
Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

The current topic: Scheme

! Introduction

!Object-oriented programming: Python

• Functional programming: Scheme

! Introduction

!Numeric operators, REPL, quotes, functions, conditionals

! Function examples, helper functions, let, let*

!More function examples, higher-order functions

!More higher-order functions, trees

– Next up: More trees, lambda reductions, mutual recursion, examples, letrec

• Python GUI programming (Tkinter)

• Types and values

• Logic programming: Prolog

• Syntax and semantics

• Exceptions

1 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Announcements

• Reminder: Lab 2 is due on Monday at 10:30 am.

• Term Test 2 is on November 3rd in GB405.

– Aids allowed: Same as Term Test 1.

• Reminder: Deadline for Term Test 1 re-mark requests is today.

2

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Review: Representing trees in Scheme

• Trees are represented as lists.

– Each node contains its data value followed by all its children.

– If the "child" is a "null pointer" (that is, there is no child), it is represented by the

empty list.

• Example: Binary trees.

 4 4

 / \ |__ 2

 2 6 |__ 6

 / |__ 5

 5

 (4 (2 () ()) (6 (5 () ()) ()))

3 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Review: BST functions

• Getting the data value in a given node:

> (define (key node) (car node))

> (key '(4 (2 () ()) (6 (5 () ()) ())))
4

• Getting the left subtree of a given node:

> (define (left node) (cadr node))

> (left '(4 (2 () ()) (6 (5 () ()) ())))
(2 () ())

• Getting the right subtree of a given node:

> (define (right node) (caddr node))

> (right '(4 (2 () ()) (6 (5 () ()) ())))
(6 (5 () ()) ())

4

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Printing binary trees

• We want a function print-tree to do something like this:

> (print-tree '(4 (2 () (3 () ()))

 (6 (5 () ()) (7 () ()))))

4

 2

 3

 6

 5

 7

> (print-tree '(4 (2 () ()) (6 () ())))

4

 2

 6

5 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Another printing example

> (print-tree (list2tree '(4 2 6 8 1 7)))

4

 2

 1

 6

 8

 7

• (In all examples, we've omitted the #t that print-tree likes to finish

off with.)

6

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Printing a binary tree

> (define (print-tree tree)

 (print-tree-help tree 0))

> (define (print-tree-help tree D)

 (cond ((null? tree))

 (else

 (print-spaces D)

 (display (key tree)) (newline)

 (print-tree-help (left tree) (+ D 1))

 (print-tree-help (right tree) (+ D 1)))))

> (define (print-spaces N)

 (cond ((= N 0))

 (else (display #\space) (display #\space)

 (print-spaces (- N 1)))))

• Note that the above code doesn't completely follow functional

programming style.

7 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Environments and local variables in lambda expressions

• Recall that function definitions are equivalent to lambda expressions:

 > (define (mult x y) (* x y))

is equivalent to

> (define mult (lambda (x y) (* x y)))

• Lambda expressions are a formal notation for establishing an

environment (a local context) in which the lambda variables (the

parameters to the function) are defined.

8

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Environments and local variables in lambda expressions

• Analogy: Logic expressions also establish an environment within which

variables are defined. For example:

! !x (P(x) ⇒ Q(x))

• The variable x in the above expression is a "bound" variable – it has

meaning only within the expression. The expression establishes the

environment in which x has meaning.

– But the analogy isn't perfect. In a lambda expression, the variables have

individual values, assigned by the caller, when the expression is evaluated.

9 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Lambda reduction

• Lambda expressions get values by the process of lambda reduction:

when a lambda expression is followed by a sequence of expressions,

the values of those expressions are substituted for the lambda variables.

 ((lambda (x y) (* x y)) 3 (+ 4 5))

 ! [by lambda reduction] (* 3 9)

 ! [by evaluation] 27

10

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Function calls and lambda reduction

• A function call in Scheme is really a lambda reduction:

> (mult 3 (+ 4 5))

 ! [by evaluation]

 ((lambda (x y) (* x y)) 3 9)

 ! [by lambda reduction] (* 3 9)

 ! [by evaluation] 27

11 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

let and let* are not primitive

• That is, we can define them in terms of other forms.

 (let ((v1 e1) … (vn en)) expr)

 is equivalent to:

 ((lambda (v1 … vn) expr) e1 … en)

• For example:

(let ((x 5) (y 3)) (* x y))

 is equivalent to:

((lambda (x y) (* x y)) 5 3)

12

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

let and let* are not primitive

• Similarly:

 (let* ((v1 e1) (v2 e2)) expr)

 is equivalent to:

((lambda (v1) ((lambda (v2) expr) e2)) e1)

• For example:

(let* ((x 5) (y (* x 2))) (+ x y))

 is equivalent to:

((lambda (x) ((lambda (y) (+ x y)) (* x 2))) 5)

13 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

let and let* are not primitive

• Tracing the previous example:

((lambda (x) ((lambda (y) (+ x y)) (* x 2))) 5)

! [by lambda reduction] ((lambda (y) (+ 5 y)) (* 5 2))

! [by evaluation] ((lambda (y) (+ 5 y)) 10)

! [by lambda reduction] (+ 5 10)

! [by evaluation] 15

• All binding of values to variables in let and let* is by parameter

passing (that is, lambda reduction), not by assignment!

14

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

What cons really does

• We've been treating cons as a function that "appends" to the beginning

of a "list".

– This is the right general idea.

– But it leaves out details about what's happening "behind the scenes".

• Some of you have (accidentally?) noticed what happens when the

second argument given to cons is not a list:

> (cons 'a 'b)
(a . b)

> (cons 1 2)
(1 . 2)

• Notice that the return values include a dot.

15 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

What cons really does

• List are implemented as linked lists.

• Each node has two parts.

– A part storing (pointing to) data.

• This is the node's car.

– A part that's meant to store a pointer to the next node.

• This is the node's cdr.

• Think of this as the node's "next" pointer.

• cons creates a linked list node (also known as a pair).

– The first argument to cons is stored in the new node's car part.

– The second argument to cons is stored in the new node's cdr part.

– e.g. (cons 'a '()) produces:

16

a

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Displaying lists

• To display (output) a list, Scheme traverses the list's linked list, printing

each node's car part.

– For example, the following list is displayed as (a b c).

– Observe that a properly-formed list ends with a null pointer.

– Another example: the nested list (a (b d) c) is stored as:

17

a b c

a c

b d

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Displaying lists

• (cons 'a 'b) produces:

– When traversing this list, Scheme finds that the node's cdr part doesn't point to

the next node, but instead points to a symbol.

– This list is displayed as

(a . b)

– This list's cdr is the atom b, not the list (b).

– The list (a b) produced by (cons 'a '(b)) is stored as:

18

a b

a b

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Mutual recursion

• Mutual recursion is a form of recursion where two functions call each

other (rather than themselves).

– Functions f1 and f2 are mutually recursive if f1 calls f2 and f2 calls f1.

• Let's define variants of map that only apply the given function to certain

parts of the given list (and leave other parts unchanged).

– map-even takes a function f and a list L, and returns a new list in which each

even-positioned element is the result of applying f to the corresponding element

in L, and each odd-positioned element is simply the corresponding element in L

unchanged.

– map-odd takes a function f and a list L, and returns a new list in which each

odd-positioned element is the result of applying f to the corresponding element

in L, and each even-positioned element is simply the corresponding element in L

unchanged.

19 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

map-even and map-odd

• Examples:

> (map-even car '((1 2 3) (4 5 6) (7 8) (a b c)))
((1 2 3) 4 (7 8) a)

> (map-odd car '((1 2 3) (4 5 6) (7 8) (a b c)))
(1 (4 5 6) 7 (a b c))

> (map-even (lambda (x) (* 2 x)) '(1 1 1 3 3 3))
(1 2 1 6 3 6)

> (map-odd (lambda (x) (* 2 x)) '(1 1 1 3 3 3))
(2 1 2 3 6 3)

20

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

map-even and map-odd

• We'll define map-even and map-odd so that they're mutually recursive:

> (define (map-odd f L)
 (cond ((null? L) ())
 (else (cons (f (car L))
 (map-even f (cdr L))))
))

> (define (map-even f L)
 (cond ((null? L) ())
 (else (cons (car L)
 (map-odd f (cdr L))))
))

21 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

map-even and map-odd

• Call: (map-even car '((a b) (c d) (1 2) (3 4)))

Trace:

 (map-even car '((a b) (c d) (1 2) (3 4)))

 |(map-odd car '((c d) (1 2) (3 4)))

 | (map-even car '((1 2) (3 4)))

 | |(map-odd car '((3 4)))

 | | (map-even car '())

 | | ()

 | |(3)

 | ((1 2) 3)

 |(c (1 2) 3)

 ((a b) c (1 2) 3)

22

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Examples

• Write a function makeTester that takes two unary predicates f1 and

f2 (a predicate is a function that returns true or false), and returns a

function that takes a list and returns true iff all odd-positioned elements

satisfy f1 and all even-positioned elements satisfy f2. For example:

> ((makeTester list? symbol?) '((a b) a (c) d))
#t

> ((makeTester symbol? number?) '(a 1 2 a))
#f

23 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Examples

• Defining makeTester, first solution:

> (define (makeTester f1 f2)
 (lambda (L)
 (cond ((null? L) #t)
 ((f1 (car L))
 ((makeTester f2 f1) (cdr L)))
 (else #f)
)))

• This works, but notice that the function that's returned by makeTester

calls makeTester each time it's called.

• Let's modify makeTester so the returned function does not call

makeTester.

24

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Examples

• Defining makeTester, second solution (using map-odd and map-
even):

> (define (makeTester f1 f2)
 (lambda (L)
 (eval (cons 'and
 (map-even f2 (map-odd f1 L))))
))

• Observe we use map-odd to check if the odd-positioned elements

satisfy f1, we use map-even to check if the even-positioned elements

satisfy f2, and we use and to combine all the results.

25 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Examples

• Now let's try to define makeTester using mutually recursive lambda

expressions.

> (define (makeTester f1 f2)
 (let ((test-odd (lambda (L)
 (cond ((null? L) #t)
 ((f1 (car L))
 (test-even (cdr L)))
 (else #f)
)))
 (test-even (lambda (L)
 (cond ((null? L) #t)
 ((f2 (car L))
 (test-odd (cdr L)))
 (else #f)
))))
 test-odd))

26

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Examples

• General idea:

– test-odd checks if odd-positioned elements satisfy f1.

– test-even checks if even-positioned elements satisfy f2.

– test-odd and test-even take turns doing the checking.

• This is accomplished using mutual recursion.

• But the code doesn't work:

> ((makeTester symbol? number?) '(a 1 2 a))
reference to undefined identifier: test-even

• What's going on?

– The definition of test-odd refers to test-even, but we're using let, so the

name test-even doesn't "exist" within the definition of test-odd.

– Using let* instead of let won't solve the problem, since then test-odd exists

within the definition of test-even, but test-even still doesn't exist within the

definition of test-odd.

27 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

letrec

• Solution: Use letrec, which allows lambda expressions to refer to

each other (which allows for mutual recursion).

> (define (makeTester f1 f2)
 (letrec ((test-odd (lambda (L)
 (cond ((null? L) #t)
 ((f1 (car L))
 (test-even (cdr L)))
 (else #f)
)))
 (test-even (lambda (L)
 (cond ((null? L) #t)
 ((f2 (car L))
 (test-odd (cdr L)))
 (else #f)
))))
 test-odd))

28

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Examples

• Write a function findSequence that takes two unary predicates f1 and

f2, and returns a function that takes a list and returns the leftmost pair

of adjacent elements in the list such that the first element of the pair

satisfies f1 and the second element satisfies f2, if such a pair exists,

and returns #f otherwise. For example:

> ((findSequence list? symbol?) '(1 (a b) a (c) d))
((a b) a)

> ((findSequence symbol? number?) '((z) 1 a 3 2 a))
(a 3)

> ((findSequence symbol? number?) '((z) 1 a (d) 2 3))
#f

29 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Examples

• Defining findSequence:

> (define (findSequence f1 f2)
 (letrec ((g (lambda (L)
 (cond ((null? L) #f)
 ((null? (cdr L)) #f)
 ((and (f1 (car L))
 (f2 (cadr L)))
 (list (car L) (cadr L)))
 (else (g (cdr L)))
))))
 g))

• Observe that letrec is needed here, since otherwise function g won't

be able to call itself (since the name g won't exist within its own

definition).

30

Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

Exercises

• Fix print-tree (defined in this lecture) so that it's clear from the

output whether an only child is a right-child or a left-child.

– Hint: Do something special when the left child is null but the right child is not null.

• Write a function map-odd-even that takes functions f1 and f2, and a

list L, and returns a new list in which each odd-positioned element is the

result of applying f1 to the corresponding element in L, and each even-

positioned element is the result of applying f2 to the corresponding

element in L. Do not define any helper functions, and do not use

map-odd or map-even. Examples:

> (map-odd-even car cdr '((a b) (1 2) (#t #f) (3) (4 5)))
(a (2) #t () 4)

> (map-odd-even list? symbol? '((a b) (a b) c d (e) f)))
(#t #f #f #t #t #t)

31 Fall 2008 Scheme: More trees, lambda reductions, mutual recursion, examples, letrec

More exercises

• Write a function make-odd-even that takes functions f1 and f2, and

returns a function that takes a list returns a new list in which each odd-

positioned element is the result of applying f1 to the corresponding

element in L, and each even-positioned element is the result of applying

f2 to the corresponding element in L. Do not use any helper functions.

Instead, use letrec and mutually recursive lambda expressions.

Examples:

> ((make-odd-even car cdr) '((a b) (1 2) (#t #f) (3) (4 5)))
(a (2) #t () 4)

> ((make-odd-even list? symbol?) '((a b) (a b) c d (e) f)))
(#t #f #f #t #t #t)

32

