CSC 2419: Lattice-based Cryptography Fall 2025

Lecture 3: Trapdoor Functions from LWE

Instructor: Akshayaram Srinivasan Scribe: Ashwin Karthikeyan

Date: Sept 22, 2025

3.1 Multi-bit PKE

Last week we constructed a Public Key Encryption scheme for single bit messages. To extend this to multi-
bit messages m € {0, 1}l, we can simply decompose the message into bits and encrypt each bit seperately,
i.e.

Enc(pk, m) = (Enc(pk,m;), Enc(pk, ms), ..., Enc(pk,my;))

It should be noted that independent randomness is used to encrypt each bit of the message. Correctness
of the multi-bit PKE scheme follows from the correctness of the underlying PKE scheme. To argue the
IND-CPA security of the new PKE scheme, we show that for Ym!, m? € {0, 1}1), no PPT adversary can
distinguish between the corresponding ciphertexts except with negligible probability i.e. we have to show
that

(pk, Enc(pk, m") & (pk, Enc(pk, m?)

We argue that the distributions are indistinguishable through a series of hybrid arguemments and provide a
sketch of the indistinguishability between consecutive hybrids.

e Hybrid 0: This hybrid corresponds to the distribution (pk, Enc(pk, m') = (pk, {Enc(pk,m%)}ie[l])

e Hybrid 1: Same as previous hybrid, but m} is replaced with m? ie. the new distribution is
(pk, Enc(pk, m3?, { Enc(pk, m})}ie{2 l}). The only difference between the distributions Hybrid 1 and

Hybrid 0 is that in Hybrid 1, the adversary receives (pk, Enc(pk,m?)), and in Hybrid 0, the adver-
sary receives (pk, Enc(pk, m1)). Since the distributions (pk, Enc(pk, m?)) . (pk, Enc(pk, m})) from the
IND-CPA property of the underlying PKE scheme, we can argue that Hybrid 1 is indistinguishable
from Hybrid 0.

e Hybrid i: Same as Hybrid i-1, but m} is replaced with m?. The indistinguishability argument for

Hybrid i and Hybrid i-1 is identical to the argument presented above.

e Hybrid I: Same as the distribution (pk, Eﬁc(pk7 m?)

Since the distributions in hybrids Hybrid i and Hybrid i-1 are indistinguishable except with negl(\) proba-
bility, by a simple union bound, hybrids Hybrid I and Hybrid | as indistinguishable except with [- negl(\) =
negl’ () probability.

3.2 Trapdoor Functions:

In this section, we present another important cryptographic primitive, the Trapdoor Function.

3-1

3-2 Lecture 3: Trapdoor Functions from LWE

Definition 3.1 (Trapdoor Function (TDF)) For security parameter A\ € N and dimensions n,m =
poly(\), the trapdoor function consists of a PPT tuple of algorithms KeyGen, Eval, Invert where:

o KeyGen(1*) — (pk,td) On input the security parameter, the key generation algorithm returns a public
key pk and trapdoor td.

e y := Eval(pk,x € {0,1}"): On input the public key pk and message x, the evaluation algorithm returns
y e {0,1}".

e z := Invert(td,y): On input the trapdoor td and y € {0,1}"™, the invert algorithm returns preimage
' €{0,1}".

The Trapdoor function satisfies the following property:

e Correctness: for all security parameters A € N, (pk, td) < KeyGen(1*), and = € {0,1}", the following
holds true:
Pr[Invert(td, Eval(pk,z)) = 2] = 1

e Security: For A € N, (pk,td) + KeyGen(1"), randomly samples x & {0,1}", and for all PPT
adversary A there exists a negligble function negl(-) such that

P;r[A(pk,y) = x|y = Eval(pk, x)] < 1/2" + negl(})

In other words, no PPT adversary can determine the preimage of y except with negl probability more
than randomly guessing the preimage.

Remark 3.2 (Instantiation of TDF) In the seminal work of Goldreich and Levin [gl89], the authors in-
troduce the notion of hardcore-predicate corresponding a one way function f. Let h(z;r) — {0,1} be a
hardcore predicate for the one-way function f. The Goldreich-Levin Theorem states that there exists a hard-
core predicate h(x;r) such that for every one-way function f, following two distributions are computationally
indistinguishable:

{f(@),r, ()} ~ {f (@), 7.}

10,1} =& 1011 & 10,1

Using this notion of hardcore-predicate and assuming the existence of one-way functions, [bhsv89] proposed
a construction of Trapdoor Functions.

3.2.1 Public Key Encryption from TDF

We now describe the construction of a public key encryption scheme assuming the existence of a trapdoor
function (KeyGen, Eval, Invert) and a hardcore predicate h(x;r) corresponding to the Eval() function!. In the
following discussion, we define the tuple of algorithms for PKE:

e KeyGen(1%): Invoke the key generation of the TDF (pkypg,tdrpr) < TDF.KeyGen(1*) Set the public
key of the encryption scheme as pk = pkypg and the secret key as sk = tdtpf

e Enc(pk, 1): Sample r & {0,1}" and define the ciphertext as ct = (Eval(pk,r), h(r; ') & u,r)

ITrapdoor function is implicitly a one-way function. Therefore, by Goldreich-Levin Theorem, such a hardcore predicate
exists

Lecture 3: Trapdoor Functions from LWE 3-3

e Dec(sk = td,ct): Parse ct = (cty,cts). Using the trapdoor, compute r := Invert(td, ct;) and return
h(r;r") @ cto.

Correctness of the encryption scheme follows from correctness of TDF. To argue IND-CPA security of the
scheme, note that we want to prove the following:
(pk, Enc(pk, 1)) ~. (pk, Enc(pk,0))

Observe that (pk, Enc(pk,0)) = (Eval(pk,r), h(r;r’),r") ~. (Eval(pk,r),u,r’) from Goldreich-Levin

Theorem. Using a similar argument, it can be concluded that

w013

~ !
(pk, Enc(pk, 1)) =, (Eval(pk,r),u,r)u&{o,l}

3.3 How to construct TDFs for LWE:

Recall the search variant of LWE problem. In that problem, given the samples (A, b7 = sTA +eT), we
wanted to find the secret s”. If we had some “trapdoot” T which could be used to recover the secret s”, we
could think of this as a trapdoor function with the following formulation:

e KeyGen(1%): Sample random A & Zy*™ and compute the trapdoor td = T
e Eval(pk, (s”,eT)): Return (A,bT =sTA + el

e Invert(td, (A, b”)): Use the trapdoor to recover secret s’

We now define the desirable properties of the trapdoor T.

Properties for Trapdoor: For a matrix A € Zy*™, we defined a trapdoor T € Z;**™ such that

1. AT =0"*" mod ¢
2.fT=|t; ... tnl,then ||t;]|cc< B (low norm).

3. T has full rank over Z.

Given a trapdoor T with aforementioned properties, we can now describe the Invert() function: The invert
function computes
bTT = sT(AT) + e’ T = e T modqg

. Since both e and T have low norm?, we have b T = €T over Z (e’ T doesn’t wrap around mod gq).
We can use Gaussian Elimination to compute e’ (and consequently, the secret s) from the computation
above.

2We consider parameters such that ¢/B is sub-exponential(See Lecture 2).

3-4 Lecture 3: Trapdoor Functions from LWE

3.3.1 How to sample (A, T):

We will first define a Gadget matrix G and define the Trapdoor for this Gadget matrix. We will then use
this Trapdoor to construct a Trapdoor matrix for A. Here, instead of sampling A & Zg*™, we will sample
A from a distribution that is indistinguishable from uniform distribution.

3.3.1.1 Defining G and its Trapdoor:

Define
1 2 4 ... q/2

G 1 2 4 ... g2

where ¢ is a power of 2 and G is a n xnlog(q) matrix. Note that G = I®g? whereg? =[1 2 4 ... ¢/2].
Note that the dot product of g7 and a binary vector is an element in Zq. Let G™! denote the bit-
decomposition function (not inverse) such that:

G !:7,— {0,1}"181

Z1
such that G™! | : | gives the bit decomposition of z; to z, stacked on top of each other. Consequently,
Tn
GG l(z) =2
Now, note that
2
-1 2
gT -1 _ Ologq(mod q)
2
So, we can define
2
-1 2
T, := -1

to get the Trapdoor matrix (I,,x, ® T4) for G. This is because:

(Inxn &® gT) . (Ian X Tg) = (I . I) ® (gTTg) — Onxnlogq

Additionally, (I,x, ® gT) is low norm (||L,xn ® g7 ||ee= 2) and full rank over Z, satisfying the desired
properties of the trapdoor for the gadget matrix.

3.3.1.2 Defining A and its Trapdoor:

Let B < Zy*™ be sampled uniformly at random and

A={B|B-R+G}

Lecture 3: Trapdoor Functions from LWE 3-5

Where || denotes concatenation, and R is sampled uniformly at random from {0,1}™*"°5(¥ S0 A has
dimension n x (m + nlog(q))

Note that the marginal distribution of A is statistically close to uniform(from Leftover Hash Lemma). Now,

aly | -mic

So, we have

AEJ ﬂ {G{(B) TOJ =0(mod g)

m=b 1o m =)

AT, = 0 as shown, and since the product of two full-rank square matrices is full-rank, T 4 is full-rank as
well.

, which gives us the trapdoor

References

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan (2008). “How to Use a Short Basis: Trapdoors
for Hard Lattices and New Cryptographic Constructions.” Electronic Colloquium on Compu-
tational Complexity (ECCC), 14.

