
CSC 2419: Lattice-based Cryptography Fall 2025

Lecture 3: Trapdoor Functions from LWE
Instructor: Akshayaram Srinivasan Scribe: Ashwin Karthikeyan

Date: Sept 22, 2025

3.1 Multi-bit PKE

Last week we constructed a Public Key Encryption scheme for single bit messages. To extend this to multi-
bit messages m ∈ {0, 1}l, we can simply decompose the message into bits and encrypt each bit seperately,
i.e.

˜Enc(pk,m) = (Enc(pk,m1),Enc(pk,m2), . . . ,Enc(pk,ml))

It should be noted that independent randomness is used to encrypt each bit of the message. Correctness
of the multi-bit PKE scheme follows from the correctness of the underlying PKE scheme. To argue the
IND-CPA security of the new PKE scheme, we show that for ∀m1,m2 ∈ {0, 1}l), no PPT adversary can
distinguish between the corresponding ciphertexts except with negligible probability i.e. we have to show
that

(pk, ˜Enc(pk,m1) ≈c (pk, ˜Enc(pk,m2)

We argue that the distributions are indistinguishable through a series of hybrid arguemments and provide a
sketch of the indistinguishability between consecutive hybrids.

• Hybrid 0 : This hybrid corresponds to the distribution (pk, ˜Enc(pk,m1) = (pk,
{
Enc(pk,m1

i)
}
i∈[l]

)

• Hybrid 1 : Same as previous hybrid, but m1
1 is replaced with m2

1 i.e. the new distribution is
(pk,Enc(pk,m2

1,
{
Enc(pk,m1

i)
}
i∈{2,l}). The only difference between the distributions Hybrid 1 and

Hybrid 0 is that in Hybrid 1, the adversary receives (pk,Enc(pk,m2
1)), and in Hybrid 0, the adver-

sary receives (pk,Enc(pk,m1
1)). Since the distributions (pk,Enc(pk,m

2
1)) ≈c (pk,Enc(pk,m

1
1)) from the

IND-CPA property of the underlying PKE scheme, we can argue that Hybrid 1 is indistinguishable
from Hybrid 0.

• Hybrid i : Same as Hybrid i-1, but m1
i is replaced with m2

i . The indistinguishability argument for
Hybrid i and Hybrid i-1 is identical to the argument presented above.

• Hybrid l : Same as the distribution (pk, ˜Enc(pk,m2)

Since the distributions in hybrids Hybrid i and Hybrid i-1 are indistinguishable except with negl(λ) proba-
bility, by a simple union bound, hybrids Hybrid 1 and Hybrid l as indistinguishable except with l · negl(λ) =
negl′(λ) probability.

3.2 Trapdoor Functions:

In this section, we present another important cryptographic primitive, the Trapdoor Function.

3-1

3-2 Lecture 3: Trapdoor Functions from LWE

Definition 3.1 (Trapdoor Function (TDF)) For security parameter λ ∈ N and dimensions n,m =
poly(λ), the trapdoor function consists of a PPT tuple of algorithms KeyGen,Eval, Invert where:

• KeyGen(1λ)→ (pk, td) On input the security parameter, the key generation algorithm returns a public
key pk and trapdoor td.

• y := Eval(pk, x ∈ {0, 1}n): On input the public key pk and message x, the evaluation algorithm returns
y ∈ {0, 1}n.

• x := Invert(td, y): On input the trapdoor td and y ∈ {0, 1}m, the invert algorithm returns preimage
x′ ∈ {0, 1}n.

The Trapdoor function satisfies the following property:

• Correctness: for all security parameters λ ∈ N, (pk, td)← KeyGen(1λ), and x ∈ {0, 1}n, the following
holds true:

Pr[Invert(td,Eval(pk, x)) = x] = 1

• Security: For λ ∈ N, (pk, td) ← KeyGen(1λ), randomly samples x $← {0, 1}n, and for all PPT
adversary A there exists a negligble function negl(·) such that

Pr
x
[A(pk, y) = x|y = Eval(pk, x)] ≤ 1/2n + negl(λ)

In other words, no PPT adversary can determine the preimage of y except with negl probability more
than randomly guessing the preimage.

Remark 3.2 (Instantiation of TDF) In the seminal work of Goldreich and Levin [gl89], the authors in-
troduce the notion of hardcore-predicate corresponding a one way function f . Let h(x; r) → {0, 1} be a
hardcore predicate for the one-way function f . The Goldreich-Levin Theorem states that there exists a hard-
core predicate h(x; r) such that for every one-way function f , following two distributions are computationally
indistinguishable:

{f(x), r, h(x; r)}
x

$←{0,1}∗ ≈c {f(x), r, b}
x

$←{0,1}∗,b
$←{0,1}

.

Using this notion of hardcore-predicate and assuming the existence of one-way functions, [bhsv89] proposed
a construction of Trapdoor Functions.

3.2.1 Public Key Encryption from TDF

We now describe the construction of a public key encryption scheme assuming the existence of a trapdoor
function (KeyGen,Eval, Invert) and a hardcore predicate h(x; r) corresponding to the Eval() function1. In the
following discussion, we define the tuple of algorithms for PKE:

• KeyGen(1λ): Invoke the key generation of the TDF (pkTDF, tdTDF) ← TDF.KeyGen(1λ) Set the public
key of the encryption scheme as pk = pkTDF and the secret key as sk = tdTDF

• Enc(pk, µ): Sample r $← {0, 1}n and define the ciphertext as ct = (Eval(pk, r), h(r; r′)⊕ µ, r)

1Trapdoor function is implicitly a one-way function. Therefore, by Goldreich-Levin Theorem, such a hardcore predicate
exists

Lecture 3: Trapdoor Functions from LWE 3-3

• Dec(sk = td, ct): Parse ct = (ct1, ct2). Using the trapdoor, compute r := Invert(td, ct1) and return
h(r; r′)⊕ ct2.

Correctness of the encryption scheme follows from correctness of TDF. To argue IND-CPA security of the
scheme, note that we want to prove the following:

(pk,Enc(pk, 1)) ≈c (pk,Enc(pk, 0))

.

Observe that (pk,Enc(pk, 0)) = (Eval(pk, r), h(r; r′), r′) ≈c (Eval(pk, r), u, r′)
u

$←{0,1}
from Goldreich-Levin

Theorem. Using a similar argument, it can be concluded that

(pk,Enc(pk, 1)) ≈c (Eval(pk, r), u, r
′)
u

$←{0,1}

3.3 How to construct TDFs for LWE:

Recall the search variant of LWE problem. In that problem, given the samples (A,bT = sTA + eT), we
wanted to find the secret sT . If we had some “trapdoot” T which could be used to recover the secret sT , we
could think of this as a trapdoor function with the following formulation:

• KeyGen(1λ): Sample random A $← Zn×m
q and compute the trapdoor td = T

• Eval(pk, (sT , eT)): Return (A,bT = sTA+ eT

• Invert(td, (A,bT)): Use the trapdoor to recover secret sT .

We now define the desirable properties of the trapdoor T.

Properties for Trapdoor: For a matrix A ∈ Zn×m
q , we defined a trapdoor T ∈ Zm×m

q such that

1. AT = 0n×m mod q

2. If T =


...

...
t1 . . . tm
...

...

, then ||ti||∞≤ B (low norm).

3. T has full rank over Z.

Given a trapdoor T with aforementioned properties, we can now describe the Invert() function: The invert
function computes

bTT = sT (AT) + eTT = eTT modq

. Since both e and T have low norm2, we have bTT = eTT over Z (eTT doesn’t wrap around mod q).
We can use Gaussian Elimination to compute eT (and consequently, the secret s) from the computation
above.

2We consider parameters such that q/B is sub-exponential(See Lecture 2).

3-4 Lecture 3: Trapdoor Functions from LWE

3.3.1 How to sample (A,T):

We will first define a Gadget matrix G and define the Trapdoor for this Gadget matrix. We will then use
this Trapdoor to construct a Trapdoor matrix for A. Here, instead of sampling A $← Zn×m

q , we will sample
A from a distribution that is indistinguishable from uniform distribution.

3.3.1.1 Defining G and its Trapdoor:

Define

G :=

1 2 4 . . . q/2
1 2 4 . . . q/2

. . .


where q is a power of 2 andG is a n×n log(q) matrix. Note thatG = I⊗gT where gT =

[
1 2 4 . . . q/2

]
.

Note that the dot product of gT and a binary vector is an element in Zq. Let G−1 denote the bit-
decomposition function (not inverse) such that:

G−1 : Zq → {0, 1}n log q

such that G−1

x1

...
xn

 gives the bit decomposition of x1 to xn stacked on top of each other. Consequently,

GG−1(x) = x

Now, note that

gT


2
−1 2

−1
. . .

2

 = 0log q(mod q)

So, we can define

Tg :=


2
−1 2

−1
. . .

2


to get the Trapdoor matrix (In×n ⊗Tg) for G. This is because:

(In×n ⊗ gT) · (In×n ⊗Tg) = (I · I)⊗ (gTTg) = 0n×n log q

Additionally, (In×n ⊗ gT) is low norm (||In×n ⊗ gT ||∞= 2) and full rank over Z, satisfying the desired
properties of the trapdoor for the gadget matrix.

3.3.1.2 Defining A and its Trapdoor:

Let B← Zn×m
q be sampled uniformly at random and

A = {B||B ·R+G}

Lecture 3: Trapdoor Functions from LWE 3-5

Where || denotes concatenation, and R is sampled uniformly at random from {0, 1}m×n log(q)
. So, A has

dimension n× (m+ n log(q))

Note that the marginal distribution of A is statistically close to uniform(from Leftover Hash Lemma). Now,

A

[
I −R
0 I

]
= [B||G]

So, we have

A

[
I −R
0 I

] [
I 0

G−1(B) Tg

]
= 0(mod q)

, which gives us the trapdoor

TA =

[
I −R
0 I

] [
I 0

G−1(B) Tg

]
ATA = 0 as shown, and since the product of two full-rank square matrices is full-rank, TA is full-rank as
well.

References

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan (2008). “How to Use a Short Basis: Trapdoors
for Hard Lattices and New Cryptographic Constructions.” Electronic Colloquium on Compu-
tational Complexity (ECCC), 14.

