
Peer Data Exchange

Ariel Fuxman
U. of Toronto

afuxman@cs.toronto.edu

Phokion G. Kolaitis∗

IBM Almaden
kolaitis@almaden.ibm.com

Renée J. Miller†
U. of Toronto

miller@cs.toronto.edu

Wang-Chiew Tan‡

UC Santa Cruz
wctan@cs.ucsc.edu

ABSTRACT
In this paper, we introduce and study a framework, called peer
data exchange, for sharing and exchanging data between peers.
This framework is a special case of a full-fledged peer data man-
agement system and a generalization of data exchange between a
source schema and a target schema. The motivation behind peer
data exchange is to model authority relationships between peers,
where a source peer may contribute data to a target peer, specified
using source-to-target constraints, and a target peer may use target-
to-source constraints to restrict the data it is willing to receive, but
cannot modify the data of the source peer.

A fundamental algorithmic problem in this framework is that of
deciding the existence of a solution: given a source instance and a
target instance for a fixed peer data exchange setting, can the tar-
get instance be augmented in such a way that the source instance
and the augmented target instance satisfy all constraints of the set-
ting? We investigate the computational complexity of the problem
for peer data exchange settings in which the constraints are given
by tuple generating dependencies. We show that this problem is
always in NP, and that it can be NP-complete even for “acyclic”
peer data exchange settings. We also show that the data complexity
of the certain answers of target conjunctive queries is in coNP, and
that it can be coNP-complete even for “acyclic” peer data exchange
settings.

After this, we explore the boundary between tractability and in-
tractability for the problem of deciding the existence of a solution.
To this effect, we identify broad syntactic conditions on the con-
straints between the peers under which testing for solutions is solv-
able in polynomial time. These syntactic conditions include the im-
portant special case of peer data exchange in which the source-to-
target constraints are arbitrary tuple generating dependencies, but
the target-to-source constraints are local-as-view dependencies. Fi-

∗On leave from UC Santa Cruz.
†Supported in part by NSERC and CITO awards.
‡Supported in part by an NSF CAREER award IIS-0347065 and an
NSF grant IIS-0430994.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2005 June 13-15, 2005, Baltimore, Maryland.
Copyright 2005 ACM 1-59593-062-0/05/06 . . . $5.00.

nally, we show that the syntactic conditions we identified are tight,
in the sense that minimal relaxations of them lead to intractability.

1. Introduction

Several different frameworks for sharing data between independent
stores have been formulated and investigated in depth. Data ex-
change is one of the conceptually simpler, yet technically challeng-
ing, such frameworks [7]. In a data exchange setting, data from
a source schema are transformed to data over a target schema ac-
cording to specifications given by source-to-target constraints. This
framework models a situation in which the target passively receives
data from the source, as long as the source-to-target constraints are
satisfied. Data exchange is closely related to data integration [15].
In particular, data exchange systems can be used as building blocks
in data integration systems, where data from a set of independent
sources having no interaction with each other are transformed to
data in a global mediated schema. Peer data management systems
(PDMS) constitute a much more powerful and complex framework
than data exchange, as they model a situation in which a number
of peers interact with each other and cooperate in sharing and ex-
changing data [14, 20, 19]. In a peer data management system,
there is no distinction between source and target, since a peer may
simultaneously act as a distributor of data (thus, a source peer) and
a recipient of data (thus, a target peer). In such a system, the re-
lationship between peers is specified using constraints that can be
in either direction (from one peer to another, and vice-versa), in-
stead of constraints in a single direction, as was the case in data
exchange. Furthermore, each peer can be a stand-alone database
system or a separate data integration system in which the schema
of the peer is a mediated global schema over a set of local sources
accessible only by that peer.

The Peer Data Exchange Framework In this paper, we intro-
duce and study a framework, called peer data exchange, which is a
generalization of data exchange and a special case of a full-fledged
peer data management system. This framework models a situation
in which there is interaction between two peers that have differ-
ent roles and capabilities: one of them, called the source peer, is
an “authoritative” or “trusted” peer that can contribute new data,
while the other peer, called the target peer, imposes restrictions
on the data that it is willing to accept, but has no permission or
capability to modify the data of the source peer. In a peer data ex-
change setting, the relationship between the two peers is specified
by constraints that go in either direction, that is, some are source-
to-target constraints and others are target-to-source constraints. As
in data exchange, the source-to-target constraints specify what data
a source peer is willing to exchange. Unlike data exchange, how-

ever, the target is no longer a passive recipient of source data that
obey the source-to-target constraints. Instead, the target peer uses
target-to-source constraints to impose restrictions on the data that
it is willing to receive; moreover, the target may have its own data.
Suppose that we are given a source instance and a target instance
that may or may not satisfy the constraints of the setting; if the con-
straints are not satisfied, the goal then is to augment the target data
in such a way that the given source instance and the augmented tar-
get instance satisfy all constraints between the two peers, as well
as other existing target constraints. As an illustration, the source
peer may be an authoritative genomic database, such as Swiss-Prot
[17], while the target peer may be a genomic database maintained
at a university under a different schema and populated with various
data. At regular intervals of time, the university database is will-
ing to receive new data from Swiss-Prot but cannot export any data
back to Swiss-Prot. The target may restrict the data it is willing to
receive to only Swiss-Prot data that it views as relevant. Hence, the
data received have to satisfy constraints that go in either direction.

Algorithmic Problems The first fundamental algorithmic problem
in peer data exchange is that of deciding the existence of a solution.
More formally, a peer data exchange setting consists of a source
schema S, a target schema T, a set of source-to-target constraints
Σst, a set of target-to-source constraints Σts, and a set Σt of target
constraints. Each such setting, gives rise to the following deci-
sion problem: given a source instance and a target instance, can the
target instance be augmented in such a way that the given source
instance and the augmented target instance satisfy all constraints
of the peer exchange setting? The second fundamental algorith-
mic problem in peer data exchange is that of obtaining the certain
answers of queries posed over the target schema. The concept of
the certain answers has become the standard semantics of query-
answering in data integration [1, 15], data exchange [7], and peer
data management [14]; this concept is also perfectly meaningful in
peer data exchange.

In the sequel, we investigate these algorithmic problems for peer
data exchange settings in which the constraints between the peers
are given by a finite set of tuple-generating dependencies (tgds)
[3]. We also allow for target constraints in the form of target tgds
or target equality-generating dependencies (target egds). By defi-
nition, a tgd from one relational schema to another is a first-order
formula of the form ∀x(ϕ(x) → ∃yψ(x,y)), where ϕ(x) is a
conjunction of atomic formulas over the first schema and ψ(x,y)
is a conjunction of atomic formulas over the second. An equality-
generating dependency on a relational schema is a formula of the
form ∀x(ϕ(x) → z1 = z2),whereϕ(x) is a conjunction of atomic
formulas over the schema and z1, z2 are among the variables in x.
Tuple-generating dependencies have been used for specifying data
exchange between relational schemas [7, 9]; moreover, they are
the core of the mapping specification language of the Clio schema-
mapping and data exchange system [18]. Tuple-generating depen-
dencies generalize both the local-as-view (LAV) and the global-as-
view (GAV) constraints in data integration [15], since the former
are tgds in which ϕ(x) is a single atomic formula, and the latter
are tgds in which ψ(x,y) is a single atomic formula. In their full
generality, tuple-generating dependencies are GLAV (global-and-
local-as-view) constraints.

Summary of Results Consider a fixed peer data exchange setting
in which Σst is a finite set of source-to-target tgds, Σts is a finite
set of target-to-source tgds, and Σt = ∅ (no target constraints).
Our first main result asserts that testing for the existence of solu-

tions is in NP, and that the data complexity of the certain answers of
unions of conjunctive queries is in coNP. These complexity bounds
turn out to be tight, because we exhibit peer data exchange settings
as above for which testing for the existence of solutions is NP-
complete, while the data complexity of the certain answers of con-
junctive queries is coNP-complete; actually, the lower bounds hold
even for peer data exchange settings in which the “dependency”
graph between the relations of the peers is acyclic. We also show
that the same upper bounds hold even if the setting allows for a set
Σt of target constraints that is the union of a finite set of target egds
and a finite weakly acyclic set of target tgds.

The complexity of testing for the existence of solutions and com-
puting the certain answers in peer data exchange settings should be
compared and contrasted with the complexity of the same problems
for data exchange, which can be viewed as the special case of peer
data exchange in which Σts = ∅ (no target-to-source tgds) and
also J = ∅ (the target contains no data before the exchange). In-
deed, as shown in [7], there are polynomial-time algorithms to test
for the existence of solutions and to compute the certain answers
of unions of conjunctive queries in every data exchange setting in
which Σst is a finite set of source-to-target tgds and Σt is the union
of a finite set of target egds and a finite weakly acyclic set of target
tgds. Moreover, if Σt = ∅ (no target constraints), then testing for
the existence of solutions is trivial for data exchange, since solu-
tions always exist. There is also a sharp contrast with full-fledged
peer data management systems, where, as shown in [14], comput-
ing the certain answers of conjunctive queries can be an undecid-
able problem. Thus, from a computational point of view, peer data
exchange is more challenging than ordinary data exchange, but less
intractable than full peer data management.

After this, we explore the boundary between tractability and in-
tractability in peer data exchange settings.To this effect, we identify
a class of peer data exchange settings, denoted by Ctract, for which
the existence of solutions can be tested in polynomial time. The
class Ctract is defined by imposing syntactic conditions on the con-
straints between the peers; these conditions are extracted through
a careful examination of the impact of existentially quantified vari-
ables and of their relationship to other variables occurring in the
constraints. Although the syntactic conditions used to define Ctract

are rather technical, Ctract itself is a broad class that contains sev-
eral important special cases of peer data exchange, including the
following two: the case in which the source-to-target tgds are full
tgds, and the case in which the target-to-source tgds are local-as-
view (LAV) constraints. Finally, we show that the syntactic condi-
tions we identified are tight, in the sense that minimal relaxations
of the conditions lead to intractability; thus Ctract turns out to be a
maximal class of tractable peer data exchange settings.

Related Work There is an extensive literature on data integration
using sound, complete and exact views [1, 13, 15]. Several differ-
ent frameworks and systems for sharing data in networks of inde-
pendent sources have also been formulated and studied [4, 6, 10,
11, 16]. Calvanese et al. [6] and Franconi et al. [10, 11] propose
a semantics based on an epistemic interpretation of the constraints
between peers. This is in contrast to the first-order interpretation
used in our work and in PDMS. Bertossi and Bravo [5] also use
first-order interpretations, but propose a semantics drawn from the
area of consistent query answering that is based on repairs [2]. This
approach has the advantage that data can be shared between peers,
even when there is no consistent solution satisfying all constraints.
However, the complexity of the problem of obtaining certain an-

swers is higher than in peer data exchange (Πp
2-complete vs. coNP-

complete), and no tractability results have been given for this se-
mantics.

2. Peer Data Exchange Settings
This section contains the precise definitions of a peer data exchange
setting and the associated algorithmic problems, as well as a brief
discussion of the relationship of peer data exchange settings with
data exchange settings and peer data management systems.

Preliminaries

A schema is a finite collection R = (R1, . . . , Rk) of relation sym-
bols, each of a fixed arity. An instance I over R is a sequence
(RI

1, . . . , R
I
k) such that each RI

i is a finite relation of the same
arity as Ri. We shall often use Ri to denote both the relation
symbol and the relation RI

i that interprets it. Given a tuple t,
we denote by R(t) the association between t and the relation R
where it occurs. Let S = (S1, . . . , Sn) and T = (T1, . . . , Tm)
be two disjoint schemas. We refer to S as the source schema and
to T as the target schema. We write (S,T) to denote the schema
(S1, . . . , Sn, T1, . . . , Tm). Instances over S will be called source
instances, while instances over T will be called target instances. If
I is an instance over S and J is an instance over T, then we write
(I, J) to denote the instance K over (S,T) such that SK

i = SI
i

and TK
j = T J

j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

A source-to-target tuple-generating dependency (tgd) is a formula
of the form ∀x(ϕ(x) → ∃yψ(x,y)), where ϕ(x) is a conjunc-
tion of atomic formulas over the source schema S, and ψ(x,y) is
a conjunction of atomic formulas over the target schema T. Sim-
ilarly, a target-to-source tgd is a formula of the form ∀x(α(x) →
∃yβ(x,y)), where α(x) is a conjunction of atomic formulas over
the target schema T, and β(x,y) is a conjunction of atomic formu-
las over the target schema S. For example, if S contains a binary
relation E, and T contains a binary relation H , then the source-
to-target tgd ∀x∀y∀z(E(x, z) ∧ E(z, y) → H(x, y)) transforms
pairs of nodes connected via an E-path of length 2 to H-edges.
Similarly, ∀x∀y(H(x, y) → ∃z(E(x, z) ∧ E(z, y))) is a target-
to-source tgd that transforms H-edges to pairs of nodes connected
via an E-path of length 2.

A target tgd is a formula of the form ∀x(ϕ(x) → ∃yχ(x,y)),
where both ϕ(x) and χ(x,y) are conjunctions of atomic formu-
las over the target schema T. A target equality-generating depen-
dency (egd) is a formula of the form ∀x(ϕ(x) → z1 = z2), where
ϕ(x) is a conjunction of atomic formulas over T and z1, z2 are
among the variables in x. Clearly, functional dependencies on T

are special cases of target egds. In what follows, we will often
drop the universal quantifiers in front of a dependency, and implic-
itly assume such quantification. However, we will write down all
existential quantifiers.

Peer Data Exchange Settings and Solutions

DEFINITION 1. A peer data exchange (PDE) setting is a quin-
tuple P = (S,T,Σst,Σts,Σt) such that:

• S is a source schema and T is a target schema;

• Σst is a finite set of source-to-target tgds;

• Σts is a finite set of target-to-source tgds;

I J

S T

Σst

Σts

Authoritative
Source Peer

Receiving
Target Peer

Can J be extended to a target instance J’
such that J’ satisfies Σt and (I,J’) satisfies
Σst ∪ Σts ?

Σt

J’

Figure 1: Illustration of Peer Data Exchange

• Σt is a finite set of target tgds and target egds.

Given a source instance I and a target instance J of P , it may be the
case that (I, J) violates the constraints of P . Thus, we will be in-
terested in finding instances, which we call solutions, that satisfy all
constraints of P . In peer data exchange the target peer is assumed
to be willing to accept data from an authoritative, trusted source.
Therefore, we will consider solutions where the instance of the tar-
get peer may be augmented with data from the source. However,
the target peer does not have the authority or ability to interfere
with the source’s data, which therefore remain unchanged.

DEFINITION 2. Let P = (S,T,Σst,Σts,Σt) be a PDE set-
ting, I a source instance, and J a target instance. We say that a
target instance J ′ is a solution for (I, J) in P if

• J ⊆ J ′;

• (I, J ′) |= Σst ∪ Σts;

• J ′ |= Σt.

This definition generalizes the notion of solution in data exchange
settings [7] in two ways. The first and more significant one is the
presence of the target-to-source dependencies Σts ; the second is
that the input has a target instance J , in addition to the source in-
stance I . Thus, data exchange settings are a special case of PDE
settings where both Σts and J are empty.

As noted earlier, tuple-generating dependencies are GLAV con-
straints that generalize both LAV and GAV constraints in data in-
tegration systems. Our PDE framework, with target-to-source de-
pendencies, is able to capture GLAV with exact views in data in-
tegration systems [15]. The following source-to-target dependency
φ(x) → ∃y ψ(x,y) and target-to-source dependency ψ(x,y) →
φ(x), where φ and ψ can be interpreted as queries over the source
and target respectively, assert that the query over the target contains
exactly those tuples from the query over the source. It is easy to see
that in the case where φ is a single source relation, this expresses
LAV with exact views in data integration.

Although the definition of PDE setting involves two peers, it can
be easily extended to a family of source peers exchanging data
with the same target peer. Assume that S1, . . . ,Sn,T are pair-
wise disjoint schemas. A multi-PDE setting is a family P1 =
(S1,T,Σs1t,Σts1

,Σt1), . . ., Pn = (Sn,T,Σsnt,Σtsn
,Σtn

) of
PDE settings. Given instances I1, . . . , In of the source peers, and
an instance J of the target peer, a solution J ′ for ((I1, . . . , In), J)
in P1, . . . ,Pn is a target instance J ′ containing J such that J ′ is a
solution for (Im, J) in Pm, for every m ≤ n. Note that, in defin-
ing multi-PDE settings, we could have allowed constraints on the

sources S1, . . . ,Sn, as well as constraints between these sources.
This, however, would have no impact on which target instances are
solutions, as the source instances have to remain unchanged.

It is clear that J ′ is a solution for ((I1, . . . , In), J) in P1, . . . ,Pn

if and only if J ′ is a solution for (I1 ∪ · · · ∪ In, J) in the PDE
setting (S1∪· · ·∪Sn,T,Σst,Σts,Σt), where Σst = ∪n

m=1Σsmt,
Σts = ∪n

m=1Σtsm
, and Σt = ∪n

m=1Σtm
. Thus, every multi-PDE

setting can be simulated by a single PDE that has the same space
of solutions as the original multi-PDE.

Algorithmic Problems in PDE Settings

Given a source instance I and a target instance J of a PDE setting
P , a solution for (I, J) may or may not exist; furthermore, if a
solution exists, it need not be unique up to isomorphism.

EXAMPLE 1. Let P be a PDE setting in which the source sche-
ma and the target schema consist of the binary relation symbols E
and H respectively, and the constraints are as follows:

Σst : E(x, z) ∧ E(z, y) → H(x, y)
Σts : H(x, y) → E(x, y)
Σt : ∅ (no target constraints)

If I = {E(a, b), E(b, c)} and J = ∅, then no solution for (I, J)
exists. If I = {E(a, a)} and J = ∅, then J ′ = {H(a, a)} is the
only solution for (I, J). If I = {E(a, b), E(b, c), E(a, c)} and
J = ∅, then both {H(a, c)} and {H(a, b), H(b, c), H(a, c)} are
solutions for (I, J).

This example illustrates a striking difference between data exchan-
ge settings and peer data exchange settings. Specifically, if a data
exchange setting has no target constraints (Σt = ∅), then, for ev-
ery source instance I , a solution always exists. As seen above,
however, this need not be true for peer data exchange settings with
Σt = ∅ and J = ∅. We will study in depth the problem of deciding
the existence of a solution in a peer data exchange setting, and we
will unveil deeper differences between data exchange and peer data
exchange.

DEFINITION 3. Assume that P is a PDE setting. The existence-
of-solutions problem for P , denoted by SOL(P), is the following
decision problem: given a source instance I and a target instance
J , is there a solution J ′ for (I, J) in P?

The other basic algorithmic problem that we will study is that of ob-
taining the certain answers of target queries in PDE settings. The
definition of certain answers we use is an adaptation of the standard
concept used in incomplete databases [12, 21] and information inte-
gration [1, 15]; in our context, this means that the set of “possible”
worlds is the set of all solutions for a given source instance and a
given target instance in a PDE setting.

DEFINITION 4. Let P be a PDE setting and q a query over the
target schema of P . Let also I be a source instance and J a target
instance. We say that a tuple t is a certain answer of q on (I, J),
denoted t ∈ certain(q, (I, J)), if J ′ |= q[t], for every solution
J ′ for (I, J) in P . We write certain(q, (I, J)) to denote the set
of all certain answers of q on (I, J). If q is a Boolean query, then
certain(q, (I, J)) = true if J ′ |= q, for every solution J ′ for
(I, J) in P; otherwise, certain(q, (I, J)) = false. Note that if q
is a Boolean query, then computing the certain answers of q in the
PDE setting P is a decision problem.

Consider the PDE setting in Example 1. If q is the Boolean query
∃x∃y∃z(H(x, y) ∧ H(y, z)), then certain(q, ({E(a, a)}, ∅)) =
true, while certain(q, ({E(a, b), E(b, c), E(a, c)}, ∅)) = false.

Relationship to PDMS

Peer data management systems (PDMS), formalized and studied by
Halevy et al. [14], constitute a decentralized, extensible architec-
ture in which peers interact with each other in sharing and exchang-
ing data. As mentioned in the Introduction, every PDE setting is a
special case of a PDMS. In this section, we describe the relation-
ship between peer data exchange settings and peer data manage-
ment systems in precise terms.

According to [14], a PDMS N with peers P1, . . . , Pn has the fol-
lowing characteristics.

• Each peer Pi has its own schema which is disjoint from those of
the other peers, but visible to all other peers.

• The schema of each peer can be a mediated global schema over a
set of local sources that are accessible only by that peer (thus each
peer can be a data integration system). The relationship between
the peer and its local sources is specified using storage descriptions
that are containment descriptions R ⊆ Q or equality descriptions
R = Q, where R is one of the relations in the schema of the peer
and Q is a query over the local sources of the peer.

• The relationship between peers is specified using three types of
peer mappings: inclusion mappings, equality mappings, and defi-
nitional mappings, where

1. Each inclusion mapping is a containmentQ1(A1) ⊆ Q2(A2)
between conjunctive queries Q1(A1) and Q2(A2), where
A1 and A2 are subsets of the set of all relations in the sche-
mas of the peers.

2. Each equality mapping is an equality Q1(A1) = Q2(A2)
between conjunctive queries Q1(A1) and Q2(A2) as above.

3. Each definitional mapping is a Datalog program with rules
having single relations from the schemas of the peers in both
the head and the body of each rule.

In the terminology of [14], a data instance D of a PDMS N is
an assignment of values to both the local sources of each peer and
to the relations of the schema of each peer. A data instance G is
consistent with N and D if G and D satisfy all the specifications
given by the storage descriptions and the peer mappings of N (see
[14] for the precise definition). This concept captures what it means
for a data instance G to be a solution for a given data instance D in
the PDMS N .

We now have all the necessary background to spell out the rela-
tionship between peer data exchange settings and peer data man-
agement systems. Let P = (S,T,Σst,Σts,Σt) be a PDE setting.
We claim that there is a PDMS N (P) with two peers S and T such
that the solutions for a given instance in P essentially coincide with
the consistent data instances for a corresponding data instance in
N (P). The specification of the PDMS N (P) is as follows:

• The peer mappings of N (P) are given by the dependencies in
Σst ∪Σts ∪Σt. In particular, N (P) has no definitional mappings.

• For every relation symbol Si in the schema of S, there is a local
relation symbol S∗

i of the same arity as Si, and an equality storage
description S∗

i = Si.

• For every relation symbol Tj in the schema of T, there is a
local relation symbol T ∗

j of the same arity as Tj , and a containment
storage description T ∗

j ⊆ Tj .

Note that the schemas of the local sources of S and T in N (P) are
replicas of the schemas of S and T. Intuitively, the equality stor-
age descriptions for S capture the fact that in peer data exchange
the data of the source peer remain unchanged, whereas the contain-
ment storage descriptions for T capture the fact that in peer data
exchange the data of the target peer may be augmented with new
data. Let I be a source instance and let J be a target instance of P .
It is now easy to verify that K is a solution for (I, J) in P if and
only if (I∗, I), (J∗,K) is a consistent data instance for the data
instance (I∗, J∗) of N (P), where I∗ and J∗ are copies of I and J
over the local sources of S and T.

In conclusion, every PDE setting can be viewed as a PDMS with
equality storage descriptions S∗

i = Si for the source peer, contain-
ment storage descriptions T ∗

j ⊆ Tj for the target peer, and peer
mappings given by the constraints of the PDE.

There are peer data management systems for which testing for the
existence of solutions and computing the certain answers of con-
junctive queries are undecidable problems as well [14]. We will
show that the state of affairs is quite different for peer data ex-
change settings.

3. Complexity
Let P = (S,T,Σst,Σts,Σt) be a fixed peer data exchange set-
ting. In this section, we show that the existence-of-solutions prob-
lem for P is in NP, where Σst and Σts are arbitrary finite sets of
source-to-target tgds and target-to-source tgds, and Σt is assumed
to be the union of a finite set of target egds with a weakly acyclic
finite set of target tgds. For such settings, the data complexity of
the certain answers of monotone queries (in particular, unions of
conjunctive queries) is in coNP. We also show that there are PDE
settings with Σt = ∅ for which the existence-of-solutions problem
is NP-complete, and the data complexity of the certain answers of
conjunctive queries is coNP-complete.

These results about peer data exchange settings contrast sharply
both with results about peer data management systems and with re-
sults about data exchange settings. As mentioned earlier, there are
PDMS for which these problems are undecidable [14]. For data
exchange settings in which Σst is an arbitrary finite set of source-
to-target tgds and Σt is the union of a finite set of target egds with a
weakly acyclic finite set of target tgds (recall that in data exchange
settings there are no target-to-source tgds), these problems are solv-
able in polynomial time [7]. In fact, if Σt = ∅, then the existence-
of-solutions problem is trivial, as solutions always exists.

3.1 Upper Bound

The concept of a weakly acyclic set of target tgds was introduced
in [7] and used to show that the chase procedure terminates in poly-
nomial time on such sets of tgds. Intuitively, weak acyclicity is a
syntactic condition placed on sets of tgds to ensure that a chase step
does not use labeled nulls from an attribute to create new labeled
nulls in the same attribute. This ensures that the chase sequence is
finite.

DEFINITION 5. [7] (Weakly acyclic set of tgds) Let Σ be a set

of tgds over a fixed schema. Construct a directed graph, called the
dependency graph, as follows: (1) there is a node for every pair
(R, A) with R a relation symbol of the schema and A an attribute
of R; call such a pair (R, A) a position; (2) add edges as follows:
for every tgd φ(x) → ∃yψ(x,y) in Σ and for every x in x that
occurs in ψ:

• For every occurrence of x in φ in position (R, Ai):

1. for every occurrence of x in ψ in position (S, Bj), add
an edge (R,Ai) → (S,Bj) (if it does not already ex-
ist).

2. in addition, for every existentially quantified variable y
and for every occurrence of y in ψ in position (T , Ck),
add a special edge (R,Ai) → (T,Ck) (if it does not
already exists).

Note that there may be two edges in the same direction be-
tween two nodes but exactly one of the two edges is special.
Then Σ is weakly acyclic if the dependency graph has no cy-
cle going through a special edge.

It should be noted that weakly acyclic sets of tgds include as a spe-
cial case sets of full tgds, that is, tgds of the form ∀x(ϕ(x) →
ψ(x)) in which no existentially quantified variables occur in the
right-hand side. They also include acyclic sets of inclusion depen-
dencies as a special case.

To obtain the complexity upper bounds, we extend the chase pro-
cedure in [7] to what we call a solution-aware chase procedure that
chases an instance with tgds and with another given instance. This
procedures chases an instance K with a set of tgds and at the same
time uses values from a given instance K ′ (thought of as a “so-
lution”) that contains K and satisfies the tgds at hand. Instead of
creating labeled nulls to witness the existential variables of a tgd
during a chase step, a solution-aware chase step uses values from
the given “solution” K ′ to witness the existential variables. These
values are guaranteed to exist sinceK ′ containsK and satisfies the
tgds. Note that values from K ′ are used only when a chase step is
applied with a tgd that contains existential variables. The following
is the definition of solution-aware chase step and solution-aware
chase sequence.

DEFINITION 6. (Solution-aware chase step) Let K1 be an in-
stance.

(tgd) Let d be a tgd ∀x(φ(x) → ∃yψ(x,y)). Let K be an in-
stance that contains K1 such that K satisfies d. Let h be a
homomorphism from φ(x) to K1 such that there is no ex-
tension of h to a homomorphism h′ from φ(x) ∧ ψ(x,y)
to K1. We say that d can be applied to K1 with homomor-
phism h and solution K, or simply, d can be applied to K1

with homomorphism h if K is understood from context.

Let K2 be the union of K1 with the set of facts obtained by
taking the image of ψ under a homomorphism h′ where h′

is an extension of h such that each variable in y is assigned
a value in K and the image of the atoms of ψ under h′ are
atoms in K. We say that the result of applying d to K1 with

h and solution K is K2, and write K1

d,h,K
−→ K2. We drop

K and write K1

d,h
−→ K2 if K is understood from context.

(egd) Let d be an egd ∀x(φ(x) → (x1 = x2)). Let h be a homo-
morphism from φ(x) to K1 such that h(x1) 6= h(x2). We
say that d can be applied to K1 with homomorphism h. We
distinguish two cases.

• If both h(x1) and h(x2) are in Const then we say that
the result of applying d to K1 with h is “failure”, and

write K1

d,h
−→ ⊥.

• Otherwise, let K2 be K1 where we identify h(x1) and
h(x2) as follows: if one is a constant, then the labeled
null is replaced everywhere by the constant; if both are
labeled nulls, then one is replaced everywhere by the
other. We say that the result of applying d to K1 with h

is K2, and write K1

d,h
−→ K2.

DEFINITION 7. (Solution-aware chase) Let Σ be a set of tgds
and egds. LetK be an instance andK ′ be an instance that contains
K and satisfies the set of tgds in Σ.

• A solution-aware chase sequence of K with Σ and K ′ is
a sequence (finite or infinite) of solution-aware chase steps

Ki
di,hi−→ Ki+1, with i = 0, 1, ..., with K = K0 and di a

dependency in Σ.

• A finite solution-aware chase of K with Σ and K ′ is a finite

solution-aware chase sequence Ki
di,hi−→ Ki+1, 0 ≤ i ≤ m,

with the requirement that either (a) Km = ⊥ or (b) there
is no dependency di of Σ and there is no homomorphism hi

such that di can be applied toKm with hi. We say thatKm is
the result of the finite solution-aware chase. We refer to case
(a) as the case of a failing finite solution-aware chase and we
refer to case (b) as the case of a successful finite solution-
aware chase.

LEMMA 1. Let Σ be the union of a finite set of egds with a
weakly acyclic finite set of tgds on some schema. Then there exists
a polynomial p(x) having the following property: if K and K ′ are
instances such that K ′ contains K, and such that K ′ satisfies the
tgds in Σ, then the length of every solution-aware chase sequence
of K with Σ and K ′ is bounded by p(|K|), where |K| is the size of
K.

Using Lemma 1, we can show that whenever a solution for (I, J)
exists in a PDE in which Σt is the union of a finite set of egds with a
weakly acyclic finite set of tgds, then a “small” solution must exist,
where “small” means that its size is polynomially bounded by the
size of (I, J).

LEMMA 2. Let P = (S,T,Σst,Σts,Σt) be a PDE setting in
which Σt is the union of a finite set of egds with a weakly acyclic
finite set of tgds. Let I be a source instance and J be a target
instance. If there exists a solution J ′ for (I, J), then there exists a
solution J∗ for (I, J) that is contained in J ′ and has size bounded
by a polynomial in the size of (I, J).

Using Lemmas 1 and 2, we can easily derive the following result.

THEOREM 1. Let P = (S,T,Σst,Σts,Σt) be a PDE setting
in which Σt is the union of a finite set of egds with a weakly acyclic
finite set of tgds. The existence-of-solutions problem SOL(P) for
P is in NP.

PROOF. From Lemma 2, if there is a solution for (I, J), then
there is a solution (I, J∗) that is polynomial in the size of (I, J).
Checking that (I, J∗) |= Σst, (J∗, I) |= Σts and J∗ |= Σt can
be done in polynomial time in the size of (I, J) since the peer data
exchange is fixed.

By definition, a query q is monotone if it is preserved under the ad-
dition of tuples, that is, if t ∈ q(K) and K ⊆ K ′, then t ∈ q(K ′).
Clearly, unions of conjunctive queries are monotone queries.

THEOREM 2. Let P = (S,T,Σst,Σts,Σt) be a PDE setting
in which Σt is the union of a finite set of egds with a weakly acyclic
finite set of tgds. If q is a monotone query over T, then computing
the certain answers of q is in coNP.

PROOF. Let t be a tuple of arity k from I . To show that t 6∈
certain(q, (I, J)), it suffices to show that there is a solution J∗ that
is polynomial in the size of (I, J) and t 6∈ q(J∗). Since t 6∈
certain(q, (I, J)), there is a solution J ′ such that t 6∈ q(J ′). From
Lemma 2, it follows that there is a solution J∗ that is polynomial
in the size of (I, J) and J∗ is contained in J ′. Since q is monotone
and t 6∈ q(J ′), it follows that t 6∈ q(J∗).

3.2 Lower Bound

We show next that there are PDE settings with no target constraints
in which testing for the existence of solutions is NP-hard, and com-
puting the certain answers of target conjunctive queries is coNP-
hard. Although this result could be derived from [1, Theorem 5.1]
and [13, Theorem 8], we give a self-contained proof using a partic-
ularly simple reduction from the CLIQUE problem whose features
we will analyze later on.

THEOREM 3. There exists a peer data exchange setting P with
Σt = ∅ such that testing for the existence of solutions is a NP-
complete problem. Moreover, there is a Boolean conjunctive query
q such that the decision problem of computing the certain answers
of q in P is coNP-complete.

PROOF. (Sketch) From Theorem 1, we know that the problem
is in NP. The NP-hardness is established via a reduction from the
CLIQUE problem: given a graph G and a positive integer k, does
G contain a k-clique? As usual, a graph is a structure G = (V,E),
where V is a set of nodes and E ⊆ V 2 is a binary relation that is
symmetric and irreflexive (no self-loops).

Let P be the following peer data exchange setting. The source
schema S consists of three binary relations D, S and E, while the
target schema T consists of a single 4-ary relation P . There are no
target dependencies, that is, Σt = ∅. The constraints between S

and T are as follows:

Σst : D(x, y) → ∃z∃wP (x, z, y, w)

Σts : P (x, z, y, w) → E(z, w)
P (x, z, y, w) ∧ P (x, z′, y′, w′) → S(z, z′)

Given a graph G = (V,E) and a positive integer k, we con-
sider k distinct elements a1, . . . , ak, and form the source instance
I(G, k) = (D,S,E), where D = {(ai, aj) | 1 ≤ i ≤ k, 1 ≤
j ≤ k, i 6= j} is the inequality relation on {a1, . . . , ak} and
S = {(v, v) | v ∈ V } is the equality relation on the set V of
nodes of G. The target instance J is defined to be empty. Intu-
itively, the tgd in Σst associates each pair of elements (x, y) in D
with a pair of elements (z, w) through the relation P . The first tgd
in Σts asserts that (z, w) is an edge in E and the second tgd in Σts

asserts that an element in a1, . . . , ak cannot be associated with two
distinct nodes in G.

It is now easy to verify that G has a k-clique if and only if there is
a solution for (I(G, k), ∅) in P .

Let q be the Boolean query ∃xP (x, x, x, x). We use the same re-
duction above for the coNP-hardness of the certain answers of q
assuming that the k distinct elements are drawn from V , the node
set of G. If V contains less than k nodes, one could extend V to k
nodes. It is is easy to verify that G contains a k-clique if and only
if certain(q, (I(G, k), ∅)) = false.

In [14], it was shown that if in a PDMS all storage descriptions
are containment descriptions and all peer mappings are inclusion
mappings with an acyclic dependency graph, then the certain an-
swers of conjunctive queries are computable in polynomial time.
The dependency graph of a PDMS is the directed graph with nodes
the relations of the peers, and edges between two relations P and
R if there is an inclusion peer mapping Q1(A1) ⊆ Q2(A2) such
that P occurs in Q1(A1) and R occurs in Q2(A2). Note that the
PDE setting used in the reduction of Theorem 3 has inclusion peer
mappings with an acyclic dependency graph, yet the problem of
computing certain answers is coNP-hard. The jump in complex-
ity arises due to the fact that in PDE settings the source instance
can never change, which means that the constraints placed on stor-
age descriptions in the source are not containment descriptions, but
equality descriptions.

4. A Large Tractable Class
In this section, we identify syntactic conditions on PDE settings
with no target constraints that yield polynomial-time algorithms for
deciding the existence of solutions. As seen in the proof of Theo-
rem 3, even such strong topological conditions as the acyclicity of
the dependency graph of source and target relations cannot guar-
antee tractability of these problems. Instead, we consider different
conditions that are derived by taking a closer look at the existential
quantifiers in the constraints of the PDE setting.

DEFINITION 8. Let P = (S,T,Σst,Σts, ∅) be a PDE setting
with no target constraints.
• We say that the i-th position of a relation symbol T of T is
marked if Σst contains a source-to-target tgd

ϕ(x) → ∃yψ(x,y)

such that T (z1, . . . , zi, . . . , zn) is one of the conjuncts of ψ(x,y),
and zi is one of the existentially quantified variables y.

• We say that a variable z is marked in a target-to-source tgd

α(x) → ∃wβ(x,w)

of Σts if one of the following two holds:

1. z appears at a marked position of a conjunct of α(x)

2. z is one of the existentially quantified variables w.

Note that the two conditions in the definition of a marked variable
are mutually exclusive.

To illustrate the concepts of marked position and marked variable,
let us consider a PDE setting having the following constraints:

Σst : S(x1, x2) → ∃yT (x1, y)
Σts : T (x1, x2) → ∃wS(w, x2)

In this setting, the only marked position is the second position of
T , while the marked variables of the target-to-source dependency
are x2 and w.

Let us also consider the PDE setting in the proof of Theorem 3 used
in the reduction from the CLIQUE problem:

Σst : D(x, y) → ∃z∃wP (x, z, y, w)
Σts : P (x, z, y, w) → E(z, w)

P (x, z, y, w) ∧ P (x, z′, y′, w′) → S(z, z′)

In this setting, the marked positions are the second and the fourth
position of P . The marked variables of the first tgd in Σts are z
and w, and the marked variables for the second tgd in Σts are z, w,
z′, and w′.

We now introduce the class Ctract, which is the focus of this sec-
tion. Below, if α(x) → ∃wβ(x,w) is a tgd in Σts, we will refer
to α(x) as the left-hand side of the tgd, and to ∃wβ(x,w) as the
right-hand side of the tgd.

DEFINITION 9. Let P = (S,T,Σst,Σts, ∅) be a PDE setting
with no target constraints. We say that P ∈ Ctract if

1. For every tgd D in Σts, every marked variable of D appears
at most once in the left-hand side of D

and

2. One of the following two conditions holds:

2.1 The left-hand side of every tgd in Σts consists of exactly
one literal;

or

2.2. For every tgd D in Σts and for every pair of marked
variables x and y of D that appear together in a conjunct of
the right-hand side of D,

either

(a) x and y appear together in some conjunct of the left-hand
side of D

or

(b) x and y do not appear at all in the left-hand side of D.

Admittedly, the definition of the class Ctract is quite technical. We
arrived at it after carefully analyzing the causes of intractability in
numerous concrete PDE settings, such as the one used in the reduc-
tion from the CLIQUE problem. To convey some feeling for Ctract,
we should point out that it is a rather broad class that contains sev-
eral interesting families of PDE settings as subclasses.

Note that Ctract is, in effect, the union of two different classes:
the first is the class of PDE settings that satisfy conditions (1) and
(2.1), while the second is the class of PDE settings that satisfy con-
ditions (1) and (2.2). The first of these classes can be described as
the class of PDE settings P = (S,T,Σst,Σts, ∅) in which every
target-to-source tgd is has exactly one literal in its left-hand side
which has no repeated variables. Hence, this is the class of PDE
settings in which the target-to-source tgds are local-as-view (LAV)
dependencies, an important class in data integration [15].

The second class contains as a subclass the family of all PDE set-
tings P = (S,T,Σst,Σts, ∅) in which every source-to-target tgd

is a full tgd, which means that it is of the form ϕ(x) → ψ(x). In-
deed, if every source-to-target tgd is full, then the only marked vari-
ables are the ones that are existentially quantified in some target-to-
source tgd. If two such variables appear together in the right-hand
side of some target-to-source tgd D, then neither appears in the
left-hand side of D, hence condition (2.2) (b) is satisfied.

We are now ready to state the main result of this section.

THEOREM 4. Let P be a PDE setting in Ctract. Then, SOL(P),
the problem of testing for the existence of solutions is solvable in
polynomial time.

The proof of Theorem 4 uses properties of the chase procedure and
homomorphism techniques. An outline of this proof will be given
in the next section. In the remainder of this section, we derive
some corollaries and then show that, in a certain sense, Ctract is a
maximal class of tractable PDE settings.

COROLLARY 1. Let P = (S,T,Σst,Σts, ∅) be a PDE setting
with no target constraints. If Σst is a set of full dependencies, then
testing for the existence of solutions is solvable in polynomial time.

COROLLARY 2. Let P = (S,T,Σst,Σts, ∅) be a PDE setting
with no target constraints. If every target-to-source dependency of
Σts has exactly one literal on its left hand side which has no re-
peated variables, then testing for the existence of solutions is solv-
able in polynomial time.

We now show that the conditions defining Ctract are tight, in the
sense that minimal relaxations of them lead to intractability. Let us
consider again the PDE setting used in the proof of Theorem 3, for
which SOL(P) is NP-complete:

Σst : D(x, y) → ∃z∃wP (x, z, y, w)
Σts : P (x, z, y, w) → E(z, w)

P (x, z, y, w) ∧ P (x, z′, y′, w′) → S(z, z′)

As seen earlier, the marked variables of Σts are z and w (for the
first tgd), and z, w, z′, and w′ (for the second tgd). Not surpris-
ingly, this PDE setting does not belong to Ctract, since it violates
both condition (2.1) and condition (2.2) in Definition 9. These vi-
olations, however, are minimal. Indeed, condition (2.1) is violated
because just one of the target-to-source tgds has two conjuncts in its
left-hand side. Furthermore, condition (2.2) is violated because the
marked variables z and z′ appear in the only literal of the right-hand
side of the second target-to-source tgd, but do not appear together
in one of the conjuncts of the left-hand side; nonetheless, they are
at distance two of each other, as they are “connected” via the vari-
able x. Thus, the condition of being adjacent in the Gaifman graph
of the variables in the left-hand side of the tgd cannot be relaxed to
even being connected via a path of length two.

Next, we show that the intractability boundary is crossed if target
constraints are allowed. In the following two PDE settings, the
source-to-target and target-to-source constraints satisfy the condi-
tions of Ctract and yet the existence-of-solutions problem is NP-
hard for these settings.

Consider the following PDE setting:

Σst : D(x, y) → ∃z∃wP (x, z, y, w)
Σt : P (x, z, y, w) ∧ P (x, z′, y′, w′) → z = z′

Σts : P (x, z, y, w) → E(z, w)

The CLIQUE problem is reducible to the existence-of-solutions pro-
blem for this PDE setting, yet Σst and Σts satisfy conditions (1)
and (2.1) of Definition 9. Note that this setting contains a single
target egd.

Next, consider the following PDE setting:

Σst : S(z, w) → S′(z, w)
D(x, y) → ∃z∃wP (x, z, y, w)

Σt : P (x, z, y, w) ∧ P (x, z′, y′, w′) → S′(z, z′)
Σts : S′(z, z′) → S(z, z′)

P (x, z, y, w) → E(z, w).

Again, the CLIQUE problem is reducible to the existence-of-solu-
tions problem p for this PDE setting, yet Σst and Σts satisfy con-
ditions (1) and (2.1) of Definition 9. Note that the target constraints
contain a single full tgd.

Finally, we show that the intractability boundary is also crossed
if we allow disjunctions in the right-hand side of target-to-source
tgds. For this, consider the following PDE setting:

Σst : E(x, y) → ∃uC(x, u)
E(x, y) → E′(x, y)

Σts : E′(x, y) ∧ C(x, u) ∧ C(y, v) →
(R(u) ∧B(v)) ∨ (R(u) ∧G(v))∨
(B(u) ∧G(v)) ∨ (B(u) ∧R(v))∨
(G(u) ∧R(v)) ∨ (G(u) ∧B(v))

The source relations are E, R, B, and G, while the target relations
are E′ and C. Given a graph E, we construct a source instance
consisting of E, R = {r}, G = {g} and B = {b}; we also take
the target instance J to be empty. It easy to see thatE is 3-colorable
if and only if there is a solution for this PDE setting. Note that Σst

and Σts satisfy conditions (1) and (2.2) of Definition 9, and there
are no target constraints.

5. Outline of the Proof of Theorem 4
In this section, we outline the proof of the tractability result pre-
sented in Theorem 4 of the last section. We present an algorithm
that decides the existence-of-solutions problem for PDE settings in
the class Ctract, and outline why it is a correct polynomial-time
algorithm for this task.

The algorithm relies on the chase procedure and homomorphism
techniques.1 The chase procedure is used to construct a “repre-
sentative” instance, which we call Ican, that can be used to decide
the existence-of-solutions problem for a given (I, J) and a fixed
PDE setting P . The instance Ican is representative in the sense
that we show that SOL(P) can be reduced to the problem of check-
ing whether there is a homomorphism from Ican to I . Although
the latter problem is NP-complete in general, we will prove that it
is tractable when Ican is obtained by chasing the dependencies of
a PDE setting in the class Ctract.

The instance Ican is obtained by chasing the input instances (I, J)
with the dependencies Σst and Σts of the PDE setting (recall that
Σt is empty in Ctract). More precisely, let (I, Jcan) be the result of
chasing (I, J) with the source-to-target dependencies Σst. Then,
Ican is a source instance such that (Jcan, Ican) is the result of chas-
ing (Jcan, ∅) with the target-to-source constraints Σts. Notice that,
since Ican is obtained by chasing tgds, it may contain null values.
1From now on, we will assume the definition of the chase proce-
dure given in [8] (that is, the chase is no longer solution-aware).

The next theorem establishes the connection between SOL(P) and
the problem of checking whether there is a homomorphism be-
tween Ican and I .

THEOREM 5. Let P be a PDE setting such that for every tgd
D in Σts, every marked variable of D appears at most once in the
left-hand side of D. Let I be a source instance, and J be a target
instance. Let Jcan be such that (I, Jcan) is the result of chasing
(I, J) with Σst. Let Ican be such that (Jcan, Ican) is the result
of chasing (Jcan, ∅) with Σts. Then, there exists some solution for
(I, J) in P iff there is some homomorphism from Ican to I .

Before giving the proof of this theorem, we introduce some auxil-
iary results. The next lemma shows that, when there are no target-
to-source dependencies, the result of chasing (I, J) with the source-
to-target dependencies is an instance that has a homomorphism to
every solution. The proof, which we omit for lack of space, is a
straightforward adaptation of the proof of Theorem 3.3 of [8].

LEMMA 3. Let P be a PDE setting where Σst consists of tgds,
and Σt and Σts are empty. Let I be a source instance (which may
contain null values), and let J be a target instance. Let (I, Jcan)
be the result of chasing (I, J) with Σst. Then, there is a homo-
morphism from Jcan to Jsol, for every solution Jsol for (I, J) in
P .

The next lemma states that if there is a homomorphism between
two instances K and K ′, and we chase them with a set of tgds
to obtain instances L and L′, then there is some homomorphism
between L and L′. It follows easily from Lemma 3.4 of [8].

LEMMA 4. Let Σ be a set of tgds. Let K and K ′ be instances
(which may contain null values) such that there is a homomorphism
from K to K ′. Let L be the result of chasing K with Σ, and L′ be
the result of chasing K ′ with Σ. Then, there is a homomorphism
from L to L′.

In the proof of Theorem 5, we will construct an instance Jimg that
is a solution to the PDE setting. The instance Jimg is the result
of applying a homomorphism h to Jcan. To show that Jimg is
a solution for the PDE setting, we rely on the following property
which we shall show in Lemma 5: whenever a chase rule applies to
a set of tuples of Jimg , it also applies to the corresponding tuples
of Jcan. More precisely, let X be a set of tuples of Jcan and Y be
a set of tuples of Jimg such that h(X) = Y . Whenever Y satisfies
the left-hand side of a dependency D, so must X . It is easy to see
that this property does not hold in general. For example, consider
a tgd that maps paths of length two of the target to the source:
T1(x, y) ∧ T2(y, z) → S(x, z). Let X = {T1(A,B), T2(C,D)}
be a set of tuples of Jcan and let h be a homomorphism such that
h(A) = A, h(B) = B, h(C) = B and h(D) = D. Let Y =
h(X), that is Y = {T1(A,B), T2(B,D)}. Clearly, Y satisfies
the left-hand side of the tgd, but X does not. Note that variable y
appears in two literals of the tgd and the null valuesB andC appear
at the positions of y in the tuples of X . It is easy to show that null
values appear only at positions where there is a marked variable.
Therefore, the variable y is a marked variable that appears twice in
the left-hand side of the tgd. This, however, violates condition 1
of class Ctract (Definition 9). We show next that if condition 1 of
Ctract is satisfied, we get the desired property.

Ican I
′

3

4 2
I

Jcan Jsol

1

chase(Jcan,Σts)

chase(I ∪ J,Σst)

chase(Jsol,Σts)

solution for (I, J)

Figure 2: A diagram to illustrate Theorem 5

LEMMA 5. Let P be a PDE setting such that P satisfies condi-
tion 1 of the definition of Ctract. Consider a dependency of Σts of
the form ∀x αt(x) → ∃y βs(x,y). Let I be a source instance, and
J be a target instance. Let Jcan be such that (I, Jcan) is the re-
sult of chasing (I, J) with Σst. Let h be a function that preserves
constants. Let Jimg = h(Jcan). Assume that there are tuples
T1(c1), . . . , Tm(cm) in Jimg such that T1(c1), . . . , Tm(cm) |=
αt(x). Then, there are tuples T1(d1), . . . , Tm(dm) in Jcan such
that T1(d1), . . . , Tm(dm) |= αt(x), and h(di) = ci for 1 ≤ i ≤
m.

We are now ready to prove Theorem 5.

PROOF. (⇒) We will illustrate this direction of the proof with
the diagram of Figure 2. Let Jsol be a solution for (I, J) in P . Let
I ′ be a source instance such that (Jsol, I

′) is the result of chasing
(Jsol, ∅) with Σts. We will show that there is a homomorphism
from Ican to I (arrow 4 in the diagram), by composing a homo-
morphism from Ican to I ′ (arrow 2) with a homomorphism from I ′

to I (arrow 3).

Recall that Jcan is obtained by chasing only the dependencies of
Σst. Thus, by Lemma 3 above, there is a homomorphism from
Jcan to every solution. In particular, since Jsol is a solution, there
is a homomorphism from Jcan to Jsol (arrow 1 of the diagram).
By Lemma 4, there is a homomorphism from Ican to I ′ (arrow 2
of the diagram). Since (Jsol, I

′) is the result of chasing (Jsol, ∅)
with Σts only, by Lemma 3, there is a homomorphism from I ′ to I
(arrow 3 in the diagram).

(⇐) Let h be a homomorphism from Ican to I . We shall construct
an instance Jimg and show that Jimg is a solution for (I, J) in P .
We define Jimg as the result of applying the following function hJ

to Jcan:

• hJ(x) = h(x) if x ∈ Dom(Ican) ∩Dom(Jcan)

• hJ(x) = x if x ∈ Dom(Jcan) −Dom(Ican)

where Dom(Ican) and Dom(Jcan) denote the active domain of
Ican and Jcan, respectively. In order to show that Jimg is a solution
for (I, J) in P , we will show that that J ⊆ Jimg , (I, Jimg) |= Σst,
and (Jimg, I) |= Σts.

Since (I, Jcan) is obtained by chasing (I, J) with Σst, we have
that J ⊆ Jcan. Since J is an instance without null values, and hJ

preserves constants, hJ(J) = J . Therefore, J ⊆ Jimg .

Algorithm ExistsSolutionP (I, J) : boolean
Let Jcan be such that (I, Jcan) is the result of
chasing (I, J) with Σst.

Let Ican be such that (Jcan, Ican) is the result of
chasing (Jcan, ∅) with Σts.

for each block IB of Ican do
if there is no homomorphism from IB to I then

return false
end if

end for
return true

Figure 3: Algorithm ExistsSolution

Consider a tgd of Σst of the form ∀x.φs(x) → ∃y.ψt(x,y). As-
sume that there is some c such that I |= φs(c). Notice that c is
a vector of constants from Dom(I), since I is an instance with-
out null values. Since (I, Jcan) is the result of chasing (I, J) with
Σst, we have that (I, Jcan) |= Σst. Therefore, Jcan |= ψt(c,d),
for some d. Since Jimg = hJ(Jcan), hJ is a homomorphism from
Jcan to Jimg . Since conjunctive queries are preserved under homo-
morphisms, hJ(Jcan) |= ψt(hJ(c), hJ(d)). Since hJ preserves
constants, hJ(c) = c. Thus, Jimg |= ψt(c, e), for some e. We
conclude that (I, Jimg) |= Σst.

Consider a tgd of Σts of the form ∀x αt(x) → ∃y βs(x,y).
Assume that there is some c in Dom(Jimg) such that Jimg |=
αt(c). By Lemma 5, it follows that Jcan |= αt(d), for some d

in Dom(Jcan) where c = h(d). Since Ican is obtained from the
chase of (Jcan, ∅) with Σts, we have that (Jcan, Ican) |= Σts.
Thus, there is some e such that Ican |= βs(d, e). Since h is a ho-
momorphism from Ican to I , and conjunctive queries are preserved
under homomorphisms, it is the case that I |= βs(h(d), h(e)).
Since c = h(d), we have that I |= βs(c, f), for some f . There-
fore, (Jimg, I) |= Σts.

Since J ⊆ Jimg , (I, Jimg) |= Σst, and (Jimg, I) |= Σts, we
conclude that Jimg is a solution for (I, J) in P .

We now present the algorithm ExistsSolutionP (I, J) (shown
in Figure 3) which decides whether there is a solution for (I, J)
in the PDE setting P . The algorithm first partitions Ican into a set
of instances that we call blocks. Then, it checks whether there is a
homomorphism from each block of Ican to I . The notion of block
is adapted from [9] and defined as follows.

DEFINITION 10. Let K be an instance. The graph of the nulls
ofK is an undirected graph in which: (1) the nodes are all the nulls
ofK, and (2) there is an edge between two nulls whenever the nulls
appear together in some tuple of K.

We say thatKB is a block of tuples ofK ifKB is a maximal subset
of K that satisfies one of the following conditions: (1) there exists
a connected component B in the graph of the nulls of K such that
every tuple of KB has some null value from B; or (2) there are no
null values in KB.

The correctness of the algorithm follows from the next proposition
and Theorem 5.

PROPOSITION 1. There is a homomorphism from Ican to I if
and only if there exists a homomorphism from IB to I for every
block IB of Ican.

In order to show that the algorithm runs in polynomial time for PDE
settings of class Ctract, we must prove that the problem of check-
ing the existence of a homomorphism from each block of Ican to
I is in P . We prove this by showing that every block of Ican has
a constant number of null values. If there are source-to-target de-
pendencies only, the result follows easily. Although the result still
holds in the presence of target-to-source tgds, the proof is much
more involved (Theorem 6 next). The polynomial running time of
the algorithm follows from the fact that the problem of checking for
the existence of a homomorphism from an instance with a constant
number of null values to an arbitrary instance is tractable.

THEOREM 6. Let P be a PDE setting that satisfies condition
2 of the definition of Ctract. Let I be a source instance, and J be
a target instance. Let Jcan be such that (I, Jcan) is the result of
chasing (I, J) with Σst. Let Ican be such that (Jcan, Ican) is the
result of chasing (Jcan, ∅) with Σts. Then, every block of tuples of
Ican has a constant number of null values.

Note that we only assume one of the two conditions of the defini-
tion of Ctract (condition 2). In turn, condition 2 is split into two
subconditions: 2.1 and 2.2. The proof of Theorem 6 consists of
two parts. In the first, we assume subcondition 2.1, and show that
every block of Ican has a constant number of null values. In the
second part, we do the same assuming subcondition 2.2.

The next lemma will be used in the first part of the proof of Theo-
rem 6. It states that, assuming that the PDE satisfies subcondition
2.1, every block of Ican is the result of chasing exactly one block
of Jcan. The proof is by induction in the size of the blocks of Ican.

LEMMA 6. Let P = (S,T,Σst,Σts,Σt) be a PDE setting
such that P satisfies condition 2.1 of the definition of Ctract. Let I
be a source instance, and J be a target instance. Let Jcan be such
that (I, Jcan) is the result of chasing (I, J) with Σst. Let Ican be
such that (Jcan, Ican) is the result of chasing (Jcan, ∅) with Σts.
Let IB be a block of Ican. Then, there exists a block of tuples JB of
Jcan such that IB is the result of chasing JB with Σts.

PROOF. Base case. Assume that IB has exactly one tuple S(c).
Since every dependency of Σts has exactly one literal on the left-
hand side, S(c) is the result of chasing exactly one tuple of Jcan.

Inductive step. Let S(c) be a tuple of IB. Let I ′B = IB −{S(c)}.
By inductive hypothesis, every tuple of I ′B is in the result of chasing
some block JB of Jcan. Since IB is a block of tuples and S(c) ∈
IB, there is some tuple S′(c′) in I ′B such that S(c) and S′(c′) share
some null value w.

Assume that w is a null value from V ar(Jcan). Since every de-
pendency of Σts has exactly one literal on the left-hand side, S(c)
is the result of chasing exactly one tuple T (d) of Jcan. Similarly,
S′(c′) is the result of chasing exactly one tuple T ′(d′) of Jcan.
Since w appears in c and c′, and w is a null from Jcan, w occurs
in d and d′. Since S′(c′) is in I ′B, T ′(d′) is in JB. Thus, T (d) is
also in JB. Consequently, IB is the result of chasing JB with Σts.

Assume that w is a null value such that w 6∈ V ar(Jcan). There-
fore, w is a null that is newly created during the chase of Jcan with

Σts. That is, w is created due to an existentially-quantified vari-
able of a tgd of Σts. Since every dependency of Σts has exactly
one literal on the left-hand side, S(c) and S ′(c′) are in the result
of chasing exactly one tuple T (d) of Jcan. Since S′(c′) is in I ′B,
T (d) is in JB. Consequently, IB is the result of chasing JB with
Σts.

The next two lemmas will be used in the second part of the proof
of Theorem 6 (i.e., assuming that the PDE satisfies subcondition
2.2). Recall that the null values of Ican may be created during the
chase of the dependencies of either Σst or Σts. All the null values
that are created during the chase of dependencies of Σst appear in
Jcan. The following lemma states that, for every block IB of Ican,
the null values of IB that were created during the chase of Σst not
only appear in Jcan but they also come from exactly one block of
Jcan. The proof is by induction in the size of the blocks of Ican.

LEMMA 7. Let P = (S,T,Σst,Σts,Σt) be a PDE setting
such that P satisfies condition 2.2 of the definition of Ctract. Let I
be a source instance, and J be a target instance. Let Jcan be such
that (I, Jcan) is the result of chasing (I, J) with Σst. Let Ican be
such that (Jcan, Ican) is the result of chasing (Jcan, ∅) with Σts.
Let IB be a block of Ican. Then, there exists a block of tuples JB
of Jcan such that for every null value w in V ar(IB)∩V ar(Jcan),
w ∈ V ar(JB).

PROOF. Base case. Assume that IB has exactly one tuple S(c).
Assume that there are null values w and z in S(c) such that w and
z appear in Jcan. Let D be the dependency of Σts such that S(c)
is the result of chasing some tuples T1(d1), . . . , Tm(dm) of Jcan

with D. Let h be a homomorphism from T1(x1), . . . , Tm(xm)
to T1(d1), . . . , Tm(dm). Let xw and xz be variables such that
h(xw) = w and h(xz) = z. Since there are null values at the
position of xw and xz in Jcan, xw and xz are marked variables in
D. Since w and z appear in S(c), xw and xz appear together in a
literal of the right-hand side of D. Since D satisfies condition 2.2
of Ctract, xz and xw appear together in some literal Ti(x) of the
left-hand side of D. Thus, w and z appear together in some tuple
Ti(di) of Jcan. Therefore, w and z belong to the same block of
Jcan.

Inductive step. Let S(c) be a tuple of IB. Let I ′B = IB −{S(c)}.
By inductive hypothesis, there exists a block JB of Jcan such that
every null value of V ar(I ′B)∩V ar(Jcan) is in V ar(JB). Assume
that there is some null value in S(c). By definition of block, there
is some tuple S′(c′) in I ′B such that S(c) and S′(c′) share some
null value w.

Assume that w does not appear in Jcan. Let D be the dependency
of Σts such that S(c) is the result of chasing some tuples of Jcan

with D. Since w does not occur in Jcan, it is at a position of c

that corresponds to a marked variable which does not appear in the
left-hand side of D (i.e., an existentially-quantified variable of D).
Since P satisfies condition 2.2 of the definition of Ctract, none of
the nulls of S(c) correspond to marked variables that appear on the
left-hand side of D. Thus, none of the nulls of S(c) are in Jcan,
and we are done.

Assume that w appears in Jcan. Since w appears in S′(c′), w is in
V ar(JB). Assume that there is some null value z fromDom(Jcan)
such that z occurs in S(c) and z is distinct from w. We must prove
now that z appears in V ar(JB). Let D be the dependency of Σts

such that S(c) is the result of chasing tuples T1(d1), . . . , Tm(dm)
of Jcan with D, for some d1, . . . ,dm. Let h be a homomorphism
from T1(x1), . . . , Tm(xm) to T1(d1), . . . , Tm(dm). Let xw and
xz be variables such that h(xw) = w and h(xz) = z. Since there
are null values at the position of xw and xz in Jcan, xw and xz

are marked variables in D. Since w and z appear in S(c), xw and
xz appear together in a literal of the right-hand side of D. Since
D satisfies condition 2.2 of Ctract, xz and xw appear together in
some literal Ti(x) of the left-hand side of D. Thus, w and z ap-
pear together in some tuple Ti(di) of Jcan. Since w ∈ V ar(JB),
Ti(di) is in JB. Thus, z appears in JB.

The following lemma states that, if the PDE satisfies condition 2.2
of Ctract, then the null values of each block come from the chase
of either tgds of Σst or Σts, but not both.

LEMMA 8. Let P be a PDE setting such that P satisfies condi-
tion 2.2 of the definition of Ctract. Let I be a source instance, and
J be a target instance. Let Jcan be such that (I, Jcan) is the result
of chasing (I, J) with Σst. Let Ican be such that (Jcan, Ican) is
the result of chasing (Jcan, ∅) with Σts. Then, for every block of
tuples IB of Ican, exactly one of the following holds:

• all the null values of IB are in Jcan

• none of the null values of IB are in Jcan

PROOF. Assume that some null value of IB is from V ar(Jcan).
Assume that IB has some null values w and z such that w 6∈
V ar(Jcan) and z ∈ V ar(Jcan). By definition of block, there
is a connected component B of the graph of the nulls of Ican such
that z andw are nodes of B. Thus, there are null valuesw′ and z′ in
B such that w′ 6∈ V ar(Jcan), z′ ∈ V ar(Jcan), and w′ and z′ are
adjacent in B. Therefore, w′ and z′ appear together in some tuple
S(c) of Ican. Let D be the dependency of Σts that, when chased,
causes the addition of S(c) to Ican. Since z′ is in V ar(Jcan), it is
at a position of c that corresponds to a marked variable that appears
in the left-hand side ofD. Since w′ is not in Jcan, it is at a position
of c that corresponds to a marked variable which does not appear
in the left-hand side of D (i.e., an existentially-quantified variable
of D). Thus, P violates condition 2.2 of the definition of Ctract;
contradiction.

We are now ready to prove Theorem 6. First, we claim that JB

has a constant number of tuples. Since I is an instance without
null values, all the null values of JB are created when chasing ex-
actly one dependency of Σst. That is, there is a rule D of the
form ∀x.φs(x) → ∃y.ψt(x,y) such that all tuples of JB are in
ψt(c,d), for some c and d. The size of ψt depends on the size
of the dependency (which is assumed to be constant). Therefore,
there is a constant number of tuples in JB.

Let IB be a block of tuples of Ican. Assume that P satisfies con-
dition 2.1 of the definition of Ctract. By Lemma 6, there exists a
block of tuples JB of Jcan such that IB is the result of chasing JB
with Σts. Since JB has a constant number of tuples and IB is the
result of chasing JB with Σts, IB has a constant number of tuples.
Consequently, IB has a constant number of null values.

Now, assume that P satisfies condition 2.2 of the definition of
Ctract. First, assume that none of the null values of IB are from
V ar(Jcan). Then, all the null values of IB are created due to

existentially-quantified variables of dependencies of Σts. Since
each step of the chase creates new null values for the existentially-
quantified variables, all the tuples of IB are created when chasing
exactly one dependency of Σts. That is, there is a rule D of the
form ∀x αt(x) → ∃y βs(x,y) such that all tuples of IB are in
βs(c,d). The size of βs depends on the size of the dependency
(which is assumed to be constant). Therefore, there is a constant
number of tuples in IB. Consequently, there is a constant number
of null values in IB. Second, assume that IB contains some null
value from V ar(Jcan). Let N be the set of null values that appear
in IB and in Jcan. By Lemma 7, there exists a block of tuples JB of
Jcan such that every null value of N appears in JB. Since JB has a
constant number of tuples, N has a constant number of null values.
Since IB contains some null value from V ar(Jcan), by Lemma 8,
V ar(IB) = N .

6. Conclusions
We have introduced a framework for data sharing among indepen-
dent peers which is a generalization of data exchange and a spe-
cial case of peer data management. Peer data exchange models a
scenario in which a target peer receives data from an autonomous
source and has no authority to modify the data of the source peer.
Nonetheless, the target peer may specify what data it is willing
to receive, and the exchange makes use of source-to-target and
target-to-source schema mappings. Within this conceptually sim-
ple yet powerful framework, we have shown that the existence-
of-solutions problem is NP-complete. We have also explored the
boundary between tractability and intractability, and identified a
broad class of PDE settings for which the existence of solutions
can be tested in polynomial time. We plan to further delineate this
boundary and also investigate tractable extensions of Ctract that in-
clude target constraints.

We have also shown that the problem of obtaining certain answers
in peer data exchange is coNP-complete for unions of conjunctive
queries. This is in contrast to peer data management, where it is
undecidable; and to data exchange, where it is tractable. We plan to
investigate the complexity of computing certain answers for PDE
settings in Ctract and to find classes of PDE settings with target
constraints for which the problem of obtaining certain answers is
tractable. Finally, we wish to explore alternative semantics when
there is no solution. A semantics for query answering based on the
semantics of repairs has been proposed [5]. However, the boundary
between tractability and intractability for this semantics remains
largely unexplored.

7. References
[1] S. Abiteboul and O. M. Duschka. Complexity of answering

queries using materialized views. In PODS, pages 254–263,
1998.

[2] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query
answers in inconsistent databases. In PODS, pages 68–79,
1999.

[3] C. Beeri and M. Vardi. A proof procedure for data
dependencies. Journal of the ACM, 31(4):718–741, 1984.

[4] P. Bernstein, F. Giunchiglia, A. Kementsietsidis,
J. Mylopoulos, L. Serafini, and I. Zaihrayeu. Data
management for Peer-to-Peer computing: A vision. In
WebDB, pages 89–94, 2002.

[5] L. Bertossi and L. Bravo. Query answering in peer-to-peer
data exchange systems. In EDBT Workshop on Peer-to-Peer
Computing and Databases, 2004.

[6] D. Calvanese, G. D. Giacomo, M. Lenzerini, and R. Rosati.
Logical foundations of peer-to-peer data integration. In
PODS, pages 241–251, 2004.

[7] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: Semantics and query answering. In ICDT, pages
207–224, 2003.

[8] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: Semantics and query answering. To appear in
Theoretical Computer Science. In press., 2005.

[9] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting
to the core. In PODS, pages 90–101, 2003. To appear in
TODS.

[10] E. Franconi, G. Kuper, A. Lopatenko, and L. Serafini. A
robust logical and computational characterisation of
peer-to-peer database systems. In VLDB Workshop on
Databases, Information Systems and Peer-to-Peer
Computing, 2003.

[11] E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu. The
coDB robust peer-to-peer database system. In Symposium on
Advanced Database Systems, pages 382–393, 2004.

[12] G. Grahne. The Problem of Incomplete Information in
Relational Databases. Spring-Verlag, Berlin, 1991. Lecture
Notes in Computer Science, vol. 554.

[13] G. Grahne and A. Mendelzon. Tableau techniques for
querying information sources through global schemas. In
ICDT, pages 332–347, 1999.

[14] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema
mediation in peer data management systems. In ICDE, pages
505–518, 2003.

[15] M. Lenzerini. Data integration: A theoretical perspective. In
PODS, pages 233–246, 2002.

[16] C. Li. Raccoon: A peer-based system for data integration and
sharing. In ICDE, page 852, 2004. System Demonstration.

[17] C. O’Donovan, M. J. Martin, A. Gattiker, E. Gasteiger,
A. Bairoch, and R. Apweiler. High-quality protein
knowledge resource: Swiss-prot and trembl. Briefings in
Bioinformatics, 3(3):275–284, 2002.

[18] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and
R. Fagin. Translating web data. In VLDB, pages 598–609,
2002.

[19] I. Tatarinov. Semantic Data Sharing with a Peer Data
Management System. PhD thesis, University of Washington,
2004.

[20] I. Tatarinov and A. Y. Halevy. Efficient query reformulation
in peer data management systems. In SIGMOD, pages
539–550, 2004.

[21] R. van der Meyden. Logical approaches to incomplete
information: A survey. In J. Chomicki and G. Saake, editors,
Logics for Databases and Information Systems, pages
307–356. Kluwer, 1998.

