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ABSTRACT 
This paper describes an experimental system in which customized 
high performance XML parsers are prepared using parser 
generation and compilation techniques. Parsing is integrated with 
Schema-based validation and deserialization, and the resulting 
validating processors are shown to be as fast as or in many cases 
significantly faster than traditional nonvalidating parsers.  High 
performance is achieved by integration across layers of software 
that are traditionally separate, by avoiding unnecessary data 
copying and transformation, and by careful attention to detail in 
the generated code. The effect of API design on XML 
performance is also briefly discussed.   

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – code generation, 
compilers, optimization, parsing, retargetable compilers. D.2.8 
[Software Engineering]: Metrics – Performance measures. I.7.2 
[XML] 

General Terms 
Performance, Experimentation, Standardization, Languages. 

Keywords 
XML, XML Schema, performance, validation, parsing, schema 
compilation, JAX-RPC, SAX. 

1. INTRODUCTION 
XML [21] is widely accepted as a means of exchanging structured 
information on the Web and in other software systems.  By 
explicitly tagging information with named elements and 
attributes, XML enables the creation of documents that are to a 
significant degree self-describing, offering the promise of more 
robust information sharing between loosely coupled organizations 
and systems.  An application processing an XML document can 
use such element and attribute markup to identify particular 
information items and to detect some classes of errors in 
document content. 
Although the performance of XML has been adequate for many 
important purposes, processing speed unfortunately remains a 

problem in more demanding applications.  Some limitations are 
inherent in core features of XML:  it is text based, flexible in 
format, and carries redundant information.  A key goal of the 
work described here is to show that with careful attention to 
processor implementation, API design, and application 
integration, XML can in fact be processed much more rapidly 
than common practice would suggest.   
XML Schema validation [23] provides a degree of automated 
error checking for XML applications.  Due to slow performance, 
validation is typically applied during debugging and testing if at 
all, and is often disabled in production systems.  We seek to show 
that validation can be achieved with negligible overhead, even 
relative to the faster processing promised above; with such 
performance, XML Schema will indeed become practical for 
improving the robustness of the loosely coupled systems that 
XML was designed to enable. 
In this paper we analyze a variety of architectural considerations 
relating to the design of high performance XML systems, and we 
report on the implementation and performance of an experimental 
prototype implementation.  Known as XML Screamer, our 
prototype compiles customized validating XML parsers from an 
XML Schema.   The generated parsers, which can be in either C 
or Java, leverage optimizations that are integrated across 
processing tasks that in many traditional systems are separate, i.e., 
scanning, parsing, validation, and deserialization. 

2. HARDWARE PERFORMANCE 
No parser can process input faster than its supporting hardware 
accesses data, but the additional cost of parsing and validation 
should be minimized.  On a 1 GHz Pentium processor a simple 
character-scanning loop runs at about 100 Mbytes/second, which 
is 10 cycles/byte. As shown in Section 8.2, traditional validating 
parsers perform in the range of 2.5–6 Mbytes of input per second 
or 160–400 cycles/byte, a penalty of between 16x and 40x — 
intuition suggests that this cost can be greatly reduced.   
Achieving better performance obviously requires lowering the 
number of bytes manipulated and/or reducing the work done per 
byte. Parsers operate not just on their input, but also on output 
structures, and notably on extra copies of data resulting from 
format conversions, such as UTF-8 to UTF-16. Any need to 
repeatedly process or scan the same data adds overhead 
proportionally.  Accordingly, our strategy is to minimize 
unnecessary data copying and transformation, and to ensure that 
most input and output data is accessed just once.  To do this, we 
optimize across software layers that are traditionally separate. 
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3. OPTIMIZING ACROSS LAYERS 
A key inspiration for XML Screamer was the 1987 work of 
Watson and Mamrak [20], who report on the optimized 
implementation of layered network protocols.  Among many other 
important insights, they offer one that is particularly pertinent for 
XML processing: “a common mistake is to take a layered design 
as a requirement for a correspondingly layered implementation.”. 
Consider the use of a SAX-based validating parser to construct 
business objects such as those provided by gSOAP [18], JAX-
RPC [6], etc.  A deserializer, customized to the particular XML 
documents to be processed, receives SAX events from the parser 
(Figure 1).  In this example, deserialization requires that a single 
binary integer field be computed from the information in a UTF-8 
encoded XML instance: 

Schema: 
 
<xsd:element name="inventoryItem"> 
  <xsd:sequence> 
    <xsd:element name="quantity"> 
      <xsd:simpleType 
           base="xsd:integer"> 
         <xsd:maxInclusive="10000"/> 
         <xsd:minInclusive="0"/> 
      </xsd:simpleType> 
    </xsd:element> 
  </xsd:sequence> 
</xsd:element> 
 
Instance (in Unicode UTF-8 encoding): 
 
<inventoryItem> 
   <quantity>10</quantity> 
</inventoryItem> 
 
Output business object structure: 
 
class inventoryItem { 
  int quantity; 
}; 
 

The schema requires a root element <inventoryItem> and a 
child element <quantity>.  The content of the latter is 
constrained to be an integer in the range from 0 to 10,000.  The 
XML input results in a single business object of class 
inventoryItem , which in turn contains a single int with the 
quantity.  Note that the quantity is conveyed in character form in 
the XML, but is stored in the output as a binary integer. 
A conventional parser and deserializer would likely perform the 
steps listed below.  Steps labeled “P” are performed by the parser, 
and those labeled “D” by the deserializer.  Note that in typical 
SAX implementations, both XML element names and character 
data are presented to applications as UTF-16  strings:   

1. (P) Convert start tag string “inventoryItem” to  
UTF-16. 

2. (P) Validate the resulting UTF-16 string against the 
expected element name “inventoryItem”.  (Note that 
in this case, which is common in Western cultures, the 
UTF-16 strings are longer than the corresponding UTF-8 
forms, and take longer to compare.) 

3. (P) Throw a SAX event from parser to deserializer, to 
signal the element start. 

 

Deserializer 

Parser 

<inventoryItem >          
<quantity>10</quantity>

</inventoryItem> 

XML 

SAX Events

class inventoryItem {
int quantity ; 

}; 

Output 

 
Figure 1: Conventional processor layering 

4.  (D) Verify that the element name in the SAX event is 
“inventoryItem” (Note that the validator already 
checked this in step 2.) 

5. (D) Do a “new” for the output structure. 
6. (D) Discard the SAX event. 
7. (P) Convert start tag string “quantity” to UTF-16. 

8. (P) Validate the resulting UTF-16 string against the 
expected element name “quantity”. 

9. (P) Throw a SAX event signaling the element start. 
10. (D) Verify that the element name in the SAX event is 

“quantity” (already checked in step 8.) 

11. (D) Save state to indicate that the next value received is to 
be stored as the quantity. 

12. (D) Discard the SAX event. 
13. (P) Convert the two UTF-8 characters “10” to UTF-16, 

resulting in 4 bytes. 
14. (P) Convert the same two characters to a binary integer 

(Many implementations do the conversion using as input 
the 4 byte UTF-16 form computed in the step above, rather 
than the smaller UTF-8 two byte sequence in the input.) 

15. (P) Verify that the integer is between the expected bounds 
of 0 and 10,000. 

16. (P) Throw a SAX event with the UTF-16 representation of 
the two characters “10”. 

17. (D) Convert the two character sequence to a binary  integer 
(the 2nd time this conversion has been done…see step 14.) 

18. (D) Copy the integer to the quantity field of the output. 
19. (D) Discard the SAX event. 



The above illustrates why traditional parsers and deserializers are 
significantly slower than one might expect given the capabilities 
of the underlying hardware.   
Leveraging Watson and Mamrak’s guidance to optimize across 
layers, XML Screamer generates a processor specialized to the 
expected form of the input and to the required output API (see 
Figure 2).  The code for low-level character scanning, parsing, 
validation, and deserialization is completely integrated, so it is no 
longer meaningful to label steps as (P) or (D).  Indeed, use of 
SAX events is in this example eliminated entirely, since they 
require data transformations and are unnecessary for the 
generation of the desired output.  As in the list above, we 
concentrate on the processing of element names and data content, 
skipping details of other checking (such as looking for “<” or “>” 
element delimiters), and again we omit steps related to end tag 
checking.  
 

XML Screamer Custom  
Generated Parser 

< inventoryItem >           
<quantity>10</quantity> 

< /inventoryItem> 

XML 

class inventoryItem { 
int quantity ; 

};  

Output 

 
Figure 2: XML Screamer layering 

The generated parser performs the following steps: 
1. Compare the UTF-8 start tag “inventoryItem” to the 

“inventoryItem” name required by the schema.  The 
comparison is performed directly against the instance input 
buffer, so no data copying is required.  

2. Do a “new” for the output structure. 
3. Compare the UTF-8 start tag “quantity” to the 

“quantity” name required by the schema.  Again, no data 
copying is required.  The parser is recursive descent, so the 
“state” corresponding to step 11 in the previous list is 
implicit in the program counter. 

4. Verify that the following two UTF-8 characters are a legal 
lexical form for an xsd:integer, and during that same check 
compute the binary integer value 10.  I.e. each character is 
retrieved, verified to be a digit, and applied to the 
polynomial computation of the resulting binary integer. 

5. Check the resulting integer against the bounds 0 to 10,000.1 
6. Copy the integer to the output structure. 
Far fewer steps are involved, and those that remain are in general 
less expensive than their counterparts.  At least in this ASCII-
based example, the UTF-8 string comparisons involve half the 
number of bytes of their UTF-16 equivalents. Much less data is 

                                                                 
1 See prototype limitation discussed in footnote to Section 9. 

copied or transformed, so locality is improved, and the processor 
cache is likely to be used more effectively.  Object or memory 
buffer allocations that were necessary for the UTF-16 strings are 
also avoided.  Indeed, in XML Screamer, string pools with 
expected element names are typically prepopulated at compile 
time, thereby minimizing object creations and increasing locality.  
The overhead of SAX event creation and related object 
management is entirely eliminated. 

4. CONFIGURABLE API SUPPORT 
Although the above example highlights some drawbacks of using 
SAX as an intermediate form, SAX is popular and can be an 
excellent choice for interacting with a broad range of SAX-based 
tools.  XML Screamer includes an API generation framework 
which is configurable to support a variety of output APIs, 
including JAX-RPC for Java and similar business object APIs for 
the C language, SAX, as well as others specific to particular 
applications.   
Indeed, XML Screamer provides compiler-based optimizations 
for SAX.  Advance knowledge of the schema allows XML 
Screamer to precompute data for SAX events that are invariant 
from one instance to another.  For example, using the schema just 
shown, every instance invariably results in startElement and 
endElement events for both inventoryItem and quantity 
tags.  XML Screamer can do much of the work to prepare such 
events at compile time.  In summary, the selection, layering and 
optimization of processor APIs has a crucial impact on 
performance.  XML Screamer is designed to optimize 
performance of SAX, of business objects, and of other specialized 
APIs. 

5. OTHER CUSTOMIZATIONS 
Other parameters in addition to the XML Schema have proven 
useful as input to compilation.  For example, our users often have 
advance knowledge that a particular Unicode encoding such as 
UTF-8 will be used for input documents.  We provide to the 
compiler information about encodings to be supported, and 
generate code that is tailored accordingly.  As shown in Section 3, 
low level scanning, tag checking, and simple type validation can 
often be done directly in the input encoding; when the schema and 
the instance are provided in different encodings, XML Screamer 
converts tag names from the schema to the expected instance 
encoding at compile time.  The resulting converted strings are 
stored in string pools, or directly in the generated tag name 
comparison code. 

6. DESIGN OF THE COMPILER 
This paper is concerned primarily with performance, and details 
of the XML Screamer compiler have been documented elsewhere 
[11].  Accordingly, we give here a very brief overview of the 
compiler and then discuss in more detail the design and 
performance of the generated parsers. 
The XML Screamer compiler is written in Java, and is capable of 
producing parsers in both Java and C.  Schemas are read into the 
compiler using the org.apache.xerces.xs package  [1], 
which supports the XML Schema API [24], and which does the 
work of composing one or more schema documents.  This Xerces-
based tool resolves XML Schema xsd:import, 
xsd:include, and xsd:redefine constructs, so these are 
fully supported by XML Screamer.  The result is a connected 
graph of Java objects, each of which corresponds to a component 
of the schema to be compiled. Components are formally defined 



in the W3C XML Schema Recommendation [23];  informally, 
there is a component, and thus a compile-time Java object, for 
each simple or complex type, each element declaration, each 
attribute declaration, and so on.   
The code generation phase of the compiler consists of visiting the 
Java object corresponding to each schema component, and 
generating the corresponding validation code.  Each such 
compiled component is invoked repeatedly at runtime if, for 
example, more than one element or attribute has the same simple 
or complex type.  Code to populate the required output API, such 
as SAX or JAX-RPC, is generated along with the code for 
validation, and wherever possible duplicate work is avoided.  In 
the example from Section 3, the binary form of the quantity 
value was needed both in validation and for output in the 
generated JAX-RPC object.  By generating validation code and 
output code together, such sharing becomes straightforward.   
Often, certain information that will be required at runtime is 
known statically from a schema component or other compile-time 
information.  In the same example, the <inventory> and 
<quantity> tags are known to appear in all valid instances.  
Code generation logic has the option to precompute output data 
structures at compile time, to store in the generated code UTF-16 
or other converted forms of strings, to prepopulate string pools, 
and so on;  the precomputed SAX event optimizations discussed 
in Section 4 are achieved in this manner. 
Unlike many retargetable compilers for traditional programming 
languages, XML Screamer does not generate a register- or stack-
based pseudo-machine code.  Indeed, early versions of Screamer 
had such an intermediate representation and we did not find it 
helpful in generating the low-level optimizations required for 
parsing and validation.  Instead, we have created language-
specific templates and code generators separately for Java and for 
C.  Similarly, the compiler provides common hooks useful to 
support code generation for a wide range of runtime APIs, but the 
code for each such API is hand crafted; the Screamer compiler 
itself is modified whenever a new parser API is to be supported. 

7. DESIGN OF CUSTOMIZED PARSERS 
The performance of XML Screamer is determined primarily by 
the techniques used in the generated parsers.  The sections below 
discuss the design of these parsers and some optimizations used to 
speed XML processing. 

7.1 Recursive Descent Parsing 
XML Screamer generates recursive descent parsers in which a 
subroutine is invoked for each complex type (i.e., each instance 
element) to be validated.  Overall, we have found this to be a 
reasonable tradeoff:  the generated code has a clean structure 
which is isomorphic to the compiled schema, and at runtime the 
state of the parse is efficiently captured by the program counter 
and invocation stack.   
In earlier versions of XML Screamer we experimented with 
LALR-based parsers.  LALR is fast and easily captures the 
element structure of most complex types, but it does not deal well 
with the complexities of conformant namespace and xsi:type  
[23] processing (see Section 7.5).  Löwe et al. [8] describe a 
system based on LALR(1) and LL(1) parser generators, but it 
apparently does not support those XML and schema features.  On 
balance, we believe that recursive descent for elements coupled 
with carefully optimized start tag handling (Section 7.5), is an 
effective compromise for XML parsing and schema-validation.   

7.2 Inline vs. Subroutine Code Generation 
Having settled on a recursive descent design, we experimented 
with explicitly inlining some of the smaller validation routines, 
and found in most cases that the overhead of an out of line call is 
negligible relative to other work to be done; unlike low level 
character scanning, element validation is a relatively coarse 
grained operation.  Low-level character scanning and testing is 
indeed more performance critical and must be inlined for 
maximum speed. 

7.3 Minimizing Backtracking 
As discussed in Section 2, parsing and validation of XML can be 
optimized by minimizing redundant scanning of input data.  
Accordingly we adopt a design principle for our scanners that, in 
the typical case, each input character is “visited” just once.  If 
several tests are needed on a particular character, for example to 
determine whether it is an angle bracket ”>” or an expected 
element name character, then all such tests are performed before 
the next character is inspected.  If the character contributes to the 
output or to computation of some binary value, then to the extent 
possible such side effects are handled at the same time the 
character is inspected for validity.  A similar philosophy applies 
to output generation:  to the extent practical, information is 
precomputed at compile time (“zero” visits), and in the remaining 
situations we attempt to update the value of each output byte 
exactly once. 
String pools for declared element and attribute names are 
precomputed at compile time, using small integer string pool 
handles that are directly applicable as array indices. During 
validation, the local name of an element in a start tag is checked 
against or added to a string pool, and the resulting handle is used 
to index a table of element declarations.  Similar pools are used at 
both compile time and runtime to manage namespace prefixes and 
namespace URIs, and to index types named by xsi:type. 
String pools help to minimize repeated scanning of string data. 
Although the ideal of visiting each character just once cannot 
always be achieved, we have found it to be a useful yardstick 
against which to evaluate proposed optimizations: those that 
greatly reduce the number of bytes manipulated are likely to be 
significant.  Furthermore, we believe that the “single visit” design 
results in excellent locality of reference, and thus tends to use 
processor memory hierarchies efficiently.  Even if multiple tests 
on a single character are needed, that character tends to be loaded 
into a processor register just once, and manipulated there.  Nearby 
portions of the input buffer are likely to be in first-level processor 
caches, so access to successive characters is usually fast.  String 
pools and other compact data structures used to facilitate sharing 
have high utilization rates, and are also likely to be cached 
effectively. 

7.4 Optimized Simple Type Validators 
In XML Screamer, simple type validators such as those for 
xsd:integer are integrated with the parsing framework, and 
operate directly on the input buffer.  Accordingly, separately 
optimized validators are provided for UTF-8, UTF-16, or for any 
other required encodings.   Additional validators are available to 
optimize particular common cases.  Consider for example the 
parsing of the xsd:integer “10” in Section 3.   Both the API 
and a bounds check in the schema require the binary form of the 
number 10.  Accordingly, XML Screamer generates an integer 
validator that computes the binary value while scanning, 
evaluating the necessary polynomial as each character is 



retrieved.  Also available is a slightly faster integer scanner that is 
used to validate unconstrained integers, and in other cases where 
the converted value is not required.  The XML Screamer compiler 
chooses the appropriate form to use in each case. 
In some cases, optimistic simple type validation algorithms are 
used.  Consider, for example, the parsing of comments within an 
xsd:integer: 

<e>123456</e>  
<e>123<!-- comment -->456</e>  
 

Although both of these represent the same integer, the second 
form is very uncommon.  Accordingly, XML Screamer does most 
integer validation with a very fast scanner that accepts only digits, 
falling back to a more general validator if the initial parse fails.  
Such reparsing violates the guideline that each input character be 
visited just once, but in practice such revalidation is rare, and 
usually only a few characters are involved. 

7.5 Optimized XML Start Tag Processing 
XML Namespaces [22] and xsi:type are significant challenges 
for a high performance XML validator.  Consider the following 
XML instance: 
<n1:e1 xmlns:n1=”http://example.org/ns1” 
       xmlns:n2=”http://example.org/ns1”> 
   <-- Following element has a name and  
       a type that are known only after 
       27 attributes and a namespace 
       declaration are parsed --> 
  <n2:e1 xsi:type=”n2:type” 
         a=’1’ b=’2’  ...   z=’26” 
         xmlns:n2=”http://example.org/ns2”> 
  </n2:e1> 
</n1:e1> 
 

This example is very difficult to validate efficiently.  As the 
second tag is encountered, prefix n2 is still bound to 
http://example.org/ns1.  Accordingly, the child element 
appears to have the name {http://example.org/ns1, e1}, 
and the xsi:type appears to specify 
{http://example.org/ns1, type}.  Only after scanning 
through 26 more attributes and reaching the namespace 
declaration can the parser discover the true values for either name 
or type, and only once the type is known can the 26 attributes be 
validated (because the complex type named by xsi:type may 
specify simple types for some attributes.)  Thus, the simplest 
approaches to start tag validation involve at least two passes, one 
to determine namespace prefix associations and xsi:type 
attributions, and a second to validate the element name and 
attribute content.   
XML Screamer handles even such difficult start tags correctly and 
efficiently.  Indeed, the occurrence of problematic constructions 
cannot usually be predicted in advance, so the algorithm 
described here is used for all start tag validation.  XML Screamer 
prepares during its initial scan data structures that support 
efficient validity checking.  The possible local names of all 
attributes usable in an XML vocabulary are for the most part 
known from the schema at compile time, and each such name is 
assigned an offset in a bit vector.  During scanning, the 
corresponding bit is turned on as each attribute of a given name is 
encountered.  Two corresponding bit masks are also precompiled 
for each complex type, representing respectively the required and 
allowed attributes for that type.  At the end of start tag scanning, 

after the type of the element has been reliably determined, simple 
bitmap comparisons are used to ensure that all required attributes 
are present, and that no disallowed attributes have been provided.   
Some backtracking may be required to perform attribute 
validations, but XML Screamer notes during its initial start tag 
scan the offset and length of each attribute value, and also the 
positions of any attribute content whitespace.  Once the element’s 
type is determined, only attributes requiring validation are 
revisited.  Note that integration of such optimizations into a single 
pass using LALR would at best be tricky, perhaps impossible, 
because the grammar to be used for checking attributes is not 
known during the initial scan. 

7.6 Summary of Generated Parser Features 
In summary, the efficiency of generated XML Screamer parsers 
results primarily from: 

• Optimizing across what would traditionally be separate 
layers of scanning, parsing, validation and deserialization. 

• Validating and deserializing directly from the input buffer, in 
the native encoding of the input document. 

• To the extent possible, visiting each input and output 
character exactly once, or where necessary generating 
efficient data structures to minimize backtracking. 

• Compile-time precomputation of invariant output. 

• Carefully optimizing low level character scanning and 
validation routines, and providing tailored versions for 
common performance-critical cases. 

8. XML SCREAMER PERFORMANCE 
The principal measure of success for XML Screamer is the 
efficiency of the generated parsers.  As previously noted, the 
compiler is capable of generating parsers in both C and Java, but 
the C parsers are much more carefully optimized, and are a more 
realistic indicator of the performance achievable using our 
approach.  Accordingly, all results reported here are for C-
language parsers. 

8.1 Benchmark Methodology 
Our benchmarks are intended specifically to model production 
quality Web Service deployments of XML, with each test 
instance consisting of a single UTF-8 XML entity stored in 
contiguous buffer memory.  Filesystem or network overhead is 
not measured, and streaming of large documents is not 
considered.  Modeling the assumption that successive Web 
Service messages would not in general occupy the same memory 
buffer, multiple instances are parsed from separate buffers, and 
the average time is reported.  We believe that repeated parsing of 
the same buffer might give unrealistically high cache hit rates and 
thus an overoptimistic estimate of performance. 
We run each set of tests on several different machine models, and 
report only results that can be stably reproduced.  Although the 
numbers reported here are for one particular machine, we have 
thus ensured that they are broadly representative.  At one point 
during our development work we saw an anomalous result on just 
one model used for testing:  a 30% discrepancy in one test was 
traced by hardware monitoring to differences in processor cache 
layout.  While such problems are rare, they can obscure important 
results, and tend to be invisible unless multiple machines are 
benchmarked. The tests reported here were run on an IBM 
eServer xSeries Model 235 with a 3.2 GHz Intel Xeon Processor, 



and 2 GB of main memory, using Microsoft Windows Server 
2003 Service Pack 1.  XML Screamer parsers were compiled with 
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 
13.10.3077. 

8.2 Measurements   
Table 1 provides benchmark data for XML Screamer, as well as 
for two other widely used parsers, Xerces Version 2.6 for 
Windows2 and Expat version 1.95.8 for Windows.  Xerces was 
tested in nonvalidating and validating modes using SAX;  Expat is 
not capable of validating, and was tested with its native interface 
which is similar to SAX, but which reports strings in UTF-8.   
For each schema, three separate parsers were compiled by XML 
Screamer:  one that parses and validates but reports no data 
(NOAPI), a second that populates a business object API as earlier 
described3, and a third that supports SAX.  The SAX parser 
includes optimizations for precomputation of SAX events, as 
discussed in Sections 4 and 6.    For each instance, a fourth XML 
Screamer validation was performed using a schema in which root 
content is validated using XML Schema wildcards (i.e. 
xsd:anyType).  This is the closest approximation to a schema-
less mode for XML Screamer, and it is used in Section 8.3.4 to 
quantify  the benefits of SAX precomputation. 

                                                                 
2 The Xerces parser tested is a version 2.6 code base plus selected 

performance enhancements targeted for eventual inclusion in 
version 2.7; the enhancements create a somewhat more 
challenging comparison for XML Screamer, and in any case are 
believed to affect results by 10% or less compared to version 
2.6.  Xerces schema caching is enabled in all validating tests. 

3 Due to limitations of the business object test framework, 
business object parsers were not generated for test cases 6 & 7.   
The corresponding measurements are shown as “NA” for not 
available.  As can be seen from other table rows, business object 
performance is typically close to that of NOAPI, which is 
shown. 

Each row in the table represents an XML instance; different 
instances validated by the same schema are distinguished by size 
and appear in separate rows.  po.xsd is the Purchase Order 
sample schema from the XML Schema Primer [23].  ipo.xsd is 
a similar schema modified to use namespaces and xsi:type.  
Longer instances are constructed by duplicating multiple copies 
of the same data, wrapping in a container element, and adapting 
the schema accordingly.  Other schemas and instances are taken 
from the Sarvega XML Validation Benchmark [13]. 
Performance is quoted in Mbytes/sec/ProcessorGHz, in other 
words, Mbytes/sec normalized to a 1 GHz Intel processor.  Thus 
for our 3.2 GHz machine, a measured throughput of 3.2 
Mbytes/sec is quoted in the table as 1 Mbyte/sec/GHz.  We have 
found this normalization to be both useful and stable in comparing 
benchmarks run on different model Intel machines.4   All charts in 
the text below are based on data from Table 1.  

8.3 Performance Discussion 
The useful performance achievable with XML Screamer can best 
be seen in the Business Object API column in Table 1.  
Throughput ranges from 23.21 to 46.63 Mbyte/sec/GHz, 
including all overhead for parsing, validation and deserialization.  
On our 3.2 GHz machine this is an absolute performance of 
roughly 75 to 150 Mbytes/sec.  
A character scan loop on the test processor measured at 106 
Mbytes/sec/GHz, consistent with the estimate in Section 2, so 
XML Screamer is parsing, validating and deserializing at between 
22% and 44% of the maximum character scanning speed of the 
machine.   

8.3.1 Comparison with nonvalidating parsers 
XML Screamer exceeds the speeds of the fastest parsers in 
common use today.   We first examine SAX parsing, which is the 
slowest mode for XML Screamer, and therefore the most 
conservative comparison. 

                                                                 
4 Note, however, that Intel Centrino processors typically exhibit 

higher throughput per cycle than other Pentiums or Xeons. 

 
Table 1: Measurements 
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Screamer
SAX
vs

Expat

Screamer
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Object
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Expat 
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SAX
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Val SAX

Screamer:
Schema

vs
anyType

Sax
1 po 990.00 4.41 2.65 6.85 35.08 33.88 16.12 12.75 2.4x 4.9x 6.1x 1.3x
2 ipo 1,406.00 4.24 2.51 6.81 23.23 23.56 14.76 14.25 2.2x 3.5x 5.9x 1.0x
3 MI_AUS_RESPONSE2_1 1,572.00 3.21 2.98 5.21 25.95 23.21 17.00 7.51 3.3x 4.5x 5.7x 2.3x
4 po 8,062.00 6.79 3.01 13.68 48.00 44.67 24.73 16.08 1.8x 3.3x 8.2x 1.5x
5 ipo 8,077.00 6.08 2.90 10.31 38.40 34.21 21.44 16.46 2.1x 3.3x 7.4x 1.3x
6 bibteXML 8,609.00 8.28 5.58 15.54 47.49 NA 26.25 19.77 1.7x NA 4.7x 1.3x
7 MI_AUS_REQUEST2_1 9,429.00 4.06 3.16 6.74 23.15 NA 17.79 8.52 2.6x NA 5.6x 2.1x
8 po 63,754.00 6.88 3.02 15.65 49.87 46.63 26.58 16.37 1.7x 3.0x 8.8x 1.6x
9 ipo 64,233.00 5.68 2.85 13.75 44.00 36.15 24.65 16.67 1.8x 2.6x 8.6x 1.5x

10 periodic_table 116,506.00 6.03 3.99 15.25 34.61 35.28 23.47 14.16 1.5x 2.3x 5.9x 1.7x

Test case

Throughput (Mytes/Sec/ProcessorGHz)
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Figure 3 illustrates the throughput of XML Screamer relative to 
the non-validating parsers tested.  Both XML Screamer and 
Xerces are tested using SAX, i.e. with UTF-16 converted strings; 
Expat is measured through its native UTF-8 interface. XML 
Screamer is between 1.5x and 3.3x faster than Expat, and between 
3.2x and 5.3x the speed of nonvalidating Xerces. 
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Figure 3: Comparison to nonvalidating parsers (SAX) 

8.3.2 Business Object Performance 
XML Screamer’s performance advantage over the non-validating 
parsers is even greater using the business object APIs that are 
common to many Web Services applications.  For the reasons 
described in Section 3, business object APIs in XML Screamer 
(but not in the other parsers) are significantly faster than SAX. 
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Figure 4: Comparison to nonvalidating parsers (Bus.Obj.) 

As shown in Figure 4, XML Screamer builds business objects at 
between 2.3x and 4.9x the speed of Expat, the faster of the two 
nonvalidating alternatives, and XML Schema achieves this speed 
while performing XML Schema validation.   
Note that Expat and Xerces are each using their best available 
(i.e. SAX-like) interfaces;  when used to construct business 
objects, some additional deserialization logic would be needed 
with these parsers.  Thus, the above is a conservative estimate of 

the relative performance of XML Screamer for building business 
objects.   

8.3.3 Validation Performance Compared 
Xerces and most other parsers incur a heavy performance penalty 
for validation.  Since XML Screamer significantly exceeds the 
speed of nonvalidating Xerces, the comparison when both parsers 
validate is correspondingly more favorable.  Figure 5 shows XML 
Screamer in both SAX and business object modes.   
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Figure: 5 Validation Performance Comparison 

Using its gSOAP-like business object API, XML Screamer 
delivers from 7.8x to 15.4x the throughput of Xerces when both 
parsers are validating.  Even using SAX, the ratios vary between 
4.7x and 8.8x. 

8.3.4 SAX Optimization 
The results in Figure 6 bear out the speculation that schema-based 
precomputation of SAX output can yield significant performance 
gains. XML Screamer performs such optimizations when a useful 
schema is available, but not when validating with a wildcard 
(xsd:anyType), as the latter provides no advance information 
about instance structure.   

Precomputation of SAX Events
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Figure 6: Effect of compile-time SAX precomputation 
In all cases, processing with a schema is faster, and we have also 
done tests verifying that the gains are indeed due primarily to 
precomputation. Gains of 30% or more are frequently observed. 
XML Screamer thus demonstrates that, at least sometimes, using 
a schema and performing validation can increase performance. 



8.3.5 Performance Summary 
On the tests reported in this paper, using the business object API 
typical of Web Services applications, XML Screamer parses and 
schema-validates XML at between 23 and 46 Mbytes/sec/GHz; 
XML Screamer can thus process XML at speeds of roughly 100–
200 Mbytes/sec on the 4 GHz processors now becoming 
available.   Making the assumption that typical systems should 
devote at most 10–20% of CPU capacity to XML processing, we 
estimate that applications sustaining throughput of 10–40 
Mbytes/sec are practical on a single CPU.  Stated differently, one 
commodity processor is estimated to be capable of parsing, 
validating and deserializing XML from two saturated 100 
Mbit/sec network links, with 80–90% of CPU time left for 
application-level work. 

9. XML FEATURES NOT SUPPORTED 
The compiler and generated parsers support most but not all XML 
and XML Schema features.  Our purpose was not to build a fully 
conforming XML or Schema implementation, but rather to come 
close enough that our performance results would be representative 
of a complete implementation.  With a few important exceptions 
detailed below, we believe that the prototype achieves this goal.  
Many of the more complex XML and Schema features, such as 
namespaces, xsi:type, redefine, import, include, and 
substitution groups are fully supported. The following are the 
significant areas of non-conformance in the XML Screamer 
prototype. 
XML Features Not Supported 

• DTD external or internal subsets.  Note that external subsets 
are optional in the XML Recommendation, but internal 
subsets are required [21].  In this respect XML Screamer is 
non-conforming. 

• Support for encodings other than UTF-8 or UTF-16.  Our 
architecture is in principle capable of supporting other 
encodings, but because our parsers are hand crafted to 
optimize for the characteristics of particular encodings, the 
work involved is significant. 

• Very large instance documents, i.e. those too large to fit in a 
contiguous memory buffer. 

XML Schema Features Not Supported 

• Facets on simple types  (these are accepted but not checked; 
among the facets not checked is the pattern facet.)5  

• Non-deterministic content models (such as certain models 
with nested numeric occurrence constraints.)6 

• Identity constraints (accepted but not checked) 

• Validity checking of types other than anySimpleType, 
date, integer, decimal, nonnegativeInteger, 

                                                                 
5 A consequence of this limitation is that current versions of the  

XML Screamer prototype do not automatically generate the 
integer bounds check implied by Step 5 in the list of XML-
Screamer generated code in Section 3.  We have inserted such 
tests manually in some generated parsers and have verified that 
their runtime overhead is negligible, as would be expected. 

6 A proposed design for efficiently handling non-deterministic 
models is outlined in [11], but is not implemented in the code 
described here. 

boolean, positiveInteger, negativeInteger, 
nonpositiveInteger, and string (all types are 
accepted, but validation of lexical forms and conversion to 
binary is available only for the listed types.) 

Most of the above limitations are presumed to have a negligible 
impact on performance of features that are supported, but a few 
are probably significant.  In particular, because instances are in a 
single contiguous buffer, the inner character scanning loops most 
critical to performance do not need to account for chunking of 
information.  Element tag names are always contiguous, and can 
always be compared with string comparison instructions or simple 
comparison loops.   
The lack of support for DTDs provides a more subtle performance 
gain, also related to instance buffering.  Without DTDs, it is 
impossible to define XML general entities.  Thus, our prototype 
parsers are never called upon to do the generalized string 
substitutions necessitated by references to such entities, and so the 
need for dynamic memory management is reduced. 
Quantifying the performance gains from having a single input 
buffer and no DTDs would have required us to completely 
reimplement XML Screamer with a more generalized input 
buffering and scanning scheme.  We have not made that 
considerable effort.  Accordingly we can only speculate that the 
performance benefits may be significant, and warn those 
comparing our work with other approaches to account for the 
possible differences in capabilities.  We note that there are many 
scenarios, most notably SOAP-based Web Services, in which 
DTDs and entities are never used, and we believe our 
performance is fully representative of what is achievable in those 
environments.   
We have not studied the performance of identity constraints 
(xsd:key, xsd:keyref, xsd:unique), but our intuition is 
that these can, with care, be implemented at speeds comparable to 
other schema features.  The optimization of regular expressions 
has been well studied, and we believe that with careful 
optimization, the overhead from pattern facets would be a few 
instructions per character parsed.  At worst, support for these 
features would slow processing of those schemas in which they 
were used. 

10. RELATED WORK 
Many parsers now support validation with XML Schema.  These 
include Xerces [1], MSXML [10], Saxon [15], XSV [17], etc.  
Although each is different in its implementation and in the APIs 
supported, these are for the most part “traditional” parsers, in 
which validation is largely separate from parsing, and which do 
not directly support “business object” or other customized APIs.  
Some have been well optimized.  Few if any attempt the degree of 
low level performance tuning provided in XML Screamer, and 
none has the ability to optimize scanning, parsing, validation and 
custom API generation in a single parser. 
There are also a wide range of tools such as Castor [2], gSOAP   
[18], and Liquid XML [9] that support automatic deserialization 
into business objects, with mappings derived from XML Schema.  
Some of these such as Castor sit on top of other SAX parsers, 
such as Xerces, and therefore run no faster than the underlying 
parser.   Tools such as gSOAP provide more efficient parsing and 
deserialization, but do not do full Schema validation, and support 
only a single output API. 



Several research teams have discussed compilation of DTDs or 
schemas, and we have earlier (Section 7.1) commented on the 
LALR-based work of Löwe [8]. Another high performance 
compiler is described by Chiu [3].  Like XML Screamer, Chiu 
compiles XML Schemas, integrating validation with scanning and 
parsing to achieve high performance.  Chiu reports on the 
application of generalized automata as an intermediate code 
representation, and applies sophisticated transforms to 
automatically optimize low level scanning and validation.  We 
would expect his system to be efficient at what it does, but with 
the important caveat that XML Screamer optimizes not just 
parsing and validation, but also deserialization and 
precomputation of invariant output structures.  Indeed, Chiu 
advocates the simplifications that result from not including 
compiled support for deserialization.  We believe that the analysis 
in Section 3, coupled with the business object performance of 
XML Screamer, demonstrates the advantages of integration across 
all layers.   
Reuter [12] uses a two level approach, in which validators are 
generated automatically, but run on top of conventional SAX 
parsers;  the performance is presumably limited to that of the 
chosen parser.  van Engelen [19] also describes a two-level 
system, but uses a high-performance FLEX-based layer [5] to 
check XML conformance, and a separate DFA for validation.  
The separation of scanning and validation prevents optimization 
across the two layers. 
Takase [16] describes a system in which invariant output is 
discovered heuristically at runtime, achieving optimizations in 
some ways similar to those we report for SAX.  As multiple 
similar input documents are parsed, common substrings are noted 
and used to build a DFA against which subsequent input is 
validated.  When successful, this system can automatically 
discover at runtime some of the invariants that XML Screamer 
determines from a schema.  Takase’s system seems to have 
advantages particularly in situations where no schema is 
available, since it works on any series of structurally similar XML 
documents.  In cases where a schema is available, XML Screamer 
avoids the runtime overhead and complexity of dynamically 
comparing instance documents.   
Hardware-based systems such as Datapower [4] and Sarvega [14] 
benefit from running parser/validators in isolated systems where 
memory management, thread dispatching, etc. can be optimized.  
Some of these systems also include ASICs customized for XML 
processing, and most integrate support for security and other 
features not provided by XML Screamer.  Datapower has also 
reported on the use of JIT-like virtual machine technology to 
optimize XML processing [7].  Whatever their other advantages, 
hardware-based systems physically separate parsing and 
validation from the consuming application, and cannot directly 
optimize low level parsing with API integration.  The availability 
of additional hardware processing capability may result in 
improved throughput, but in comparison to XML Screamer the 
total computation performed is likely to be greater. 

11. DISCUSSION 
XML Screamer is faster than most available processors, and it 
demonstrates that XML Schema validation can be done at 
similarly high speeds.  Indeed, schemas can sometimes establish 
compile-time invariants that make validation a net gain in 
performance.   

Using its business object APIs, XML Screamer scans, parses, 
validates and deserializes at between 22% and 44% of the tested 
processor’s raw character scanning speed.  Except insofar as ways 
can be found to use such processors more efficiently, e.g. by 
exploiting hardware string test instructions or on chip SIMD 
accelerators, gains from further tuning or alternative approaches 
are likely to be modest.  XML Screamer’s performance is 
probably not far from the maximum achievable. 
Although it is not the first XML Schema compiler and it is not the 
first system to automatically generate business object 
deserializers, XML Screamer demonstrates the importance of 
integrating deserialization with scanning, parsing and validation, 
and of providing compiled optimizations particular to each XML 
API.  The XML Screamer prototype supports a few test APIs, 
including SAX, but it could in principle be adapted to a wide 
range of others, including some that might be specific to 
particular environments or applications.  For example, one could 
tailor the parser to directly populate an editor’s in-memory 
structures and indices.  Support of such APIs does involve at least 
one important complication: the XML Screamer compiler must be 
hand-customized to exploit each new one.  Automatic adaptation 
to additional APIs, perhaps using an API specification compiler, 
would be an interesting direction for future research.  Having 
raised this concern, we note that XML Screamer provides 
important optimizations for SAX and similar general purpose 
APIs. Insofar as these are adequate, there is no need to further 
customize the compiler.   
Our work again makes clear, as others have observed before, that 
careful API design is crucial to good XML performance.   A 
particular API may necessitate excessive string conversions, 
object creations or buffer manipulations that even a careful 
implementation cannot avoid, and as XML processors become 
faster, the relative impact of even small inefficiencies grows.  The 
performance of the best XML implementations will ultimately be 
limited by the designs of their chosen  APIs. 
Any schema compiler has the drawback that compiled artifacts 
must be deployed with each application, and we have found this 
to be a significant challenge for adapting XML Screamer 
technology to production systems.  Each generated parser must be 
appropriate to the operating system, compiler, supporting libraries 
and hardware on which applications will be run.  In some cases, 
e.g. for multi-platform products or applications, parsers must be 
deployed in multiple versions for different environments, and all 
such versions must updated as schemas change.   
The system described here is a prototype.  Although many of the 
most challenging XML and XML Schema features are fully 
supported, some others are not, and components such as the 
business object generator are incomplete.  We believe that, with a 
few exceptions already discussed, the performance of the 
prototype is fully representative of what would be achievable in a 
production quality implementation.  The one significant exception 
is generalized support for entity substitution, which we believe 
might somewhat impact performance, but which in any case is 
never required for Web Services. 
XML and Web Services are designed in part to enable 
communication among loosely coupled organizations, precisely 
the applications in which careful input checking is essential.  The 
technologies demonstrated in XML Screamer should be usable to 
automate XML instance validation in production systems, and 
thus to significantly improve the robustness of XML-based  
communication. 
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