
XML Screamer: An Integrated Approach to High
Performance XML Parsing, Validation and Deserialization

Margaret G. Kostoulas, Morris Matsa, Noah Mendelsohn, Eric Perkins, Abraham Heifets
IBM Corporation, One Rogers Street, Cambridge, MA 02142 USA

{mgg,mmatsa,noah_mendelsohn,perkinse, aheifets}@us.ibm.com

Martha Mercaldi
University of Washington

mercaldi@cs.washington.edu

ABSTRACT
This paper describes an experimental system in which customized
high performance XML parsers are prepared using parser
generation and compilation techniques. Parsing is integrated with
Schema-based validation and deserialization, and the resulting
validating processors are shown to be as fast as or in many cases
significantly faster than traditional nonvalidating parsers. High
performance is achieved by integration across layers of software
that are traditionally separate, by avoiding unnecessary data
copying and transformation, and by careful attention to detail in
the generated code. The effect of API design on XML
performance is also briefly discussed.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – code generation,
compilers, optimization, parsing, retargetable compilers. D.2.8
[Software Engineering]: Metrics – Performance measures. I.7.2
[XML]

General Terms
Performance, Experimentation, Standardization, Languages.

Keywords
XML, XML Schema, performance, validation, parsing, schema
compilation, JAX-RPC, SAX.

1. INTRODUCTION
XML [21] is widely accepted as a means of exchanging structured
information on the Web and in other software systems. By
explicitly tagging information with named elements and
attributes, XML enables the creation of documents that are to a
significant degree self-describing, offering the promise of more
robust information sharing between loosely coupled organizations
and systems. An application processing an XML document can
use such element and attribute markup to identify particular
information items and to detect some classes of errors in
document content.
Although the performance of XML has been adequate for many
important purposes, processing speed unfortunately remains a

problem in more demanding applications. Some limitations are
inherent in core features of XML: it is text based, flexible in
format, and carries redundant information. A key goal of the
work described here is to show that with careful attention to
processor implementation, API design, and application
integration, XML can in fact be processed much more rapidly
than common practice would suggest.
XML Schema validation [23] provides a degree of automated
error checking for XML applications. Due to slow performance,
validation is typically applied during debugging and testing if at
all, and is often disabled in production systems. We seek to show
that validation can be achieved with negligible overhead, even
relative to the faster processing promised above; with such
performance, XML Schema will indeed become practical for
improving the robustness of the loosely coupled systems that
XML was designed to enable.
In this paper we analyze a variety of architectural considerations
relating to the design of high performance XML systems, and we
report on the implementation and performance of an experimental
prototype implementation. Known as XML Screamer, our
prototype compiles customized validating XML parsers from an
XML Schema. The generated parsers, which can be in either C
or Java, leverage optimizations that are integrated across
processing tasks that in many traditional systems are separate, i.e.,
scanning, parsing, validation, and deserialization.

2. HARDWARE PERFORMANCE
No parser can process input faster than its supporting hardware
accesses data, but the additional cost of parsing and validation
should be minimized. On a 1 GHz Pentium processor a simple
character-scanning loop runs at about 100 Mbytes/second, which
is 10 cycles/byte. As shown in Section 8.2, traditional validating
parsers perform in the range of 2.5–6 Mbytes of input per second
or 160–400 cycles/byte, a penalty of between 16x and 40x —
intuition suggests that this cost can be greatly reduced.
Achieving better performance obviously requires lowering the
number of bytes manipulated and/or reducing the work done per
byte. Parsers operate not just on their input, but also on output
structures, and notably on extra copies of data resulting from
format conversions, such as UTF-8 to UTF-16. Any need to
repeatedly process or scan the same data adds overhead
proportionally. Accordingly, our strategy is to minimize
unnecessary data copying and transformation, and to ensure that
most input and output data is accessed just once. To do this, we
optimize across software layers that are traditionally separate.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

3. OPTIMIZING ACROSS LAYERS
A key inspiration for XML Screamer was the 1987 work of
Watson and Mamrak [20], who report on the optimized
implementation of layered network protocols. Among many other
important insights, they offer one that is particularly pertinent for
XML processing: “a common mistake is to take a layered design
as a requirement for a correspondingly layered implementation.”.
Consider the use of a SAX-based validating parser to construct
business objects such as those provided by gSOAP [18], JAX-
RPC [6], etc. A deserializer, customized to the particular XML
documents to be processed, receives SAX events from the parser
(Figure 1). In this example, deserialization requires that a single
binary integer field be computed from the information in a UTF-8
encoded XML instance:

Schema:

<xsd:element name="inventoryItem">
 <xsd:sequence>
 <xsd:element name="quantity">
 <xsd:simpleType
 base="xsd:integer">
 <xsd:maxInclusive="10000"/>
 <xsd:minInclusive="0"/>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
</xsd:element>

Instance (in Unicode UTF-8 encoding):

<inventoryItem>
 <quantity>10</quantity>
</inventoryItem>

Output business object structure:

class inventoryItem {
 int quantity;
};

The schema requires a root element <inventoryItem> and a
child element <quantity>. The content of the latter is
constrained to be an integer in the range from 0 to 10,000. The
XML input results in a single business object of class
inventoryItem , which in turn contains a single int with the
quantity. Note that the quantity is conveyed in character form in
the XML, but is stored in the output as a binary integer.
A conventional parser and deserializer would likely perform the
steps listed below. Steps labeled “P” are performed by the parser,
and those labeled “D” by the deserializer. Note that in typical
SAX implementations, both XML element names and character
data are presented to applications as UTF-16 strings:

1. (P) Convert start tag string “inventoryItem” to
UTF-16.

2. (P) Validate the resulting UTF-16 string against the
expected element name “inventoryItem”. (Note that
in this case, which is common in Western cultures, the
UTF-16 strings are longer than the corresponding UTF-8
forms, and take longer to compare.)

3. (P) Throw a SAX event from parser to deserializer, to
signal the element start.

Deserializer

Parser

<inventoryItem >
<quantity>10</quantity>

</inventoryItem>

XML

SAX Events

class inventoryItem {
int quantity ;

};

Output

Figure 1: Conventional processor layering

4. (D) Verify that the element name in the SAX event is
“inventoryItem” (Note that the validator already
checked this in step 2.)

5. (D) Do a “new” for the output structure.
6. (D) Discard the SAX event.
7. (P) Convert start tag string “quantity” to UTF-16.

8. (P) Validate the resulting UTF-16 string against the
expected element name “quantity”.

9. (P) Throw a SAX event signaling the element start.
10. (D) Verify that the element name in the SAX event is

“quantity” (already checked in step 8.)

11. (D) Save state to indicate that the next value received is to
be stored as the quantity.

12. (D) Discard the SAX event.
13. (P) Convert the two UTF-8 characters “10” to UTF-16,

resulting in 4 bytes.
14. (P) Convert the same two characters to a binary integer

(Many implementations do the conversion using as input
the 4 byte UTF-16 form computed in the step above, rather
than the smaller UTF-8 two byte sequence in the input.)

15. (P) Verify that the integer is between the expected bounds
of 0 and 10,000.

16. (P) Throw a SAX event with the UTF-16 representation of
the two characters “10”.

17. (D) Convert the two character sequence to a binary integer
(the 2nd time this conversion has been done…see step 14.)

18. (D) Copy the integer to the quantity field of the output.
19. (D) Discard the SAX event.

The above illustrates why traditional parsers and deserializers are
significantly slower than one might expect given the capabilities
of the underlying hardware.
Leveraging Watson and Mamrak’s guidance to optimize across
layers, XML Screamer generates a processor specialized to the
expected form of the input and to the required output API (see
Figure 2). The code for low-level character scanning, parsing,
validation, and deserialization is completely integrated, so it is no
longer meaningful to label steps as (P) or (D). Indeed, use of
SAX events is in this example eliminated entirely, since they
require data transformations and are unnecessary for the
generation of the desired output. As in the list above, we
concentrate on the processing of element names and data content,
skipping details of other checking (such as looking for “<” or “>”
element delimiters), and again we omit steps related to end tag
checking.

XML Screamer Custom
Generated Parser

< inventoryItem >
<quantity>10</quantity>

< /inventoryItem>

XML

class inventoryItem {
int quantity ;

};

Output

Figure 2: XML Screamer layering

The generated parser performs the following steps:
1. Compare the UTF-8 start tag “inventoryItem” to the

“inventoryItem” name required by the schema. The
comparison is performed directly against the instance input
buffer, so no data copying is required.

2. Do a “new” for the output structure.
3. Compare the UTF-8 start tag “quantity” to the

“quantity” name required by the schema. Again, no data
copying is required. The parser is recursive descent, so the
“state” corresponding to step 11 in the previous list is
implicit in the program counter.

4. Verify that the following two UTF-8 characters are a legal
lexical form for an xsd:integer, and during that same check
compute the binary integer value 10. I.e. each character is
retrieved, verified to be a digit, and applied to the
polynomial computation of the resulting binary integer.

5. Check the resulting integer against the bounds 0 to 10,000.1
6. Copy the integer to the output structure.
Far fewer steps are involved, and those that remain are in general
less expensive than their counterparts. At least in this ASCII-
based example, the UTF-8 string comparisons involve half the
number of bytes of their UTF-16 equivalents. Much less data is

1 See prototype limitation discussed in footnote to Section 9.

copied or transformed, so locality is improved, and the processor
cache is likely to be used more effectively. Object or memory
buffer allocations that were necessary for the UTF-16 strings are
also avoided. Indeed, in XML Screamer, string pools with
expected element names are typically prepopulated at compile
time, thereby minimizing object creations and increasing locality.
The overhead of SAX event creation and related object
management is entirely eliminated.

4. CONFIGURABLE API SUPPORT
Although the above example highlights some drawbacks of using
SAX as an intermediate form, SAX is popular and can be an
excellent choice for interacting with a broad range of SAX-based
tools. XML Screamer includes an API generation framework
which is configurable to support a variety of output APIs,
including JAX-RPC for Java and similar business object APIs for
the C language, SAX, as well as others specific to particular
applications.
Indeed, XML Screamer provides compiler-based optimizations
for SAX. Advance knowledge of the schema allows XML
Screamer to precompute data for SAX events that are invariant
from one instance to another. For example, using the schema just
shown, every instance invariably results in startElement and
endElement events for both inventoryItem and quantity
tags. XML Screamer can do much of the work to prepare such
events at compile time. In summary, the selection, layering and
optimization of processor APIs has a crucial impact on
performance. XML Screamer is designed to optimize
performance of SAX, of business objects, and of other specialized
APIs.

5. OTHER CUSTOMIZATIONS
Other parameters in addition to the XML Schema have proven
useful as input to compilation. For example, our users often have
advance knowledge that a particular Unicode encoding such as
UTF-8 will be used for input documents. We provide to the
compiler information about encodings to be supported, and
generate code that is tailored accordingly. As shown in Section 3,
low level scanning, tag checking, and simple type validation can
often be done directly in the input encoding; when the schema and
the instance are provided in different encodings, XML Screamer
converts tag names from the schema to the expected instance
encoding at compile time. The resulting converted strings are
stored in string pools, or directly in the generated tag name
comparison code.

6. DESIGN OF THE COMPILER
This paper is concerned primarily with performance, and details
of the XML Screamer compiler have been documented elsewhere
[11]. Accordingly, we give here a very brief overview of the
compiler and then discuss in more detail the design and
performance of the generated parsers.
The XML Screamer compiler is written in Java, and is capable of
producing parsers in both Java and C. Schemas are read into the
compiler using the org.apache.xerces.xs package [1],
which supports the XML Schema API [24], and which does the
work of composing one or more schema documents. This Xerces-
based tool resolves XML Schema xsd:import,
xsd:include, and xsd:redefine constructs, so these are
fully supported by XML Screamer. The result is a connected
graph of Java objects, each of which corresponds to a component
of the schema to be compiled. Components are formally defined

in the W3C XML Schema Recommendation [23]; informally,
there is a component, and thus a compile-time Java object, for
each simple or complex type, each element declaration, each
attribute declaration, and so on.
The code generation phase of the compiler consists of visiting the
Java object corresponding to each schema component, and
generating the corresponding validation code. Each such
compiled component is invoked repeatedly at runtime if, for
example, more than one element or attribute has the same simple
or complex type. Code to populate the required output API, such
as SAX or JAX-RPC, is generated along with the code for
validation, and wherever possible duplicate work is avoided. In
the example from Section 3, the binary form of the quantity
value was needed both in validation and for output in the
generated JAX-RPC object. By generating validation code and
output code together, such sharing becomes straightforward.
Often, certain information that will be required at runtime is
known statically from a schema component or other compile-time
information. In the same example, the <inventory> and
<quantity> tags are known to appear in all valid instances.
Code generation logic has the option to precompute output data
structures at compile time, to store in the generated code UTF-16
or other converted forms of strings, to prepopulate string pools,
and so on; the precomputed SAX event optimizations discussed
in Section 4 are achieved in this manner.
Unlike many retargetable compilers for traditional programming
languages, XML Screamer does not generate a register- or stack-
based pseudo-machine code. Indeed, early versions of Screamer
had such an intermediate representation and we did not find it
helpful in generating the low-level optimizations required for
parsing and validation. Instead, we have created language-
specific templates and code generators separately for Java and for
C. Similarly, the compiler provides common hooks useful to
support code generation for a wide range of runtime APIs, but the
code for each such API is hand crafted; the Screamer compiler
itself is modified whenever a new parser API is to be supported.

7. DESIGN OF CUSTOMIZED PARSERS
The performance of XML Screamer is determined primarily by
the techniques used in the generated parsers. The sections below
discuss the design of these parsers and some optimizations used to
speed XML processing.

7.1 Recursive Descent Parsing
XML Screamer generates recursive descent parsers in which a
subroutine is invoked for each complex type (i.e., each instance
element) to be validated. Overall, we have found this to be a
reasonable tradeoff: the generated code has a clean structure
which is isomorphic to the compiled schema, and at runtime the
state of the parse is efficiently captured by the program counter
and invocation stack.
In earlier versions of XML Screamer we experimented with
LALR-based parsers. LALR is fast and easily captures the
element structure of most complex types, but it does not deal well
with the complexities of conformant namespace and xsi:type
[23] processing (see Section 7.5). Löwe et al. [8] describe a
system based on LALR(1) and LL(1) parser generators, but it
apparently does not support those XML and schema features. On
balance, we believe that recursive descent for elements coupled
with carefully optimized start tag handling (Section 7.5), is an
effective compromise for XML parsing and schema-validation.

7.2 Inline vs. Subroutine Code Generation
Having settled on a recursive descent design, we experimented
with explicitly inlining some of the smaller validation routines,
and found in most cases that the overhead of an out of line call is
negligible relative to other work to be done; unlike low level
character scanning, element validation is a relatively coarse
grained operation. Low-level character scanning and testing is
indeed more performance critical and must be inlined for
maximum speed.

7.3 Minimizing Backtracking
As discussed in Section 2, parsing and validation of XML can be
optimized by minimizing redundant scanning of input data.
Accordingly we adopt a design principle for our scanners that, in
the typical case, each input character is “visited” just once. If
several tests are needed on a particular character, for example to
determine whether it is an angle bracket ”>” or an expected
element name character, then all such tests are performed before
the next character is inspected. If the character contributes to the
output or to computation of some binary value, then to the extent
possible such side effects are handled at the same time the
character is inspected for validity. A similar philosophy applies
to output generation: to the extent practical, information is
precomputed at compile time (“zero” visits), and in the remaining
situations we attempt to update the value of each output byte
exactly once.
String pools for declared element and attribute names are
precomputed at compile time, using small integer string pool
handles that are directly applicable as array indices. During
validation, the local name of an element in a start tag is checked
against or added to a string pool, and the resulting handle is used
to index a table of element declarations. Similar pools are used at
both compile time and runtime to manage namespace prefixes and
namespace URIs, and to index types named by xsi:type.
String pools help to minimize repeated scanning of string data.
Although the ideal of visiting each character just once cannot
always be achieved, we have found it to be a useful yardstick
against which to evaluate proposed optimizations: those that
greatly reduce the number of bytes manipulated are likely to be
significant. Furthermore, we believe that the “single visit” design
results in excellent locality of reference, and thus tends to use
processor memory hierarchies efficiently. Even if multiple tests
on a single character are needed, that character tends to be loaded
into a processor register just once, and manipulated there. Nearby
portions of the input buffer are likely to be in first-level processor
caches, so access to successive characters is usually fast. String
pools and other compact data structures used to facilitate sharing
have high utilization rates, and are also likely to be cached
effectively.

7.4 Optimized Simple Type Validators
In XML Screamer, simple type validators such as those for
xsd:integer are integrated with the parsing framework, and
operate directly on the input buffer. Accordingly, separately
optimized validators are provided for UTF-8, UTF-16, or for any
other required encodings. Additional validators are available to
optimize particular common cases. Consider for example the
parsing of the xsd:integer “10” in Section 3. Both the API
and a bounds check in the schema require the binary form of the
number 10. Accordingly, XML Screamer generates an integer
validator that computes the binary value while scanning,
evaluating the necessary polynomial as each character is

retrieved. Also available is a slightly faster integer scanner that is
used to validate unconstrained integers, and in other cases where
the converted value is not required. The XML Screamer compiler
chooses the appropriate form to use in each case.
In some cases, optimistic simple type validation algorithms are
used. Consider, for example, the parsing of comments within an
xsd:integer:

<e>123456</e>
<e>123<!-- comment -->456</e>

Although both of these represent the same integer, the second
form is very uncommon. Accordingly, XML Screamer does most
integer validation with a very fast scanner that accepts only digits,
falling back to a more general validator if the initial parse fails.
Such reparsing violates the guideline that each input character be
visited just once, but in practice such revalidation is rare, and
usually only a few characters are involved.

7.5 Optimized XML Start Tag Processing
XML Namespaces [22] and xsi:type are significant challenges
for a high performance XML validator. Consider the following
XML instance:
<n1:e1 xmlns:n1=”http://example.org/ns1”
 xmlns:n2=”http://example.org/ns1”>
 <-- Following element has a name and
 a type that are known only after
 27 attributes and a namespace
 declaration are parsed -->
 <n2:e1 xsi:type=”n2:type”
 a=’1’ b=’2’ ... z=’26”
 xmlns:n2=”http://example.org/ns2”>
 </n2:e1>
</n1:e1>

This example is very difficult to validate efficiently. As the
second tag is encountered, prefix n2 is still bound to
http://example.org/ns1. Accordingly, the child element
appears to have the name {http://example.org/ns1, e1},
and the xsi:type appears to specify
{http://example.org/ns1, type}. Only after scanning
through 26 more attributes and reaching the namespace
declaration can the parser discover the true values for either name
or type, and only once the type is known can the 26 attributes be
validated (because the complex type named by xsi:type may
specify simple types for some attributes.) Thus, the simplest
approaches to start tag validation involve at least two passes, one
to determine namespace prefix associations and xsi:type
attributions, and a second to validate the element name and
attribute content.
XML Screamer handles even such difficult start tags correctly and
efficiently. Indeed, the occurrence of problematic constructions
cannot usually be predicted in advance, so the algorithm
described here is used for all start tag validation. XML Screamer
prepares during its initial scan data structures that support
efficient validity checking. The possible local names of all
attributes usable in an XML vocabulary are for the most part
known from the schema at compile time, and each such name is
assigned an offset in a bit vector. During scanning, the
corresponding bit is turned on as each attribute of a given name is
encountered. Two corresponding bit masks are also precompiled
for each complex type, representing respectively the required and
allowed attributes for that type. At the end of start tag scanning,

after the type of the element has been reliably determined, simple
bitmap comparisons are used to ensure that all required attributes
are present, and that no disallowed attributes have been provided.
Some backtracking may be required to perform attribute
validations, but XML Screamer notes during its initial start tag
scan the offset and length of each attribute value, and also the
positions of any attribute content whitespace. Once the element’s
type is determined, only attributes requiring validation are
revisited. Note that integration of such optimizations into a single
pass using LALR would at best be tricky, perhaps impossible,
because the grammar to be used for checking attributes is not
known during the initial scan.

7.6 Summary of Generated Parser Features
In summary, the efficiency of generated XML Screamer parsers
results primarily from:

• Optimizing across what would traditionally be separate
layers of scanning, parsing, validation and deserialization.

• Validating and deserializing directly from the input buffer, in
the native encoding of the input document.

• To the extent possible, visiting each input and output
character exactly once, or where necessary generating
efficient data structures to minimize backtracking.

• Compile-time precomputation of invariant output.

• Carefully optimizing low level character scanning and
validation routines, and providing tailored versions for
common performance-critical cases.

8. XML SCREAMER PERFORMANCE
The principal measure of success for XML Screamer is the
efficiency of the generated parsers. As previously noted, the
compiler is capable of generating parsers in both C and Java, but
the C parsers are much more carefully optimized, and are a more
realistic indicator of the performance achievable using our
approach. Accordingly, all results reported here are for C-
language parsers.

8.1 Benchmark Methodology
Our benchmarks are intended specifically to model production
quality Web Service deployments of XML, with each test
instance consisting of a single UTF-8 XML entity stored in
contiguous buffer memory. Filesystem or network overhead is
not measured, and streaming of large documents is not
considered. Modeling the assumption that successive Web
Service messages would not in general occupy the same memory
buffer, multiple instances are parsed from separate buffers, and
the average time is reported. We believe that repeated parsing of
the same buffer might give unrealistically high cache hit rates and
thus an overoptimistic estimate of performance.
We run each set of tests on several different machine models, and
report only results that can be stably reproduced. Although the
numbers reported here are for one particular machine, we have
thus ensured that they are broadly representative. At one point
during our development work we saw an anomalous result on just
one model used for testing: a 30% discrepancy in one test was
traced by hardware monitoring to differences in processor cache
layout. While such problems are rare, they can obscure important
results, and tend to be invisible unless multiple machines are
benchmarked. The tests reported here were run on an IBM
eServer xSeries Model 235 with a 3.2 GHz Intel Xeon Processor,

and 2 GB of main memory, using Microsoft Windows Server
2003 Service Pack 1. XML Screamer parsers were compiled with
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version
13.10.3077.

8.2 Measurements
Table 1 provides benchmark data for XML Screamer, as well as
for two other widely used parsers, Xerces Version 2.6 for
Windows2 and Expat version 1.95.8 for Windows. Xerces was
tested in nonvalidating and validating modes using SAX; Expat is
not capable of validating, and was tested with its native interface
which is similar to SAX, but which reports strings in UTF-8.
For each schema, three separate parsers were compiled by XML
Screamer: one that parses and validates but reports no data
(NOAPI), a second that populates a business object API as earlier
described3, and a third that supports SAX. The SAX parser
includes optimizations for precomputation of SAX events, as
discussed in Sections 4 and 6. For each instance, a fourth XML
Screamer validation was performed using a schema in which root
content is validated using XML Schema wildcards (i.e.
xsd:anyType). This is the closest approximation to a schema-
less mode for XML Screamer, and it is used in Section 8.3.4 to
quantify the benefits of SAX precomputation.

2 The Xerces parser tested is a version 2.6 code base plus selected

performance enhancements targeted for eventual inclusion in
version 2.7; the enhancements create a somewhat more
challenging comparison for XML Screamer, and in any case are
believed to affect results by 10% or less compared to version
2.6. Xerces schema caching is enabled in all validating tests.

3 Due to limitations of the business object test framework,
business object parsers were not generated for test cases 6 & 7.
The corresponding measurements are shown as “NA” for not
available. As can be seen from other table rows, business object
performance is typically close to that of NOAPI, which is
shown.

Each row in the table represents an XML instance; different
instances validated by the same schema are distinguished by size
and appear in separate rows. po.xsd is the Purchase Order
sample schema from the XML Schema Primer [23]. ipo.xsd is
a similar schema modified to use namespaces and xsi:type.
Longer instances are constructed by duplicating multiple copies
of the same data, wrapping in a container element, and adapting
the schema accordingly. Other schemas and instances are taken
from the Sarvega XML Validation Benchmark [13].
Performance is quoted in Mbytes/sec/ProcessorGHz, in other
words, Mbytes/sec normalized to a 1 GHz Intel processor. Thus
for our 3.2 GHz machine, a measured throughput of 3.2
Mbytes/sec is quoted in the table as 1 Mbyte/sec/GHz. We have
found this normalization to be both useful and stable in comparing
benchmarks run on different model Intel machines.4 All charts in
the text below are based on data from Table 1.

8.3 Performance Discussion
The useful performance achievable with XML Screamer can best
be seen in the Business Object API column in Table 1.
Throughput ranges from 23.21 to 46.63 Mbyte/sec/GHz,
including all overhead for parsing, validation and deserialization.
On our 3.2 GHz machine this is an absolute performance of
roughly 75 to 150 Mbytes/sec.
A character scan loop on the test processor measured at 106
Mbytes/sec/GHz, consistent with the estimate in Section 2, so
XML Screamer is parsing, validating and deserializing at between
22% and 44% of the maximum character scanning speed of the
machine.

8.3.1 Comparison with nonvalidating parsers
XML Screamer exceeds the speeds of the fastest parsers in
common use today. We first examine SAX parsing, which is the
slowest mode for XML Screamer, and therefore the most
conservative comparison.

4 Note, however, that Intel Centrino processors typically exhibit

higher throughput per cycle than other Pentiums or Xeons.

Table 1: Measurements

any
Type

ID Schema Filename Size Non val Val Non val NOAPI

Business

Object
API SAX SAX

Screamer
SAX
vs

Expat

Screamer
Business

Object
vs.

Expat

Screamer
SAX
vs.

Xerces
Val SAX

Screamer:
Schema

vs
anyType

Sax
1 po 990.00 4.41 2.65 6.85 35.08 33.88 16.12 12.75 2.4x 4.9x 6.1x 1.3x
2 ipo 1,406.00 4.24 2.51 6.81 23.23 23.56 14.76 14.25 2.2x 3.5x 5.9x 1.0x
3 MI_AUS_RESPONSE2_1 1,572.00 3.21 2.98 5.21 25.95 23.21 17.00 7.51 3.3x 4.5x 5.7x 2.3x
4 po 8,062.00 6.79 3.01 13.68 48.00 44.67 24.73 16.08 1.8x 3.3x 8.2x 1.5x
5 ipo 8,077.00 6.08 2.90 10.31 38.40 34.21 21.44 16.46 2.1x 3.3x 7.4x 1.3x
6 bibteXML 8,609.00 8.28 5.58 15.54 47.49 NA 26.25 19.77 1.7x NA 4.7x 1.3x
7 MI_AUS_REQUEST2_1 9,429.00 4.06 3.16 6.74 23.15 NA 17.79 8.52 2.6x NA 5.6x 2.1x
8 po 63,754.00 6.88 3.02 15.65 49.87 46.63 26.58 16.37 1.7x 3.0x 8.8x 1.6x
9 ipo 64,233.00 5.68 2.85 13.75 44.00 36.15 24.65 16.67 1.8x 2.6x 8.6x 1.5x

10 periodic_table 116,506.00 6.03 3.99 15.25 34.61 35.28 23.47 14.16 1.5x 2.3x 5.9x 1.7x

Test case

Throughput (Mytes/Sec/ProcessorGHz)

Comparisons
Xerces - SAX Expat

XML Screamer

Validating

Figure 3 illustrates the throughput of XML Screamer relative to
the non-validating parsers tested. Both XML Screamer and
Xerces are tested using SAX, i.e. with UTF-16 converted strings;
Expat is measured through its native UTF-8 interface. XML
Screamer is between 1.5x and 3.3x faster than Expat, and between
3.2x and 5.3x the speed of nonvalidating Xerces.

Comparison to Nonvalidating Parsers

0
5

10
15
20
25
30

1 2 3 4 5 6 7 8 9 10
Test ID

M
B

/S
ec

/G
H

z

Xerces
Expat
Screamer

Xerces & Expat are non-validating
XML Screamer is validating

Figure 3: Comparison to nonvalidating parsers (SAX)

8.3.2 Business Object Performance
XML Screamer’s performance advantage over the non-validating
parsers is even greater using the business object APIs that are
common to many Web Services applications. For the reasons
described in Section 3, business object APIs in XML Screamer
(but not in the other parsers) are significantly faster than SAX.

Business Object Creation

0

10

20

30

40

50

1 2 3 4 5 8 9 10
Test ID

M
B

/S
ec

/G
H

z

Xerces
Expat
Screamer-BO

Xerces & Expat are non-validating
XML Screamer is validating

Figure 4: Comparison to nonvalidating parsers (Bus.Obj.)

As shown in Figure 4, XML Screamer builds business objects at
between 2.3x and 4.9x the speed of Expat, the faster of the two
nonvalidating alternatives, and XML Schema achieves this speed
while performing XML Schema validation.
Note that Expat and Xerces are each using their best available
(i.e. SAX-like) interfaces; when used to construct business
objects, some additional deserialization logic would be needed
with these parsers. Thus, the above is a conservative estimate of

the relative performance of XML Screamer for building business
objects.

8.3.3 Validation Performance Compared
Xerces and most other parsers incur a heavy performance penalty
for validation. Since XML Screamer significantly exceeds the
speed of nonvalidating Xerces, the comparison when both parsers
validate is correspondingly more favorable. Figure 5 shows XML
Screamer in both SAX and business object modes.

Validation Compared

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10
Test ID

M
B

/S
ec

/G
H

z

Xerces
Screamer-SAX
Screamer-Bus.Obj

See footnote 3 to section 8.2

Figure: 5 Validation Performance Comparison

Using its gSOAP-like business object API, XML Screamer
delivers from 7.8x to 15.4x the throughput of Xerces when both
parsers are validating. Even using SAX, the ratios vary between
4.7x and 8.8x.

8.3.4 SAX Optimization
The results in Figure 6 bear out the speculation that schema-based
precomputation of SAX output can yield significant performance
gains. XML Screamer performs such optimizations when a useful
schema is available, but not when validating with a wildcard
(xsd:anyType), as the latter provides no advance information
about instance structure.

Precomputation of SAX Events

0
5

10
15
20
25
30

1 2 3 4 5 6 7 8 9 10
Test ID

M
B

/S
ec

/G
H

z

Screamer: No precomputation (anyType)
Screamer: Events precomputed

Figure 6: Effect of compile-time SAX precomputation
In all cases, processing with a schema is faster, and we have also
done tests verifying that the gains are indeed due primarily to
precomputation. Gains of 30% or more are frequently observed.
XML Screamer thus demonstrates that, at least sometimes, using
a schema and performing validation can increase performance.

8.3.5 Performance Summary
On the tests reported in this paper, using the business object API
typical of Web Services applications, XML Screamer parses and
schema-validates XML at between 23 and 46 Mbytes/sec/GHz;
XML Screamer can thus process XML at speeds of roughly 100–
200 Mbytes/sec on the 4 GHz processors now becoming
available. Making the assumption that typical systems should
devote at most 10–20% of CPU capacity to XML processing, we
estimate that applications sustaining throughput of 10–40
Mbytes/sec are practical on a single CPU. Stated differently, one
commodity processor is estimated to be capable of parsing,
validating and deserializing XML from two saturated 100
Mbit/sec network links, with 80–90% of CPU time left for
application-level work.

9. XML FEATURES NOT SUPPORTED
The compiler and generated parsers support most but not all XML
and XML Schema features. Our purpose was not to build a fully
conforming XML or Schema implementation, but rather to come
close enough that our performance results would be representative
of a complete implementation. With a few important exceptions
detailed below, we believe that the prototype achieves this goal.
Many of the more complex XML and Schema features, such as
namespaces, xsi:type, redefine, import, include, and
substitution groups are fully supported. The following are the
significant areas of non-conformance in the XML Screamer
prototype.
XML Features Not Supported

• DTD external or internal subsets. Note that external subsets
are optional in the XML Recommendation, but internal
subsets are required [21]. In this respect XML Screamer is
non-conforming.

• Support for encodings other than UTF-8 or UTF-16. Our
architecture is in principle capable of supporting other
encodings, but because our parsers are hand crafted to
optimize for the characteristics of particular encodings, the
work involved is significant.

• Very large instance documents, i.e. those too large to fit in a
contiguous memory buffer.

XML Schema Features Not Supported

• Facets on simple types (these are accepted but not checked;
among the facets not checked is the pattern facet.)5

• Non-deterministic content models (such as certain models
with nested numeric occurrence constraints.)6

• Identity constraints (accepted but not checked)

• Validity checking of types other than anySimpleType,
date, integer, decimal, nonnegativeInteger,

5 A consequence of this limitation is that current versions of the

XML Screamer prototype do not automatically generate the
integer bounds check implied by Step 5 in the list of XML-
Screamer generated code in Section 3. We have inserted such
tests manually in some generated parsers and have verified that
their runtime overhead is negligible, as would be expected.

6 A proposed design for efficiently handling non-deterministic
models is outlined in [11], but is not implemented in the code
described here.

boolean, positiveInteger, negativeInteger,
nonpositiveInteger, and string (all types are
accepted, but validation of lexical forms and conversion to
binary is available only for the listed types.)

Most of the above limitations are presumed to have a negligible
impact on performance of features that are supported, but a few
are probably significant. In particular, because instances are in a
single contiguous buffer, the inner character scanning loops most
critical to performance do not need to account for chunking of
information. Element tag names are always contiguous, and can
always be compared with string comparison instructions or simple
comparison loops.
The lack of support for DTDs provides a more subtle performance
gain, also related to instance buffering. Without DTDs, it is
impossible to define XML general entities. Thus, our prototype
parsers are never called upon to do the generalized string
substitutions necessitated by references to such entities, and so the
need for dynamic memory management is reduced.
Quantifying the performance gains from having a single input
buffer and no DTDs would have required us to completely
reimplement XML Screamer with a more generalized input
buffering and scanning scheme. We have not made that
considerable effort. Accordingly we can only speculate that the
performance benefits may be significant, and warn those
comparing our work with other approaches to account for the
possible differences in capabilities. We note that there are many
scenarios, most notably SOAP-based Web Services, in which
DTDs and entities are never used, and we believe our
performance is fully representative of what is achievable in those
environments.
We have not studied the performance of identity constraints
(xsd:key, xsd:keyref, xsd:unique), but our intuition is
that these can, with care, be implemented at speeds comparable to
other schema features. The optimization of regular expressions
has been well studied, and we believe that with careful
optimization, the overhead from pattern facets would be a few
instructions per character parsed. At worst, support for these
features would slow processing of those schemas in which they
were used.

10. RELATED WORK
Many parsers now support validation with XML Schema. These
include Xerces [1], MSXML [10], Saxon [15], XSV [17], etc.
Although each is different in its implementation and in the APIs
supported, these are for the most part “traditional” parsers, in
which validation is largely separate from parsing, and which do
not directly support “business object” or other customized APIs.
Some have been well optimized. Few if any attempt the degree of
low level performance tuning provided in XML Screamer, and
none has the ability to optimize scanning, parsing, validation and
custom API generation in a single parser.
There are also a wide range of tools such as Castor [2], gSOAP
[18], and Liquid XML [9] that support automatic deserialization
into business objects, with mappings derived from XML Schema.
Some of these such as Castor sit on top of other SAX parsers,
such as Xerces, and therefore run no faster than the underlying
parser. Tools such as gSOAP provide more efficient parsing and
deserialization, but do not do full Schema validation, and support
only a single output API.

Several research teams have discussed compilation of DTDs or
schemas, and we have earlier (Section 7.1) commented on the
LALR-based work of Löwe [8]. Another high performance
compiler is described by Chiu [3]. Like XML Screamer, Chiu
compiles XML Schemas, integrating validation with scanning and
parsing to achieve high performance. Chiu reports on the
application of generalized automata as an intermediate code
representation, and applies sophisticated transforms to
automatically optimize low level scanning and validation. We
would expect his system to be efficient at what it does, but with
the important caveat that XML Screamer optimizes not just
parsing and validation, but also deserialization and
precomputation of invariant output structures. Indeed, Chiu
advocates the simplifications that result from not including
compiled support for deserialization. We believe that the analysis
in Section 3, coupled with the business object performance of
XML Screamer, demonstrates the advantages of integration across
all layers.
Reuter [12] uses a two level approach, in which validators are
generated automatically, but run on top of conventional SAX
parsers; the performance is presumably limited to that of the
chosen parser. van Engelen [19] also describes a two-level
system, but uses a high-performance FLEX-based layer [5] to
check XML conformance, and a separate DFA for validation.
The separation of scanning and validation prevents optimization
across the two layers.
Takase [16] describes a system in which invariant output is
discovered heuristically at runtime, achieving optimizations in
some ways similar to those we report for SAX. As multiple
similar input documents are parsed, common substrings are noted
and used to build a DFA against which subsequent input is
validated. When successful, this system can automatically
discover at runtime some of the invariants that XML Screamer
determines from a schema. Takase’s system seems to have
advantages particularly in situations where no schema is
available, since it works on any series of structurally similar XML
documents. In cases where a schema is available, XML Screamer
avoids the runtime overhead and complexity of dynamically
comparing instance documents.
Hardware-based systems such as Datapower [4] and Sarvega [14]
benefit from running parser/validators in isolated systems where
memory management, thread dispatching, etc. can be optimized.
Some of these systems also include ASICs customized for XML
processing, and most integrate support for security and other
features not provided by XML Screamer. Datapower has also
reported on the use of JIT-like virtual machine technology to
optimize XML processing [7]. Whatever their other advantages,
hardware-based systems physically separate parsing and
validation from the consuming application, and cannot directly
optimize low level parsing with API integration. The availability
of additional hardware processing capability may result in
improved throughput, but in comparison to XML Screamer the
total computation performed is likely to be greater.

11. DISCUSSION
XML Screamer is faster than most available processors, and it
demonstrates that XML Schema validation can be done at
similarly high speeds. Indeed, schemas can sometimes establish
compile-time invariants that make validation a net gain in
performance.

Using its business object APIs, XML Screamer scans, parses,
validates and deserializes at between 22% and 44% of the tested
processor’s raw character scanning speed. Except insofar as ways
can be found to use such processors more efficiently, e.g. by
exploiting hardware string test instructions or on chip SIMD
accelerators, gains from further tuning or alternative approaches
are likely to be modest. XML Screamer’s performance is
probably not far from the maximum achievable.
Although it is not the first XML Schema compiler and it is not the
first system to automatically generate business object
deserializers, XML Screamer demonstrates the importance of
integrating deserialization with scanning, parsing and validation,
and of providing compiled optimizations particular to each XML
API. The XML Screamer prototype supports a few test APIs,
including SAX, but it could in principle be adapted to a wide
range of others, including some that might be specific to
particular environments or applications. For example, one could
tailor the parser to directly populate an editor’s in-memory
structures and indices. Support of such APIs does involve at least
one important complication: the XML Screamer compiler must be
hand-customized to exploit each new one. Automatic adaptation
to additional APIs, perhaps using an API specification compiler,
would be an interesting direction for future research. Having
raised this concern, we note that XML Screamer provides
important optimizations for SAX and similar general purpose
APIs. Insofar as these are adequate, there is no need to further
customize the compiler.
Our work again makes clear, as others have observed before, that
careful API design is crucial to good XML performance. A
particular API may necessitate excessive string conversions,
object creations or buffer manipulations that even a careful
implementation cannot avoid, and as XML processors become
faster, the relative impact of even small inefficiencies grows. The
performance of the best XML implementations will ultimately be
limited by the designs of their chosen APIs.
Any schema compiler has the drawback that compiled artifacts
must be deployed with each application, and we have found this
to be a significant challenge for adapting XML Screamer
technology to production systems. Each generated parser must be
appropriate to the operating system, compiler, supporting libraries
and hardware on which applications will be run. In some cases,
e.g. for multi-platform products or applications, parsers must be
deployed in multiple versions for different environments, and all
such versions must updated as schemas change.
The system described here is a prototype. Although many of the
most challenging XML and XML Schema features are fully
supported, some others are not, and components such as the
business object generator are incomplete. We believe that, with a
few exceptions already discussed, the performance of the
prototype is fully representative of what would be achievable in a
production quality implementation. The one significant exception
is generalized support for entity substitution, which we believe
might somewhat impact performance, but which in any case is
never required for Web Services.
XML and Web Services are designed in part to enable
communication among loosely coupled organizations, precisely
the applications in which careful input checking is essential. The
technologies demonstrated in XML Screamer should be usable to
automate XML instance validation in production systems, and
thus to significantly improve the robustness of XML-based
communication.

12. ACKNOWLEDGMENTS
We wish to thank the many people who helped to implement or
otherwise supported our work on XML Screamer. They include:
Sharon Adler, Tom Bridgman, Philippe Charles, Emily Farmer,
Wylie Garvin, Daniel Glasser, Ted Habeck, Joe Latone, Michelle
Leger, David Marston, Mel Martinez, Alex Morrow, Chet
Murthy, Paul Reed, Daniel Silva, Alfred Spector, John Turek,
Max Van Kleek, and everyone at Extreme Blue.

13. REFERENCES

[1] The Apache Software Foundation. Apache Xerces.

http://xml.apache.org.
[2] The Castor Project. http://www.castor.org/index.html.
[3] Chiu, K. and Lu, W. A compiler-based approach to schema-

specific XML parsing. In First International Workshop on
High Performance XML Processing (May 2004).

[4] Datapower, Inc. XA35 XML Accelerator.
http://www.datapower.com/products/xa35.html.

[5] The GNU Project. Flex. http://www.gnu.org/software/flex/.
[6] Java API for XML-Based RPC (JAX-RPC).

http://java.sun.com/webservices/jaxrpc/index.jsp.
[7] Kuznetsov, E. Method and Apparatus of Data Exchange

Using Runtime Code Generator and Translator. US Patent
6,772,413 B2, (August, 2004) .

[8] Löwe, W.M., Noga, M.L., and Gaul, T.S. Foundations of
Fast Communication via XML. Annals of Software
Engineering, 13 (June 2002), 357-359.

[9] Liquid Technologies Liquid XML 2005. http://www.liquid-
technologies.com/.

[10] Microsoft Corp. MSXML Parser.
http://msdn.microsoft.com/xml/.

[11] Perkins, E., Matsa, M., Kostoulas, M., Heifets, A.,
Mendelsohn, N. Generation of Efficient Parsers through
Direct Compilation of XML Schema. IBM Systems Journal,
45, No. 2, (May 2006).

[12] Reuter, F. and Luttenberger. N. Cardinality constraint
automata: A core technology for efficient XML schema-
aware parsers. (2003)
http://www.swarms.de/publications/cca.pdf.

[13] Sarvega, Inc. XML Validation Benchmark.
http://www.sarvega.com/xml-validation-benchmark.html.

[14] Sarvega, Inc. The Sarvega Speedway™ XSLT Accelerator.
http://www.sarvega.com/xml-speedway-accelerator.html.

[15] Saxonica, Ltd. Saxon. http://www.saxonica.com/.
[16] Takase, T., Miyashita, H., Suzumura, T. and Tatsubori, M.

An Adaptive, Fast, and Safe XML Parser Based on Byte
Sequence Memorization. World Wide Web Conference
(May 2005).

[17] Thompson, H. S. and Tobin, R. Current status of XSV. (22
April 2005) http://www.ltg.ed.ac.uk/~ht/xsv-status.html.

[18] van Engelen, R., and Gallivan, K. The gSOAP Toolkit for
Web Services and Peer-to-Peer Computing Networks. In 2nd
IEEE/ACM International Symposium on Cluster Computing
and the Grid — CCGRID'02 (May 2002).

[19] van Engelen, R. Constructing Finite State Automata for
High-Performance XML Web Services. International
Conference on Internet Computing (2004): 975-981.

[20] Watson, R.W., and Mamrak, S.A. Gaining efficiency in
transport services by appropriate design and implementation
choices. ACM Transactions on Computer Systems (TOCS),
v.5 n.2, p.97-120, May 1987.

[21] W3C. Extensible Markup Language, Version 1.0. 4
February 2004. http://www.w3.org/TR/REC-xml/.

[22] W3C. Namespaces in XML. 14 January 1999.
http://www.w3.org/TR/ REC-xml-names/.

[23] W3C. XML Schema, W3C Recommendation, 28 October
2004. Part 1: http://www.w3.org/TR/ xmlschema-1/, Part 2:
http://www.w3.org/TR/xmlschema-2/, Primer:
http://www.w3.org/TR/xmlschema-0/.

[24] W3C. XML Schema API, W3C Member Submission, March
2004, http://xml.apache.org/xerces2-j/api.html.

