CSC 2419: Lattice-based Cryptography Fall 2025

Lecture 1: Short Integer Solutions and Collision-Resistant Hashing

Instructor: Akshayaram Srinivasan Scribe: Sky Li

Date: 2025-09-08

1.1 What is Cryptography?

Traditionally, cryptography focused on ensuring private communication between parties. However, the mod-
ern goal is broader. Modern cryptography can be seen as designing systems that protect information and
computation from any adversarial attack.

Formally, to define a cryptographic system, we must specify the following:

1. What tasks does the system need to perform, and what information or computation does it need to
protect?

2. What does the system need to protect against?

For (2), we generally will consider attackers to be any polynomial-time adversary. Specifically, we only
consider computationally-bounded adversaries that can run adversarial attacks in polynomial-time with
respect to a given security parameter for the system (which may depend on the system).

1.1.1 Security Reductions

How does one formally prove that a system is safe against all poly-time adversaries? One approach is through
a security reduction:

Assume the existence of a poly-time attacker for the system. The reduction demonstrates that if such an
attacker exists, it can be utilized to solve a (believed-to-be-)hard mathematical problem, such as factoring.
Since we believe the underlying mathematical problem is hard to solve, this implies that breaking the
security of the cryptographic system must be equivalently hard. Notably, the mathematical problem should
have survived extensive cryptanalytic effort to have sufficient confidence that no polynomial-time solvers
exist. (Note: if we could prove this unconditionally, we would have established that P # NP).

1.1.2 Choosing Hard Problems

Because the security of cryptographic systems inherently relies on the difficulty of a given mathematical
problem, the specific mathematical problem is often of interest for cryptographers. Historically, cryptographic
hardness relied on the hardness of problems like factorization and discrete logarithm. However, [S94]
showed that, on a quantum computer, factorization and discrete log can be solved in polynomial time. This
motivated the development of cryptographic systems based on different underlying problems. We focus on
lattice-based problems; intuitively, these problems are believed to have quantum resistance than traditional
problems because they are geometric in nature.

1-1

1-2 Lecture 1: Short Integer Solutions and Collision-Resistant Hashing

1.2 Lattice-Based Cryptography

Informally, a lattice is a set of points in m-dimensional space that has a periodic structure. We formally
define a lattice as follows:

Definition 1.1 (Lattices) Let B = by,...,b, € R™ such that B = {b1,...,b,} is linearly independent.
Then the lattice L(B) is defined as:
xr; € Z}

We call B the basts of the lattice, n the rank of the lattice, and m the dimension of the lattice. If n = m,
then we call L(B) a full rank lattice.

In other words, a lattice is the set of all arbitrary integer linear combinations of a linearly independent
basis set.

1.2.1 Examples

a5 { (1), (9)) e 208y - 2
2. 1f B = { G) : (?) } then £(B) = Z2 also.

Note that a single lattice can have multiple bases!

1.3 Shortest Vector Problem (SVP)

We now define the Shortest Vector Problem (SVP) on lattices—this will serve as a hard problem for the
purposes of constructing cryptographic systems.

We first define the notion of a shortest vector in a lattice:

Definition 1.2 (Shortest Vector) The length of the shortest vector of a lattice L, denoted Ai(L), is de-
fined as the length of the shortest! mon-zero vector in L. Formally,

A(L) = min ||v]]2
veL\{0}

We are specifically interested in the decision problem that involves finding the length of the shortest vector:

Definition 1.3 (Shortest Vector Decision Problem) The Shortest Vector Decision Problem (SVP) is
defined as follows:

e Given: A lattice L(B) with basis B, r € RT.

1Shortness can be defined using any linear norm; for the purposes of these notes we will default to the £2 norm.

Lecture 1: Short Integer Solutions and Collision-Resistant Hashing 1-3

e Decide: Is \{(L(B)) <r?

We observe that SVP is clearly in N P: given a candidate shortest vector v, we must check that (1) v € L(B),
and that (2) ||v||2< r. (1) can be checked in polynomial time by solving a system of linear equations given B
and v and checking whether it has an integral solution, and (2) can be checked immediately. It is additionally
known that SVP is N P—hard, if randomized reductions are allowed [A98].

We often call this version of SVP Exact-SVP, to distinguish it from a commonly-used relaxation:
Definition 1.4 (Gap-SVP) The approzimate decision version of SVP (Gap-SVP) is defined as follows:
e Given: A lattice L(B) with basis B, v € RT, a € N. Additionally, it is promised that either A1 (L(B)) <
v or M (L(B)) > an.
o Decide: Is M (L(B)) <~ (“Yes”) or A (L(B)) > ay (“No”)?

Gap-SVP can be considered parametrized by a—in these cases, we denote the problem a-Gap-SVP.

We observe that when o = 1, Gap-SVP reduces to Exact-SVP.

We now present known hardness and computability results for Gap-SVP:

Theorem 1.5 ([K05]) a-Gap-SVP is NP-hard [using randomized reductions] if for any € > 0, a <
1
2(logn)§_s.

Theorem 1.6 ([LLL82]) a-Gap-SVP is in P for a = 29",

These two results define a region where a-Gap-SVP is cryptographically interesting: in particular, when
a € [n,2"] for some (small) € > 0. We note that the lower bound on « does not match the result of [K05]—
it is an open question whether or not a-Gap-SVP for a < n can be used to construct useful cryptographic
systems.

We observe that Gap-SVP on its own generally only gives worst-case hardness; typically, cryptographic
systems require average-case hardness to be truly secure. In particular, we need to be able to generate
hard instances of a problem efficiently and we need that the average generated instance of a problem is hard.
In the next section, we use Gap-SVP to construct an important cryptographic primitive.

1.4 Constructing a Cryptographic System using Gap-SVP

In this section, we leverage Gap-SVP to construct Collision-Resistant Hash Functions (CRHF), a
standard cryptographic protocol.

In order to properly define the notion of CRHFSs, we first define negligible functions; our goal will be
to make any adversary’s probability of success (i.e. probability of breaking the cryptographic system), a
negligible function in the security parameter of a system:

Definition 1.7 (Negligible Functions) A function f : N — [0,1] is negligible if for every polynomial
p(-) : N — RT,

1
Ing € N,Vn > ng, f(n) < —
p(n)

1-4 Lecture 1: Short Integer Solutions and Collision-Resistant Hashing

In other words, f vanishes faster than any inverse polynomial function.

We note that the sum of any polynomial number of negligible functions remains negligible. This is important,
since it means that even with a polynomial number of attempts, no adversary can boost their success
probability to significant levels.

We can now define CRHF's:

Definition 1.8 (Collision-Resistant Hash Functions) Letn € N be the security parameter. A Collision-
Resistant Hash Function (CRHF) consists of two algorithms:

1. KEYGEN(1"): outputs a key k by randomly sampling from some distribution.
2. EvaL(k,z): defined such that EvaL(k,-) : {0,139 — {0,1}*("™) s o deterministic function where
q(n) > p(n).

Additionally, EVAL must satisfy the following for every probabilistic polynomial-time (PPT) attacker A:
there exists a negligible function p such that

P [:v =12’ AEVAL(k,z) = EvaL(k,2') |k + KEYGEN(1"); 2, 2" <+ A(k)| < p(n)

Note that requiring that ¢(n) > p(n) means that EVAL compresses the input, meaning that there must be
hash collisions. However, the condition of collision-resistance means that it should be hard for a polynomial-
time attacker to find a collision. We additionally observe that the adversary A is given the generated key k,
and is allowed to perform any randomized polynomial-time process to attempt to generate a collision. The
probability in the definition of collision resistance is over the randomness of KEYGEN and A.

By using Gap-SVP as the underlying mathematical primitive, it is in fact possible to construct CRHF's:

Theorem 1.9 ([A96, MRO04]) If a-Gap-SVP is hard in the worst case for o = n, then there exist colli-
sion resistant hash functions.

The construction of [A96, MRO04] proceeds by constructing a hard instance of the Short Integer Solution
(SIS) problem using Gap-SVP, and then using a hard instance of SIS to construct a CRHF. We first define
SIS, and then show how to construct a CRHF assuming that SIS is hard.

Definition 1.10 (Short Integer Solution Problem) Let n € N,q € N be the dimension and modulus of
the problem, respectively. The Short Integer Solution (SIS) problem is defined as follows:

e Given: a randomly sampled matriz A € Zy*™ such that m > nlog(q).

o Find: x € {—1,0,1}™, x # 0 such that Ax = 0" mod ¢

SIS is hard if the following holds: for every n,3q,m such that for any PPT adversary Adv, there exists a
negligible function u such that:

P [x #0Ax € {~1,0,1}"" ANAx =0" mod q|A < Z;*";x + Adv(A)} < u(n),

where the probability is over the random sampling of A and the random choices of Adv.

We note that it is equivalently hard to ask simply for a low-norm vector x.

Lecture 1: Short Integer Solutions and Collision-Resistant Hashing 1-5

Theorem 1.11 If SIS problem is hard, then CRHF's exist.

Proof: Suppose we have a hard SIS instance with parameters n, ¢, m.

We construct a CRHF defined by:

e KEYGEN(1") := sample a random A € Zy*™.

e EvaL(A,z € {0,1}™) := Az mod q.

We first observe that if m > nloggq, then EVAL does indeed compress its input, as required. We show
collision-resistance through a security reduction.

Suppose that this CRHF is not collision-resistant. We will show that this implies that SIS is not hard.

Because this CRHF is not collision-resistant, there exists some PPT adversary Adv such that for some
non-negligible function g,

P [x =2' AN Az = Az’ mod q|A < KEYGEN(1"); 2,2 + Adv(A)] > B(n)

But then this implies that A(x — z’) = 0™ mod ¢, and since z # 2/, * — 2’ # 0. Further, note that
x —a' € {=1,0,1}"". This means that Adv can also be used to solve SIS with sampled matrix A by
outputting x — x’. Thus, SIS cannot be hard, which completes the proof. |

References

[A96] M. Ajtai. 1996. Generating hard instances of lattice problems (extended abstract). In Proceed-
ings of the twenty-eighth annual ACM symposium on Theory of Computing (STOC ’96). Associ-
ation for Computing Machinery, New York, NY, USA, 99-108. https://doi.org/10.1145/237814.237838

[A98] Miklds Ajtai. 1998. The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In Proceedings of the thirtieth annual ACM symposium on Theory of
computing (STOC 98). Association for Computing Machinery, New York, NY, USA, 10-19.
https://doi.org/10.1145/276698.276705

[KO5] Subhash Khot. 2005. Hardness of approximating the shortest vector problem in lattices. J.
ACM 52, 5 (September 2005), 789-808. https://doi.org/10.1145/1089023.1089027

[LLL82] Lenstra, A.K., Lenstra, HW. & Lovdsz, L. Factoring polynomials with rational coefficients.
Math. Ann. 261, 515-534 (1982). https://doi.org/10.1007/BF01457454

[MRO4] D. Micciancio and O. Regev, ”Worst-case to average-case reductions based on Gaussian mea-
sures,” 45th Annual IEEE Symposium on Foundations of Computer Science, Rome, Italy, 2004,
pp. 372-381, doi: 10.1109/FOCS.2004.72.

[S94] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” Pro-
ceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA,
1994, pp. 124-134, doi: 10.1109/SFCS.1994.365700.

