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2.1 Recap

Last lecture we have been introduced with Short Integer Solution (SIS) and saw that the average-case
hardness of SIS implies existence of Collision Resistant Hash Function (CRHF). It is known that CRHF
gives One way functions (OWF), and OWF implies lots other important cryptographic features such as
Pseudorandom Generators, Pseudorandom Functions, Digital Signatures etc.

Today we will see another computationally hard problem, namely Learning with errors (LWE) and construc-
tion of a Public Key Encryption (PKE) scheme based on the average-case hardness of LWE problem

2.2 Learning With Errors (LWE)

Definition 2.1 (B-Bounded distribution) Let B ∈ R≥0. A distribution over integers χ is called B-Bounded
if Pr

e←χ
[|e|≤ B] = 1

We now define the LWE problem, namely the search variant Search-LWEn,m,q,B parameterized by n,m, q,B ∈
N

Definition 2.2 (Search-LWEn,m,q,B) Let n,m ∈ N be the dimension, q ∈ N the modulus, and B ∈ N be the
bound on the error. The search LWE problem is defined as follows:

• Given: (A,bT := sTA+ eT ) where

1. A $← Zn×m
q

2. s $← Zn
q (The “secret”)

3. e← χm (The “error”)

• Find: s such that ||bT − sTA||≤ B

Remark 2.3 We highlight some remarks regarding the LWE problem.

• Why error? If we don’t consider the error vector e as part of the LWE sample, we observe that
an adversary can use Gaussian elimination to find s from input bT = sTA. Therefore, the error is
necessary for the LWE problem to be hard.
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• Uniqueness of solution and parameter paradigm. Since A is a random matrix, sTA is a random
code word as a random matrix has full rank with very high probability[?]. Since sTA ∈ Zm

q and sT ∈ Zn
q ,

for a sufficiently large m and q, the code space C ≫ Zn
q . Since the code is random, this results in the

codes being “well” distributed such that the hamming distance of the codeword is large enough. In
this paradigm, for B much smaller than the hamming distance, we have a unique solution with high
probability. This paradigm of parameters are interesting and find many cryptographic applications. We
refer to q/B as the modulus-to-noise ratio of the distributions, and study the LWE problem in the
paradigm where modulus-to-noise ratio is sub-exponential i.e. q/B ≤ 2n

ϵ

.

We also consider the decision variant of the Search-LWE problem as Decision-LWEn,m,q,B .

Definition 2.4 (Decision-LWEn,m,q,B) Let n,m ∈ N be the dimension, q ∈ N the modulus, and B ∈ N be
the bound on the error. The decision LWE problem is defined as follows:

• Given: Distribution Db for a random coin b $← {0, 1} where the distributions are defined as follows:

D0

A $← Zn×m
q

e $← χm

sT $← Zn
q

Output (A, sTA+ eT )

D1

A $← Zn×m
q

bT $← Zm
q

Output (A,bT )

• Find: the distribution from which the instance (A,bT ) is sampled from i.e. b.

Definition 2.5 (Average-case hardness of Decision-LWE) For parameters n,m, q,B = poly(λ) with λ ∈
N as the security parameter, Decision-LWEn,m,q,B is hard if for all Probabilistic Polytime (PPT) adversary
A , ∃ a negligible function negl(·) such that ∀λ ∈ N,

| Pr
(A,bT )←D0

[A(A,bT ) = 1]− Pr
(A,bT )←D1

[A(A,bT ) = 1]| ≤ negl(sec

Average-case hardness of decision-LWE. For specific parameters, spefically when mB ≪ q, the
average-case hardness of dlwen,m,q,B reduces to the average-case hardness of SISn,m,q problem. This re-
sult is highlighted in Theorem 2.6. Note that this reductions results in the blowup of the “error” by a factor
of m. In more general parameter paradigms, there has been a long line of work [Reg05, Pei09, BLP+13]
which have proved the hardness of Decision-LWE problem assuming the hardness of α − GapSVP problem.
We highlight this reslut in Theorem 2.8. Please refer to the survey by Peikert [Pei16] for more details.

Theorem 2.6 Decision-LWEn,m,q,B is atleast as hard as SISn,m,q given that B ≪ q.

Proof: We briefly sketch the reduction, where an adversary for the LWE problemALWE invokes the adversary
for the SIS problem ASIS. ALWE, given an instance (A,bT ) computes eT ← ASIS(A) such that ||e||∞= 11.
Subsequently, the adversary computes < bT , e >. If bT = sTA+eT1 , then < bT , e >= sTAe+ < eT1 , e >=<
eT1 , e >, such that ||bT ||∞≤ mB i.e a low-norm vector. On the other hand, if bT $← Zm

q , then < bT , e > is
uniformly random.

1The proof works for a more general variant of the SIS problem, where the solution has a low norm.
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Remark 2.7 Decision-LWE problem and SIS problem are equivalent (given quantum reductions).

Theorem 2.8 (([Reg05, Pei09, BLP+13], simplified)) If α − GapSVP is hard in the worst case then

Decision-LWE is hard in average case for some α = O(poly(n)
q

B
)

Remark 2.9 The hardness of α− GapSVP is well studied for α = 2n
ϵ

, which translates to the modulus-to-
noise ratio q/B ≤ 2n

ϵ

, which makes this parameter interesting for cryptographic applications.

2.2.1 Search to Decision for LWE

We have already seen some results concerning the hardness of decision-LWE problem. We now look at the
hardness of search-LWE, which we will see can be based on the hardness of decision-LWE.

Theorem 2.10 Search-LWEn,m,q,B is atleast as hard as Decision-LWEn,m,q,B

Proof Idea: We define an adversary ASearch-LWE, which, when given access to adversary for the decision LWE
problem ADecision-LWE, can solve the Search-LWE problem in polynomial time. Given the instance (A,bT ) to
ASearch-LWE, the adversary initialises sT := 0 where sT ∈ Zn

q and computes the following: for each i ∈ [n],

• For each g ∈ Zq:

1. Sample cTi
$← Zm

q

2. Set B =



0
...
cTi
...
0

 ∈ Zn×m
q (ith row is ci)

3. Compute b← ADecision-LWE(A+B,bT + g · cTi ). Set si = g if b = 0

Clearly the above algorithm works in poly(n) time. We will give the intuition of the correctness:

If ADecision-LWE(A+B,bT + g · cTi )→ 0, then

bT + g · cTi = sT (A+B) + eT1

Also, from the properties of SIS problem,

bT + g · cTi =sTA+ eT + g · cTi
=⇒ g · cTi =sTB+ (eT1 − eT )

=sTB+ eT2

where ||eT2 ||∞≤ ||eT1 ||∞+||e||∞≤ 2B

Note that sTB is a random codeword with a large hamming distance. Therefore, for error with low norm
B, the above equation has a unique solution i.e. g = si.



2-4 Lecture 2: Learning with Errors and Public-key Encryption

To prove the validity of the reduction, we also need to show that when g ̸= si, then the distribution received
by ADecision-LWE is uniformly random. To see this, observe that

bT + g · cTi = sT (A+B)︸ ︷︷ ︸
uniform

+eT + (g − si)c
T
i︸ ︷︷ ︸

independent fromA+B

Now note the the distribution over A + B is uniform. Furthermore note that the distribution over ci is
independent of (A+B) (since A is uniform). So bT + g · cTi is also uniformly distributed and independent
of A +B. Note that this reduction works for the case when ADecision-LWE is a perfect distinguisher. Please
refer to [Reg05, Section 4] for the case where ADecision-LWE is an imperfect distinguisher.

2.2.2 Normal form LWE

Up until now, we have looked at search and decision variants of LWE where the secret s $← Zn
q . It would be

interesting to study the problem in a different paradigm, namely where the secret is sampled from a different
distribution, as this allows for cryptographic primitives with hardness based on a wider class of hardness
assumptions. In this section, we study the Normal Form of LWE, where the secret sT is sampled from the
same low-norm distribution χn as the error.

Definition 2.11 (Normal-form Decision-LWEn,m,q,B) Let n,m ∈ N be the dimension, q ∈ N the modulus,
and B ∈ N be the bound on the error. The Normal-Form LWE problem is defined as follows:

• Given: Distribution Db for a random coin b $← {0, 1} where the distributions are defined as follows:

D0

A $← Zn×m
q

e $← χm

sT $← χn

Output (A, sTA+ eT )

D1

A $← Zn×m
q

bT $← Zm
q

Output (A,bT )

• Find: the distribution from which the instance (A,bT ) is sampled from i.e. b.

We now study the hardness of Normal-form Decision-LWE i.e. Normal-LWE. Notably, the hardness of
Normal-LWE can be based on the hardness of standard dlwe. This result is stated in Theorem 2.12

Theorem 2.12 Hardness of Decision-LWE implies hardness of Decision-LWE with normal form2

Proof: Let ADecision-LWE be a PPT adversary for the Decision-LWE problem. We define an adversary
ANormal-LWE for the Normal-LWE problem with access to ADecision-LWE. On input (A,bT ), the adversary
computes the following:

1. Let A = [ A1︸︷︷︸
Zn×n
q

|| A2︸︷︷︸
Zn×(m−n)
q

] (Note A1 is invertible with high probability as it is uniformly random)

2One can extend this proof for search version
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2. Let bT = ( bT
1︸︷︷︸

χn

|| bT
2︸︷︷︸

χm−n

)

3. Set Ã = −A−11 A2, b̃
T = bT

1 Ã− bT
2

4. Output ADecision-LWE(Ã, b̃T )

Observe that if bT = sTA+ eT for a uniformly sampled secret sT , then

b̃T = bT
1 Ã− bT

2

= (sTA1 + eT1 )Ã− sTA2 − eT2

= eT1︸︷︷︸
new secret

Ã+ (−eT2 )︸ ︷︷ ︸
new error

Here, the new secret is sampled from the distribution χm. On the other hand, if bT $← Zm
q , then bT

2 is

uniformly random and independent of bT
1 Ã, resulting in a uniformly random b̃.

2.3 Public-Key encryption

Suppose Alice want to send a message to Bob, but the communication can be seen by a third party Charlie.
To hide the underlying message in the communication from Charlie, Alice can use a cryptographic primitive
called Public-Key Encryption(PKE) to encrypt the message and send the encrypted message to Bob such
that only a party having the corresponding secret key can decrypt and read the message. We define the
primitive in Definition ??

Definition 2.13 (Public Key Encryption(PKE)) PKE consists of tuple of PPT algorithms (KeyGen,Enc,Dec)
where:

1. KeyGen(1λ)→ (pk, sk): The key generation algorithm outputs public-secret key tuple (pk, sk)

2. ct := Enc(pk, µ; r): On input the public key pk, message µ ∈ {0, 1}, and randomness r, the encryption
algorithm returns a ciphertext ct

3. Dec(sk, ct): On input the secret key sk and the ciphertext ct, the decryption algorithm returns a bit
µ′ ∈ {0, 1}.

The PKE scheme satisfies the following properties:

• Correctness: For security parameter λ ∈ N, (pk, sk)← KeyGen(1λ), and for µ ∈ {0, 1}, the following
holds true:

Pr[Dec(sk,Enc(pk, µ)) = µ] = 1

• IND-CPA Security: For security parameter λ ∈ N, (pk, sk) ← KeyGen(1λ), and PPT adversary A,
there exists a negligible function negl(·) such that

|Pr[A(pk, ct0) = 1]− Pr[A(pk, ct1) = 1]|≤ 1/2 + negl(λ)

where ctb = Enc(pk, b; r).In other words, no PPT adversary can distinguish between encryption of 0
and 1 with more than negligible probability.
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2.3.1 PKE from LWE

Now we will discuss the PKE (for one bit message) construction from LWE given in [Reg05]. Given n,m, q
with m > n log q and µ ∈ {0, 1}, we define the PKE scheme as follows:

1. KeyGen(1λ): Sample A $← Zn×m
q , s $← Zn

q , e
T ← χm, set pk = (A,bT := sTA+ eT ) and sk = s

2. Enc(pk, µ; r $← {0, 1}m): Compute ct := (Ar mod q,< bT , r > +µ(q/2))

3. Dec(s, ct): Parse ct = (ct1, ct2) and compute µ′ := ct2− < sT , ct1 >, output 0 if |µ|< q
4 and 1 otherwise.

We now show that the above scheme is a valid public key encryption.

Correctness: Note that

µ′ :=ct2 − sT ct1

= < bT , rT > +µ(q/2)− sTAr

=µ(q/2) + eT r

≤mB + µ(q/2)

So if µ = 0, then x ≤ mB, So if B ≤ q/4m we are done. If µ = 1, then for the same value of B we are done.

Security: We want to show that the adversary cannot distinguish between ciphertexts for 1 and 0. In
other words, we want to show that the following indistinguishability relation holds:

(A,bT , (Ar mod q,< bT , r >) ≈c (A,bT , (Ar mod q,< bT , r > +q/2)

.

From the hardness of LWE we know (A,bT ,Ar mod q,< bT , r >) ≈c (A, b̃T ,Ar mod q,< b̃T , r >)
where b̃T $← Zm

q . If we consider the matrix Ã = A||b, then the distribution is (Ã, Ãr mod q) where Ã is

uniformly random. Using the Leftover Hash Lemma (Lemma 2.14), we conclude that (Ã, Ãr mod q) ≈s

(Ã,uT ) where uT is a random vector. Similarly, it can be shown that (A,bT , (Ar mod q,< bT , r >
+q/2) ≈c (Ã,uT ).

Lemma 2.14 (Leftover Hash Lemma(LHL)) for m ≥ 2n log q, (A,Ar) ≈s (A, u)3
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