1 FHE compresses it into a header of size poly(n) and
a payload of size l. To retrieve the message, we XOR the payload with an l-bit string that can be derived
from the header and the secret key.

In this lecture, we will further investigate how to use Rate-1 FHE to construct Non-Interactive Zero-
Knowledge Proofs (NIZKs). Before doing so, let’s talk about interactive proofs.

6.2 Interactive Proofs

6.2.1 Definition of Interactive Proofs

An interactive proof for a problem involves a computationally limited entity (the verifier) and a compu-
tationally powerful entity (the prover). Only the prover can efficiently determine the truthfulness of the
statement. The prover wants to convince the verifier of the truth of the statement.

Setting: We will consider a problem involving a language L. Given some statement x, the prover wants to

prove to the verifier that x ∈ L. The interaction works as follows:

1. At the start, the prover and the verifier both see the string x. Either party may send the first message.

2. In subsequent rounds, the prover and the verifier take turns sending messages to each other.

3. In the end, the verifier outputs accept/reject to indicate whether it is convinced that x ∈ L.

A malicious prover may try to convince the verifier that x ∈ L even when x ̸∈ L, unlike an honest
prover.

We now formally define a language that has an interactive proof.

Definition 6.1 A language L has an interactive proof if there is a pair of machines (P, V) with prover P
(possibly computationally unbounded) and PPT verifier V that satisfies the following two properties:

• Completeness: P is an honest prover such that ∀x ∈ L

Pr[V accepts] = 1

6-1

6-2 Lecture 6: Non-Interactive Zero-Knowledge

• Soundness: ∀ x ̸∈ L, ∀ Prover P ∗ (including malicious provers)

Pr[V accepts] ≤ ϵ(n)

If there is some (P, V) that satisfies the above requirements, we call (P, V) an interactive proof system
for L.

Example 6.2 Every language L ∈ NP has an interactive proof.

Proof: Consider a language L ∈ NP. Denote by R(x, ·) the PPT machine that verifies whether x ∈ L given
a certificate/witness. By definition,

L = {x : ∃w ∈ {0, 1}poly(|x|) s.t. R(x,w) = 1}

Here is a way of constructing the interactive proof

Given input x:

1. P computes and sends a witness w to V . If no witness is found, it can send an arbitrary message.

2. V outputs R(x,w).

We can easily show completeness and soundness

• Completeness: If x ∈ L, there exists a witness w such that R(x,w) = 1. The honest prover P would
send that w, and the verifier would always accept.

• Soundness: If x ̸∈ L, there is no string w makes R(x,w) = 1. Since there is no witness, no matter
what prover send, the verifier would always reject.

Remark 6.3 In the above case, where Pr[V accepts] = 0 for all x ̸∈ L (i.e., zero soundness error), we call
this perfect soundness.

The above proof is easy for the verifier to check given the witness w. However, very often w is private
information that the prover does not want to reveal. We will extend this example to ensure that the verifier
can still be convinced while learning nothing about the witness w. This type of interactive proof is called a
Zero-Knowledge Proof, introduced by Goldwasser, Micali, and Rackoff [GMR85].

6.3 Zero-Knowledge Proofs

We first formally define Zero-Knowledge Proofs. The goal of the definition is to ensure that the verifier
learns only that x ∈ L and nothing else. Here are two attempts, but neither yields the desired guarantee.

• Witness hiding: The verifier cannot output the witness at the end of the interaction.

However, this does not prevent the verifier from learning partial information about the witness. This
is weaker than Zero-Knowledge.

Lecture 6: Non-Interactive Zero-Knowledge 6-3

• Witness indistinguishability: When a malicious verifier (see Remark 6.4) outputs two witnesses
w0, w1, the prover uses one of them sampled at random. The verifier cannot guess which witness the
prover used when interacting with the prover.

However, for languages with unique witnesses, witness indistinguishability holds trivially, while the
verifier still learns the entire witness.

Now consider the verifier’s view in the real world when interacting with the prover. Given the statement x
as input, the view is defined as ViewV,x = (x, r,msgp→v), where r is the verifier’s internal randomness, and
msgp→v are all the messages that the prover sends to the verifier.

Remark 6.4 For an honest verifier, the messages it sends are deterministic functions of ViewV,x. By
contrast, a malicious verifier may follow any arbitrary strategy to send messages.

Note: We will only consider honest verifiers for Zero-Knowledge Proofs.

Also consider an ideal world, where there is a PPT simulator Sim that takes only the statement x as
input. The verifier interacts with this simulator in the ideal world. If the verifier’s view in the real world is
computationally indistinguishable from its view in the ideal world, i.e.,

ViewV,x ≈c SimV (x)

then the verifier learns no information about the witness from the interaction of the simulator. This yields
the formal definition.

Definition 6.5 (Honest Verifier (Computational) Zero-Knowledge) An Interactive Proof (P, V) for
language L ∈ NP is called a Zero-Knowledge Proof if ∃ PPT Sim such that ∀x ∈ L,ViewV,x ≈c SimV (x)

Remark 6.6 • For Honest-Verifier Statistical Zero-Knowledge, the above definition must hold
with ViewV,x ≈s SimV (x).

• For Honest-Verifier Perfect Zero-Knowledge, the above definition must hold with ViewV,x and
SimV (x) identical in distribution.

We will show that the Hamiltonian Cycle problem, which determines whether a graph has a Hamiltonian
cycle, has a Zero-Knowledge Proof.

Recall that this problem is NP-complete. Moreover, a graph has a Hamiltonian cycle iff there is a cycle
that visits all the vertices exactly once. We will construct the Zero-Knowledge Proof by first introducing the
commitment scheme.

6.3.1 Commitment Scheme

Idea: A commitment scheme is a digital analogue of a locked box. A message is put inside the box. The
box cannot be opened unless the committer provides the key.

Setting: We assume there is a committer C and a receiver R. The commitment scheme works as follows:

1. Both C and R have access to a (public) commitment key ck.

2. C sends R the commitment to a message m, denoted Com(m) = c.

6-4 Lecture 6: Non-Interactive Zero-Knowledge

3. C can provide an opening op to Com(m), which R can use to retrieve m.

We also require the commitment scheme to follow two properties:

Hiding: ∀m,m′, {ck,Com(m)} ≈c {ck,Com(m′)}.

Statistically Binding: For any string c, ̸∃ op1, op2 such that, R retrieves m,m′ by opening c using op1, op2
respectively, where m ̸= m′.

Example 6.7 (Commitment scheme for single-bit messages from LWE) Suppose the committer C
wants to send the receiver R the message b ∈ {0, 1}. We have:

• ck = (A, s⊤A+ e⊤).

• Com(b) : Sample r ← {0, 1}m, output (Ar, (s⊤A+ e⊤)r + b · q2).

• op : Output r.

Now we check this is a valid commitment scheme.

Valid opening: Given r ∈ {0, 1}m, the verifier R checks that the first component of Com(b) equals Ar.
Then, given ck, it computes (s⊤A+ e⊤)r + b · q2 − (s⊤A+ e⊤)r = b · q2 , which retrieves b.

Hiding: (As in proving semantic security for Regev’s encryption.) By the hardness of LWE, we have

(A, s⊤A+ e⊤, Ar, (s⊤A+ e⊤)r + b · q
2
) ≈c (A, u⊤, Ar, u⊤r + b · q

2
),

for a uniformly random vector u. Then, by the Leftover Hash Lemma, both Ar and u⊤r are statistically
close to uniform. Hence

(A, u⊤, Ar, u⊤r + b · q
2
) ≈s (A, u⊤, v1, v2 + b · q

2
),

where v1, v2 are uniformly random. This completely hides b, since adding a fixed offset to a uniform value
preserves uniformity.

Binding: Suppose there exist r0 and r1 that open the commitment to 0 and 1, respectively, and

(Ar0, (s
⊤A+ e⊤)r0) =

(
Ar1, (s

⊤A+ e⊤)r1 +
q

2

)
.

This implies

e⊤r0 = e⊤r1 +
q

2
,

which is impossible since both e⊤r0 and e⊤r1 are short in norm.

Remark 6.8 This commitment scheme can be extended to multi-bit LWE by generating commitments to
each bit independently.

Now, we construct a 3-message Zero-Knowledge Proof for the Hamiltonian cycle problem using the
commitment scheme.

Consider the following protocol for a graph G = (V,E):

1. Both the prover P and the verifier V have ck and G that is represented as an adjacency matrix.

Lecture 6: Non-Interactive Zero-Knowledge 6-5

2. P computes a witness w, i.e., a Hamiltonian cycle in G.

3. P chooses a random permutation π of the vertices V and computes H = π(G), the permuted graph.

4. P sends Com(H) (the adjacency matrix committed entrywise) and Com(π).

5. V sends a random b ∈ {0, 1}.

6. If b = 0, then P sends opH , opπ, the openings for H and π.

(a) V checks whether π(G) = H (by applying π to the adjacency matrix of G and checking whether
it obtains the adjacency matrix of H).

7. If b = 1, then P sends π(w), the opening to the Hamiltonian cycle in H, which opens the edges in the
cycle to 1 while leaving the rest unopened.

(a) V checks whether the opened edges form a Hamiltonian cycle.

Now we check this is indeed a Zero-Knowledge Proof.

Completeness: For every Hamiltonian graph G, the honest prover can always find a witness w representing
a Hamiltonian cycle. Any permutation π(G) = H is still Hamiltonian. Therefore, V always accepts.

Soundness: If G is not Hamiltonian, the prover can ensure either that H is a valid permutation of G or that

H is Hamiltonian, but not both. Hence, the prover can cheat for at most one value of b, with probability
1

2
.

To drive the soundness error down to negligible, we can run the protocol n times in parallel for sufficiently
large n. In this case, the prover chooses n random permutations of G, the verifier samples n random
challenges in {0, 1}, and the prover answers each. This reduces the soundness error to negligible.

Zero-Knowledge (idea): By definition, we want SimV (G) to simulate G, b,Com(H),Com(π) and the
openings.

Given G, the simulator does the following:

1. Samples b ∈ {0, 1} uniformly at random.

2. If b = 0, Sim samples a random permutation π and computesH = π(G). It commits to Com(H),Com(π)
and provides the corresponding openings to V .

3. If b = 1, Sim generates a random cycle graph H (as an adjacency matrix) and sets π to the identity
permutation. It commits to Com(H),Com(π) and provides openings only for the edges of the cycle.

Again, we run the protocol for the simulator in parallel to obtain negligible soundness error.

When b = 0, the distribution of the view in the ideal world from the simulator and the view in the real
world are identical (the simulator chooses π the same way as the prover). Hence, the views are perfectly
indistinguishable.

When b = 1, the verifier sees only the random cycle that is opened. By the hiding property of the commitment
scheme, the unopened entries of the adjacency matrix of H and the permutation π can be replaced as
generated by the simulator. Hence, Com(H),Com(π) are computationally indistinguishable in this case.

Remark 6.9 This 3-message Zero-Knowledge Proof is called ”Commit, Challenge, Response”. The
challenge from the verifier must be sent after the prover has committed. Otherwise, the prover could change
the commitment.

6-6 Lecture 6: Non-Interactive Zero-Knowledge

This also leads to the following result.

Corollary 6.10 Every language in NP has an honest verifier Zero-Knowledge Proof.

Proof: On any input x, both the prover P and the verifier V run the polynomial-time reduction from the
NP language to Hamiltonian Cycle to obtain a graph G. Then P and V proceed with the Zero-Knowledge
Proof on the graph G.

6.4 Non-interactive Zero-Knowledge Proofs

Often, interaction is costly and we would like to avoid it. We now consider Non-Interactive Zero-
Knowledge Proofs, which work as follows.

Setting: We have a prover P and a verifier V :

1. The prover and the verifier have a commitment key ck and a common reference string crs.

2. P uses (ck, crs, x, w) to generate a proof π for V .

3. V accepts/rejects based on (x, ck, crs, π).

Goal: Instead of the verifier generating challenges, we want the prover to compute the challenges on its
own.

We use the idea first proposed by Fiat and Shamir [FS86] to resolve this.

Idea:

1. The prover first generates the commitment c as the first-round message.

2. It uses a hash function Hash(c) (modeled as a random oracle that outputs a random challenge for each
commitment) to generate challenges b1, . . . , bn.

3. The prover provides the openings based on these challenges.

By doing this, the prover emulates the honest verifier, which would send random challenges. We now
construct such a hash function.

Recall that if x ̸∈ L, after the prover sends the commitment, there is exactly one value of b for which the
prover can fool the verifier. If the prover sends n commitments to the verifier, there is exactly one string
b∗1, . . . , b

∗
n such that, under this string, the prover can fool the verifier for each challenge. Hence, we want

the hash function to avoid producing b∗1, . . . , b
∗
n. This type of function is defined in [CGH04] as follows.

Definition 6.11 (Correlation-Intractable Hash Functions) We say Hash is a correlation-intractable
hash function if for any unbounded adversary A,

Pr[Hash(hk, c) = (b∗1, . . . , b
∗
n) : hk← Keygen(1n),A(hk) = c] ≤ ϵ(n)

In our case, A is the unbounded prover P , and c is the commitment produced in the first round.

Lecture 6: Non-Interactive Zero-Knowledge 6-7

We now construct such a hash function using Rate-1 FHE. This construction is inspired by the construction
of CI hash function from [BKM20].

Suppose a trusted third party generates ck using the LWE secret s and sets hk = (FHEENC(s), (r1, . . . , rn)),
where (r1, . . . , rn)← {0, 1}n.

The hash function takes hk and the first-round commitments Com1, . . . ,Comn and does the following:

Hash(hk,Com1, . . . ,Comn) :

1. Decrypt Comi using s under FHE and get (Hi, πi).

2. Given each Hi, πi

• If πi(G) = Hi, set b
∗
i = 0

• Else, set b∗i = 1

3. By doing above under FHE, we get FHEENC(b∗1, . . . , b
∗
n), compressing it gives header h, and

payload (α1, . . . , αn)

5. Output (b1, . . . , bn) = (α1, . . . , αn)⊕ (r1, . . . , rn)

Correlation-Intractability: Previously, we encrypted and compressed (b∗1, . . . , b
∗
n). By the property of

Rate-1 FHE, we can obtain some (β1, . . . , βn) from the header and the secret s such that (α1, . . . , αn) ⊕
(β1, . . . , βn) = (b∗1, . . . , b

∗
n). Thus,

Pr[(b1, . . . , bn) = (b∗1, . . . , b
∗
n)]

=Pr[(α1, . . . , αn)⊕ (r1, . . . , rn) = (b∗1, . . . , b
∗
n)] [Definition of the hash function output]

=Pr[(α1, . . . , αn)⊕ (r1, . . . , rn) = (α1, . . . , αn)⊕ (β1, . . . , βn)] [(β1, . . . , βn) obtained from the header and secret key]

=Pr[(r1, . . . , rn) = (β1, . . . , βn)]

≤2|header|

2n
[as (r1, . . . , rn)← {0, 1}n, (β1, . . . , βn) depends only on the header]

≤ϵ(n) [This works for large enough n where header grows sublinearly in n]

Zero Knowledge (Idea): The simulator would first replace FHEENC(s) by FHEENC(s′) for some random
s′. Then we can use hiding property of the commitment, it samples b1, . . . , bn uniformly, and the commit-
ments. It would then uses Rate-1 FHE to generate the corresponding header and (α1, . . . , αn), which then
generates (r1, . . . , rn) such that (α1, . . . , αn) ⊕ (r1, . . . , rn) = (b1, . . . , bn). Then, the rest follows similar to
the previous simulator.

References

[BKM20] Z. Brakerski, V. Koppula, T. Mour. NIZK from LPN and Trapdoor Hash via Correlation
Intractability for Approximable Relations. In Proceedings of CRYPTO 2020, pages 738–767.
Springer, 2020.

[FS86] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Proceedings of CRYPTO 1986, pages 186–194, 1986.

[GMR85] S. Goldwasser, S. Micali, C. Rackoff. The Knowledge Complexity of Interactive Proof Systems.
In Proceedings of STOC ’85, pages 291-304, 1985.

[CGH04] R. Canetti, O. Goldreich, S. Halevi. The random oracle methodology, revisited. In JACM, 04.

