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Abstract

Building systems capable of optimal decision-making under uncertainty is one of the great

intellectual and engineering challenges of our time. Over the past century, two mathemat-

ical formulations of this problem have emerged as the main approaches to this problem:

the Frequentist and Bayesian approaches. In many cases of interest, these two approaches

naturally lead to two well-defined algorithmic problems: Optimization and Sampling. The

growth of the size of datasets over the last few years put a strain on the previously devel-

oped methods for optimization and sampling, and a new set of algorithms was developed

to adjust to the demands of modern machine learning and statistics. In this thesis, we re-

view this newly developed set of algorithms and their convergence analyses, emphasizing the

connection between the apparently separate algorithmic tasks of optimizing and sampling.
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Résumé

Construire des systèmes capables de prendre des décisions optimales dans l’incertitude est

l’un des grands défis intellectuels et techniques de notre temps. Au cours du siècle dernier,

deux formulations mathématiques de ce problème ont émergé comme les principales ap-

proches à ce problème: l’approche Fréquentiste et l’approche Bayésienne. Dans de nom-

breux cas d’intérêt, ces deux approches conduisent naturellement à deux problèmes algorith-

miques bien définis: l’optimisation et l’échantillonnage. La croissance de la taille des données

ces dernières années a mis à l’épreuve les méthodes d’optimisation et d’échantillonnage

développés précédemment, et un nouvel ensemble d’algorithmes a été développé pour s’adapter

aux exigences de l’apprentissage automatique et des statistiques modernes. Dans cette

thèse, nous révisons ces nouveaux algorithmes et leurs analyses de convergence, mettant

l’accent sur la connexion entre les tâches algorithmiques, à priori distinctes, d’optimisation

et d’échantillonnage.
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Chapter 1

Introduction

One of the great modern intellectual and engineering challenges is the development of proce-

dures and systems for optimal decision making under uncertainty. This is a deep problem, at

the intersection of philosophy, mathematics, and computer science. Over the past century,

two mathematical formulations of this problem, whose philosophical ramifications radically

differ, have emerged as the principal contenders: the Frequentist approach and the Bayesian

approach. For many problems of interest, the resulting decision making procedures from

these two approaches naturally lead to two well defined algorithmic problems: optimization

and sampling.

Perhaps the biggest promise of these systems is their ability to incorporate very large

amounts of data into the decision making process, allowing the gathering and use of evidence

on a scale unattainable before. A key ingredient in making such systems a reality is therefore

the development of large scale optimization and sampling algorithms. Recent years have seen

a flurry of research in this area, leading to the development of many new algorithms, with

provable and explicit convergence guarantees. In particular, a few themes have stood out

from this new literature compared to previous work.

First, the study of existing algorithms in continuous-time has led to many fruitful results.

On the one hand, going to continuous-time has revealed structures that are hidden in discrete-

time, leading to a better understanding of existing methods. On the other, it allowed the
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development of new algorithms that are discretizations of known continuous-time processes.

And perhaps just as importantly, it has allowed the use of well developed analytical tools in

the study of convergence of these algorithms, connecting it to well developed topics such as

optimal transport and dynamical systems.

Second, the use of controlled stochasticity has proven to be crucial in achieving state

of the art results. From a purely computational point of view, stochasticity is a necessity

when the size of the data is very large. If left uncontrolled however, it leads to a severe

deterioration in performance. Luckily, the use of control variates and importance sampling

strategies was provably shown to recover fast convergence rates using only cheap stochastic

estimates.

Lastly, while at first glance very different, new connections between optimization and

sampling were discovered and exploited, leading to a healthy flow of ideas between the two

traditionally separate research communities. This led to significant advances in both areas,

both on the algorithmic and analytical level.

The themes we have just discussed have led to a generic way of designing new optimiza-

tion and sampling algorithms. One starts with a known continuous-time process converging

to the desired solution. One then chooses a discretization method, giving rise to a determin-

istic algorithm. Finally, one replaces the quantities needed by the deterministic algorithm

by stochastic estimates, and attempts to design control variates and importance sampling

strategies to control the amount of stochasticity introduced.

In this thesis, I will attempt to carry out this construction starting from the two most

basic processes. For optimization, I will consider gradient flow in Euclidean space, which,

aside from being a very well studied process, has a very intuitive motivation behind its use

for optimization: at each infinitesimal time-step, we move along the direction of steepest

descent. For sampling, I will consider the Langevin diffusion process. Here, the initial

motivation was based purely on the fact that this is a well studied stochastic process, known

to converge to the desired solution. However, surprisingly, this process can be given the

interpretation of a gradient flow in the space of probability measures equipped with the

appropriate structures. We will explore this point of view as well, although most of the
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analyses will rely on coupling techniques more closely related to the probabilistic point of

view, since they yield the currently best known convergence rates in our setting.

I should note that attempting to cover all advances in this area is both out of my reach and

almost impossible to cover in a single thesis. Instead, I will focus on the case of unconstrained

optimization and sampling in Euclidean space, assuming strong convexity and smoothness

of the function to be minimized or the potential to be sampled from. This is the scenario

where the theory is most complete, and the results are the strongest. Furthermore, I will not

cover the accelerated form of either process, which is admittedly the most interesting case

since it achieves the oracle lower bound in optimization, and is known to converge faster in

sampling. Nevertheless, my aim will be to give a complete treatment for the case I consider.

The rest of this chapter is a very short summary of statistical decision theory and one

of its important applications: supervised learning. The goal of these summaries is to show

how optimization and sampling problems naturally arise, and how the finite sum structure

of the function to minimize or potential to sample from comes into existence for supervised

learning problems.

1.1 Statistical Decision Theory

Statistical decision theory is a mathematical framework to analyze and construct decision

rules under uncertainty. In the Frequentist approach, this only gives a framework for analysis:

decision rules are constructed independently and then analyzed using the framework. In the

Bayesian approach however, this framework automatically provides a method to construct

an optimal decision rule.

The theory starts with the following components:

� D: the set of possible observations.

� P : A subset of the set of probability measures on D.

� A: the set of available actions.

� L : P ×A → R: the loss function.
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� δ : D → A: the decision rule.

The reasoning behind having these components goes as follows. We assume the state of the

world can be summarized by a probability measure P ∈ P . We observe D 3 D ∼ P , and

we take action δ(D) with the aim of minimizing a loss function L(P, δ(D)) that measures

how good the action δ(D) is in a particular state of the world P . If we knew what the state

of the world P is, then we could ignore the observations, and simply pick the action that

minimizes our loss. The problem, of course, is that we do not know what the state of world

is. The way we deal with this uncertainty is what separates the Frequentist and the Bayesian

approaches.

1.1.1 Frequentist approach

As previously mentioned, the Frequentist approach does not directly attempt to solve the

problem of picking a decision rule. It simply states that given a decision rule δ, the appro-

priate measure of how good it is should be the frequentist risk:

RF (P, δ) := E
D∼P

[L(P, δ(D))] =

∫
D
L(P, δ(d)) dP (d)

In words, this means that to evaluate the effectiveness of a given decision rule, one should

look at its performance when averaged over all possible observations. One is then free to

come up with any decision rule, as long as one can show that it has small frequentist risk.

A consequence of using this criterion for evaluating decision rules is that in general there

is no single decision rule that minimizes the frequentist risk across all possible states of the

world. This approach can be succinctly summarized as: the state of the world P is fixed

(but unknown), the observations X are random. Therefore, one should average over the

observations to obtain a performance measure of a decision rule.

1.1.2 Bayesian approach

In contrast, the Bayesian approach asserts that the observations D are fixed (after we observe

them), and that the state of the world P is uncertain. To express our uncertainty, we should

therefore specify a probability measure on both the state of the world and the observations,
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that is, on the set D × P . This is usually specified as a distribution π on P referred to as

the prior, and a conditional distribution ρ(· | P ) on D referred to as the likelihood. Once

the observations are made, we should update our beliefs about the state of the world by

conditioning on the data to obtain the posterior distribution on P :

π(· | D) ∝ ρ(D | ·)π(·)

The appropriate measure of the quality of a decision rule is then given by the Bayesian

posterior risk:

RB(δ | D) := E
P∼π(·|D)

[L(P, δ(D))] =

∫
P
L(p, δ(D)) dπ(p | D)

As oppose to the Frequentist approach where an optimal rule need not exist in general,

an optimal rule for the Bayesian posterior risk can be easily characterized as:

δ∗(D) := arg min
δ

RB(δ | D)

1.2 Supervised Learning

One very important example of a decision that we might care about is that of predicting

a real random variable Y ∈ R given a random variable X ∈ Rd. This is usually known as

regression in statistics and supervised learning in machine learning. We will use the latter

for convenience.

Here we will frame this problem as a decision problem and embed it into the above

framework. We will see that the Frequentist and Bayesian approaches give quite different

methods, one leading to an optimization problem, and the other to a sampling problem

(followed by an optimization problem).

The supervised learning problem can be formulated as a decision problem as follows. The

observations (Xi, Yi)
N
i=1 are assumed to be in (Rd × R)N for some N ∈ N. The subset of

probability measures P is given by those that are the N -times product of a single probability

measure P on Rd × R. The set of available actions is given by F , a subset of the set of
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functions from Rd to R. Finally, the loss function is given by the generalization error:

L
(
P, δ((Xi, Yi)

N
i=1)
)

:= E
(X,Y )∼P

[l(f(X), Y )]

where f := δ((Xi, Yi)
N
i=1) and l : R2 → R is a given function that evaluates the quality of a

prediction.

1.2.1 Frequentist approach

The most widely used Frequentist decision rule for this problem is empirical risk minimiza-

tion, and is given by:

δF ((Xi, Yi)
N
i=1) := arg min

f∈F

{
1

N

N∑
i=1

l (f(Xi), Yi)

}
In words, the intractable expectation in the generalization error is replaced by an expectation

over the empirical measure coming from the data, which is then minimized. The theory

showing that this decision rule has good Frequentist properties is statistical learning theory,

and in particular, probably approximately correct (PAC) learning. This theory does not

directly show good Frequentist risk, but rather, gives a high-probability bound that when

using empirical risk minimization, the loss L will be as small as it can be within the class

of functions F as the number of observations increases. This is the most widely employed

decision rule in machine learning.

The class of functions F is usually given by:

F := {f(·, θ) | θ ∈ Rd}

so that the empirical risk minimization method can be stated as a finite sum optimization

problem over Euclidean space:

δF ((Xi, Yi)
N
i=1) := arg min

θ∈Rd

{
1

N

N∑
i=1

l (f(Xi, θ), Yi)

}
(1.1)

1.2.2 Bayesian approach

In the Bayesian case, we follow the general decision-theoretic construction. We first further

constrain the set of probability measures P to be given by those that are the N -times
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product of a single probability measure P that is absolutely continuous with respect to

Lebesgue measure λ on Rd×R. Further we assume that the density of any such probability

measure can be expressed as:

dP

dλ
= ρx(x | φ)ρy(y | x, θ)

for some given density functions ρx and ρy parametrized by real vectors φ ∈ Rk and θ ∈ Rn.

With these assumptions, we can now specify a prior over P by specifying a prior over the

parameters φ and θ through their density π with respect to Lebesgue measure. We usually

assume the factorized form:

π(φ, θ) := π(φ)π(θ)

It is not hard to show that under our assumptions, the factorized form of the density of

the prior is preserved in the density of the posterior:

π(φ, θ | (Xi, Yi)
N
i=1) = π(φ | (Xi, Yi)

N
i=1)π(θ | (Xi, Yi)

N
i=1)

where:

π(φ | (Xi, Yi)
N
i=1) ∝

{
N∏
i=1

ρx(Xi | φ)

}
π(φ)

π(θ | (Xi, Yi)
N
i=1) ∝

{
N∏
i=1

ρy(Yi | Xi, θ)

}
π(θ)

The class of functions F is usually assumed to be the set of all functions from Rd to R,

and the Bayesian decision rule can be shown to satisfy the pointwise equality:

δB((Xi, Yi)
N
i=1)(x) = arg min

ŷ∈R

∫
Rn

E
Y∼ρy(·|x,θ)

[l(ŷ, Y )]π(θ | (Xi, Yi)
N
i=1) dθ

The most difficult part of solving the above optimization problem is evaluating the expec-

tation with respect to θ. It is usually estimated by sampling from the posterior and forming

a Monte Carlo estimate. Writing the posterior density as:

π(θ | (Xi, Yi)
N
i=1) = e−U(θ)
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we have:

U(θ) :=

{
−

N∑
i=1

log ρy(Yi | Xi, θ)

}
− log π(θ) (1.2)

so that the problem of sampling from the posterior is that of sampling from a distribution

whose potential has a finite sum structure.

1.3 General Formulation and Organization

Motivated by the finite sum forms of (1.1) and (1.2), we are interested in the problem of

optimizing a function or sampling from a potential with a finite sum structure. The reader

is invited to ignore previously introduced notation as we will have no use for it.

Let F : Rd → R be a function. For the rest of this thesis, we will assume that F is twice

differentiable. We define the optimization problem associated with F to be:

Find x∗ = arg min
x∈Rd

F (x) (1.3)

Similarly, we define the sampling problem associated with F to be:

Generate X ∼ ρ∗ (1.4)

where ρ∗ is defined by, for all Borel sets A:

ρ∗(A) :=

∫
A

exp(−F (x))dx∫
Rd exp(−F (x))dx

(1.5)

Of course, if we allow F to be any arbitrary twice differentiable function, neither (1.3) nor

(1.4) are well defined in general. We therefore restrict our attention to strongly convex

functions. We state this assumption formally next, which we also assume to hold for the rest

of this thesis:

Assumption 1. F is strongly convex, that is, there exists a µ > 0 such that for all x, y ∈ Rd:

F (y) ≥ F (x) + 〈∇F (x), y − x〉+
µ

2
‖y − x‖2

2

We call µ the strong convexity constant of F .
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Note that there are more general assumptions under which (1.3) and (1.4) are well defined.

As we discussed in the introduction however, we will restrict ourselves to the strongly convex

case as this is the scenario where the strongest results are available. Under strong convexity,

we can show that both (1.3) and (1.4) are well defined. This follows from the following

theorem and its corollary:

Theorem 1. F has a unique minimizer x∗ ∈ Rd and it is the unique solution to ∇F (x) = 0.

Proof.

Existence: Let z ∈ Rd. Consider the set:

X = {x ∈ Rd | F (x) ≤ F (z)}

We claim that X is compact. Let x ∈ X. Then by strong convexity of F :

‖z − x‖2
2 ≤

2

µ
[F (x)− F (z)− 〈∇F (z), x− z〉]

≤ 2

µ
〈∇F (z), z − x〉

≤ 2

µ
‖∇F (z)‖2 ‖z − x‖2

where the second line follows from the fact that x ∈ X, and the second from Cauchy-Schwarz.

Therefore X is contained in the ball B(z, 2
µ
‖∇F (z)‖2), and hence is bounded. To show that

X is closed, let (xk)k∈N be a sequence in X converging to some x ∈ Rd. We claim that

x ∈ X. We have:

F (xk) ≤ F (z) ∀k ∈ N⇒ lim
k→∞

F (xk) ≤ F (z)⇒ F (x) ≤ F (z)

where the second implication follows from the continuity of F . Therefore x ∈ X, and X

is closed. By continuity of F and compactness of X, there exists a subset X∗ ⊆ X of

minimizers of F over X. By definition of X, X∗ is also the set of minimizers of F over all

of Rd. Let x∗ ∈ X∗. We claim that ∇F (x∗) = 0. Let i ∈ [d] and ei the ith vector of the

standard basis. By minimality of x∗, we have on the one hand:

[∇F (x∗)]i = lim
h→0

F (x∗ + hei)− F (x∗)

h
≥ 0
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and on the other:

− [∇F (x∗)]i = lim
h→0

F (x∗ − hei)− F (x∗)

h
≥ 0

hence ∇F (x∗) = 0.

Uniqueness: Let x1, x2 ∈ X∗. We have F (x1) = F (x2) by their respective global mini-

malities. But by strong convexity of F and the fact that ∇F (x2) = 0 we have:

F (x1) ≥ F (x2) +
µ

2
‖x1 − x2‖2

2

hence x1 = x2 and therefore X∗ = {x∗} contains only one element. Now suppose that there

exists some x ∈ Rd \ {x∗} such that∇F (x) = 0. Then, again by strong convexity:

F (x∗) ≥ F (x) +
µ

2
‖x− x∗‖2

2

but this contradicts the global minimality of x∗.

Corollary 1. The function exp [−F (x)] is integrable.

Proof. Measurability of exp [−F (x)] follows from the continuity of F . By Theorem 1 and

strong convexity of F we have for all x ∈ Rd:

F (x) ≥ F (x∗) +
µ

2
‖x− x∗‖2

2

so: ∫
Rd

exp [−F (x)] dx ≤ exp [−F (x∗)]

∫
Rd

exp
[
−µ

2
‖x− x∗‖2

2

]
dx

≤ exp [−F (x∗)]

(
2π

µ

)d/2
<∞

Now that we have a precise formulation of both problems, and we are assured of their

well-definedness, we give a short overview of the contents of the next chapters. We follow the

generic recipe we mentioned in the introduction. In chapter 2, we introduce two continuous-

time processes that solve the optimization and sampling problems respectively. We emphasis
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the connection between these processes, and analyze their convergence in continuous-time.

In chapter 3, we consider the Euler discretization of these processes, giving rise to our first

algorithms. We study the effect of this discretization, and give explicit convergence rates. In

chapter 4, we consider the optimization and sampling problems for functions F that can be

expressed as expectations, and adapt the algorithms developed in chapters 2 and 3 to this

case. Finally, in chapter 5, we focus on the special case where F is an expectation over a

distribution of finite support, giving rise to a finite-sum structure. We develop specialized

algorithms that take advantage of this additional structure, and show that they lead to

significant performance improvements.

We will introduce additional assumptions as we need them. Similarly, we will make clear

which model of complexity we are using whenever algorithms are discussed.
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Chapter 2

Continuous Time Processes

In this chapter, we introduce two continuous-time processes that solve the optimization and

sampling problems: gradient flow and Langevin diffusion. We start by showing that they

indeed converge to the solutions of (1.3) and (1.4) respectively, and that this convergence

is exponentially fast under our assumptions. We then establish two connections between

optimization and sampling through these processes. The first connection stems from for-

mulating the sampling problem as an optimization problem. In particular, we explore the

interpretation of the Langevin dynamics as the gradient flow of relative entropy in the space

of probability measures. The second connection comes from the opposite direction: we

formulate the optimization problem as the problem of sampling from the Dirac measure

concentrated on the minimizer.

Given the high level of technicality of these subjects, the overall tone of this chapter will

be slightly informal. We will focus on the underlying ideas, and refer the reader to other

sources where all the statements we mention are rigorously proved. Our goal in this chapter

is simply to convince the reader that these processes are in some sense the “right” ones to

consider.

As we will be discussing differential equations that make use on the gradient of F , we

will find it useful to assume that F has Lipschitz gradients. In alignment with terminology

used in the optimization literature, we will say that F is smooth if its gradient is Lipschitz
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continuous. More explicitly we make the following assumption for the rest of this thesis:

Assumption 2. F is smooth, that is, there exists an L > 0 such that for all x, y ∈ Rd:

‖∇F (y)−∇F (x)‖2 ≤ L ‖y − x‖2

We call L the smoothness constant of F .

For this section, the main use of this assumption will be to evoke existence and unique-

ness theorems of ordinary and stochastic differential equations. In future chapters, this

assumption will play different roles which we will discuss then.

Before introducing our first process, let us first state a simple lemma which will be useful

throughout this chapter:

Lemma 1. For all x, y ∈ Rd:

〈∇F (y)−∇F (x), y − x〉 ≥ µ ‖y − x‖2
2

Proof. By strong convexity of F we have:

F (y)− F (x)− 〈∇F (x), y − x〉 ≥ µ

2
‖y − x‖2

2

F (x)− F (y)− 〈∇F (y), x− y〉 ≥ µ

2
‖x− y‖2

2

Adding these two inequalities yields the result.

2.1 Optimization through Gradient Flow

In the optimization problem (1.3), our goal is to find x∗, the unique minimizer of F . In

light of Theorem 1, x∗ is the unique solution to ∇F (x) = 0. In most cases however, there

is no analytic solution to this equation. One alternative is to start from some initial guess

x0 ∈ Rd and find a curve (xt)t∈R+ starting from x0 and converging to x∗. How do we find

such a curve ?

One reasonable possibility is the gradient flow of F starting at x0. This curve is the

solution to the initial value problem starting at x0 and obeying:

dxt = −∇F (xt) dt (2.1)
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This is a natural curve to consider since heuristically, at each infinitesimal time step, we move

in the direction of greatest decrease of the function F . The role of the magnitude of the

gradient remains unclear at this point, but becomes clearer when this process is discretized.

More precisely, we have the following convergence theorem:

Theorem 2. The initial value problem starting at x0 ∈ Rd and obeying (2.1) has a unique

solution (xt)t∈R+ and it satisfies:

‖xt − x∗‖2
2 ≤ e−2µt ‖x0 − x∗‖2

2

for all t ∈ R.

Proof. The existence and uniqueness of the solution (xt)t∈R follows from the smoothness of

F and the standard theory of ordinary differential equations. For the convergence rate, we

have:

d

dt
‖xt − x∗‖2

2 = 2
〈 d
dt

[xt − x∗], xt − x∗
〉

= −2 〈∇F (xt), xt − x∗〉

= −2 〈∇F (xt)−∇F (x∗), xt − x∗〉

≤ −2µ ‖xt − x∗‖2
2

where the second equality follows from the differential equation, the third from ∇F (x∗) = 0,

and the inequality follows from Lemma 1. Using Grönwall’s inequality finishes the proof.

2.2 Sampling through Langevin Diffusion

In the sampling problem (1.4), our goal is to generate a random variable whose distribution is

ρ∗ as defined in (1.5). Assuming that we have access to a source of uniform random variables,

the computational equivalent of an analytical solution for a sampling problem would be to

find an easily computable map h : R→ Rd such that h(u) is distributed according to ρ∗ for

a uniform random variable u. Just like in the optimization case however, we usually don’t

have an efficient way of finding such a map, particularly in high dimension. One alternative

is to start with some random variable x0 ∼ ρ0 for some initial probability measure ρ0, and
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find a stochastic process (xt)t∈R+ starting at x0 such that the marginal distribution ρt of xt

converges to ρ∗ in some appropriate sense.

One such stochastic process is the Langevin diffusion process associated with the potential

F starting at x0 ∼ ρ0. This stochastic process is the solution to the initial value problem

starting at x0 ∼ ρ0 and obeying:

dxt = −∇F (xt) dt+
√

2 dWt (2.2)

where Wt is the standard Wiener process. We refer the reader to (Pavliotis (2014), chapters

2 and 3) for an introduction to diffusion processes and stochastic differential equations.

We return to the issue of motivating the use of this process in the next section. We can

nonetheless show that the marginals of the solution of this initial value problem converge

to the target density ρ∗. First however, we need to equip the space of probability measures

with a metric to formally have a notion of convergence. For reasons that will become more

transparent in the next section, we select the 2-Wasserstein distance, which is defined on the

set P2(Rd) of probability measures on Rd with finite second moment. For µ, ν ∈ P2(Rd), the

2-Wasserstein distance is defined by:

W2(µ, ν) :=

(
inf

γ∈Γ(µ,ν)
E

(y,x)∼γ

[
‖y − x‖2

2

])1/2

(2.3)

where Γ(µ, ν) is the collection of all probability measures γ on Rd×Rd with marginals µ and

ν. Γ(µ, ν) is usually called the set of couplings of µ and ν. The fact that the quantity we

defined is indeed a metric on P2(Rd) follows from optimal transport theory. See Villani (2003,

2009) for a detailed account. We are now ready to state and prove our second convergence

theorem:

Theorem 3. The initial value problem starting at x0 ∼ ρ0 ∈ P2(Rd) and obeying (2.2) has

a unique solution (xt)t∈R+ and it satisfies:

W 2
2 (ρt, ρ

∗) ≤ e−2µtW 2
2 (ρ0, ρ

∗)

for all t ∈ R+, where ρt is the distribution of xt and ρ∗ is as defined in (1.5).

Proof. The existence and uniqueness of the solution (xt)t∈R+ follows from the smoothness

of F , the finiteness of the second moment of ρ0, and the theory of stochastic differential
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equations, see, e.g., Øksendal (2003); Evans (2012). Furthermore, from this same theory, we

know that the marginals (ρt)t∈R+ of (xt)t∈R+ all have finite second moments. This, combined

with the finiteness of the second moment of ρ∗ from Corollary 1, make the 2-Wasserstein

distance W2(ρt, ρ
∗) well defined for all t ∈ R+. In particular, the solution (xt)t∈R+ is an itô

diffusion process, and as such the densities of its marginals ρt satisfy the forward Kolmogorov

equation, also known as the Fokker-Planck equation, which reduces in our case to (see

Pavliotis (2014), Section 4.5):

∂ρt
∂t

= ∇ · (ρt∇F ) + ∆ρt (2.4)

where by abuse of notation we identified the densities with the corresponding measures.

Invariant measure: Notice that ∇F = −∇ log ρ∗. If ρ0 = ρ∗, then by the Fokker-Planck

equation we have at t = 0:

∂ρ0

∂t
= −∇ · (ρ∗∇ log ρ∗) + ∆ρ∗ = −∆ρ∗ + ∆ρ∗ = 0

so that if the process start at x0 ∼ ρ∗, then xt ∼ ρ∗ for all t ∈ R+. ρ∗ is therefore an invariant

measure of the process (xt)t∈R+ . It is in fact unique, see (Pavliotis (2014), Proposition 4.2).

Convergence rate: We proceed using a coupling argument. Consider a second process

(yt)t∈R+ starting at y0 ∼ ρ∗ and obeying the same stochastic differential equation:

dyt = −∇F (yt) dt+
√

2 dWt

Since ρ∗ in the invariant measure of this process, we have yt ∼ ρ∗ for all t ∈ R+. Note

that (yt)t∈R+ and (xt)t∈R+ are driven by the same Wiener process (Wt)t∈R+ . Therefore, the

process (yt − xt)t∈R+ is deterministic and differentiable, and we have:

d

dt
‖yt − xt‖2

2 = 2
〈 d
dt

[yt − xt], yt − xt
〉

= −2 〈∇F (yt)−∇F (xt), yt − xt〉

≤ −2µ ‖yt − xt‖2
2
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where the second equality follows from the differential equation governing (yt− xt)t∈R+ , and

the inequality from Lemma 1. Using Grönwall’s inequality we get:

‖yt − xt‖2 ≤ e−2µt ‖y0 − x0‖2
2

E
[
‖yt − xt‖2

2

]
≤ e−2µtE

[
‖y0 − x0‖2

2

]
By minimality of the coupling defining the 2-Wasserstein distance we have:

W 2
2 (ρt, ρ

∗) ≤ E
[
‖yt − xt‖2

2

]
Finally, we choose the initial coupling of x0 and y0 to be the optimal one to get:

E
[
‖y0 − x0‖2

2

]
= W 2

2 (ρ0, ρ
∗)

and therefore:

W 2
2 (ρt, ρ

∗) ≤ e−2µtW 2
2 (ρ0, ρ

∗)

2.3 Sampling as Minimization of Relative Entropy

The perspective we took in the previous section is probabilistic in nature, and is the one

that we will use in subsequent chapters. However, there is a dual point of view one can

take that better motivates the use of Langevin diffusion for sampling. This more analytic

perspective comes from the following observation: the marginals of the stochastic process

(xt)t∈R+ induce a curve (ρt)t∈R+ in the space of probability measures.

In light of our discussion of gradient flow for optimization, we can try to look for a

function on the space of probability measures that is strongly convex and is minimized at

the target measure ρ∗. We could then consider its gradient flow, which heuristically should

have the same linear convergence rate as the Euclidean one. Finally, we could try to look for

a stochastic process that has the required marginals. This is very ambitious, for the space of

probability measures is not even a vector space, so that many of the concepts we mentioned

are not even defined. Still, amazingly, this can be done. This line of work was started by
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Jordan et al. (1998) and culminated in the book Ambrosio et al. (2005). We follow the

treatment of Ambrosio et al. (2005). Many of the statements we make in this subsection are

not as precise as they can be. Our goal is only to give a glimpse into to how this construction

is done.

Consider the complete metric space (P2(Rd),W2) and a function F : P2(Rd) → R. Our

goal will be to make sense of the gradient flow equation (2.1) of F in this metric space. That

is, we would like to make sense of an equation of the form:

“dρt
dt

= −∇F(ρt)
”

(2.5)

where the left hand side should be viewed as the “derivative” of the function ρt : R+ →

P2(Rd) while the right hand side should be seen as the “gradient” of F : P2(Rd) → R.

Clearly, neither of these are defined: the Fréchet derivative, which gives rises to the usual

definitions of gradient and derivative we use in (2.1) only works for Banach spaces. The

next two subsections will be concerned with making these notions more precise, while the

last subsection treats the special case of the relative entropy functional and shows that the

resulting gradient flow curve can be identified with the Langevin diffusion process.

2.3.1 Absolutely Continuous Curves in (P2(Rd),W2)

First, let us try to make sense of the left hand side of equation (2.5). We start by formalizing

the notion of a curve.

Definition 1 (Curve). Let I ⊆ R be an interval. A continuous function γ : I → P2(Rd) is

called a curve.

Our goal is to define the derivative of a curve. In Euclidean space, or more generally in a

Banach space, this would normally be a vector. While the vector space structure is needed

to define the direction, magnitudes can be defined using only the metric structure.

Definition 2 (Metric derivative). Let γ : I → P2(Rd) be a curve. When it exists, we define

its metric derivative at t ∈ I to be:

|γ′(t)| := lim
h→0

W2(γ(t+ h), γ(t))

|h|
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The next step would be to define differentiable curves. For functions from R to R, a slightly

less constraining condition is that of absolute continuity. Inspired by the characterization

of absolutely continuous functions on R given by the fundamental theorem of Lebesgue

integration, one can define absolutely continuous curves on (P2(Rd),W2) as follows:

Definition 3 (Absolute continuity). A curve γ : I → P2(Rd) is said to be absolutely con-

tinuous if there exists a β ∈ L1(I) such that:

W2(γ(s), γ(t)) ≤
∫ t

s

β(r)dr ∀s < t ∈ I

The following proposition gives some further justification for this definition. See (Ambro-

sio et al. (2005), Theorem 1.1.2).

Proposition 1. Let γ : I → P2(Rd) be an absolutely continuous curve. Then for a.e. t ∈ I,

γ has a metric derivative, |γ′| ∈ L1(I), and:

W2(γ(s), γ(t)) ≤
∫ t

s

|γ′|(r)dr ∀s < t ∈ I

Furthermore, for any β ∈ L1(I) satisfying the condition of Definition 3:

|γ′|(t) ≤ β(t) for a.e. t ∈ I

To see why this justifies the above definition of absolute continuity, consider the following:

if we replace P2(Rd) with R and assume γ is absolutely continuous (in the usual sense), then

it would be almost everywhere differentiable and we would have equality in the condition

of Definition 3. The above theorem says that a version of this holds on the metric space

(P2(Rd),W2) with the above definition of absolute continuity.

Surprisingly, just like the derivative of an absolutely continuous function (in the usual

sense) characterizes it, there exists a time dependent vector field that characterizes an ab-

solutely continuous curve in (P2(Rd),W2). The formal statement is the following. See

(Ambrosio et al. (2005), Theorem 8.3.1).

Theorem 4. Let I be an open interval in R. Let (ρt)t∈I be a curve in P2(Rd). Then (ρt)t∈I

is absolutely continuous if and only if there exists for each t ∈ I a measurable vector field

vt : Rd → Rd such that:
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� vt ∈ L2(ρt,Rd) for a.e. t ∈ I.

� ‖vt‖L2(ρt,Rd) = |ρ′|(t) for a.e. t ∈ I.

� The curve (ρt)t∈I satisfies the continuity equation:

∂ρt
∂t

+∇ · (ρtvt) = 0 (2.6)

In light of this result, it seems natural to associate the left hand side of equation (2.5)

with the vector field vt of Theorem 4.

2.3.2 Differentiation on (P2(Rd),W2)

The goal of this section will be to make sense of the right-hand side of equation (2.5). In

particular, consider a function F : P2(Rd)→ R. Our goal will be to define the equivalent of

a gradient of this function.

Let us first recall the definition of the gradient in Euclidean space. Note that this is

a specialization of the definition of the Fréchet derivative on arbitrary Banach spaces. In

particular, we make use of the Hilbert space structure of Euclidean space.

Definition 4. The gradient of a differentiable function F : Rd → R at a point x ∈ Rd is the

unique vector ∇F (x) ∈ Rd satisfying:

lim
y→x

|F (y)− F (x)− 〈∇F (x), y − x〉|
‖y − x‖2

= 0

We can try to transpose this definition to the metric space (P2(Rd),W2). For µ, ν ∈

P2(Rd), the denominator can be replaced by W2(µ, ν) and the difference F (y) − F (x) can

be replaced by F(µ)− F(ν). However, the inner product and the difference y − x, have no

obvious candidates.

The following result from the theory of optimal transport points to a potential solution.

For the remainder of this section, we will restrict ourselves to the metric space (Pab2 (Rd),W2)

where Pab2 (Rd) is the set of probability measures over Rd with finite second moments, and

which are absolutely continuous with respect to Lebesgue measure. Before citing the result,

25



let us first introduce a piece of notation. For a measurable function T : Rd → Rd, we define

the pushforward measure T#µ to be:

T#µ(B) := µ(T−1(B))

We are now ready to state the result. See (Ambrosio et al. (2005), section 6.2.3).

Theorem 5. Let µ, ν ∈ Pab2 (Rd). Then there is a unique coupling γ∗ ∈ Γ(µ, ν) minimizing

(2.3). Furthermore, there is an optimal transport map tνµ such that (tνµ)
#
µ = ν, and γ∗ =

(Id, tνµ)#µ where Id is the identity map.

To see why this result is useful to us, recall that we are trying to find a replacement to

the term y−x in the definition of the gradient of a function F at some reference probability

measure µ. In light of Theorem 5, a natural candidate for this replacement is the map

tνµ− Id. We still need however some Hilbert space over which we can take an inner product.

A natural candidate in this case is L2(µ,Rd). Based on these natural associations, we define

the gradient of F as follows. See (Ambrosio et al. (2005), section 10.1).

Definition 5. The gradient, if it exists, of a function F : Pab2 (Rd)→ R at a given probability

measure µ is the unique function ∇F(µ) ∈ L2(µ,Rd) satisfying:

lim
ν→µ

|F(ν)−F(µ)−
∫
Rd〈∇F(µ)(x), tνµ(x)− x〉µ(x) dx|

W2(ν, µ)
= 0

If F has a gradient at all µ ∈ Pab2 (Rd), then then we will say that F is differentiable.

With this definition, and assuming the function F is differentiable, we can define its

gradient flow starting at some ρ0 ∈ P2(Rd) by the absolutely continuous curve (ρt)t∈R+

starting at ρ0 and satisfying the continuity equation in Theorem 4 with vt = −∇F(ρt):

∂ρt
∂t

= ∇ · (ρt∇F(ρt)) (2.7)

2.3.3 Gradient Flow of relative entropy

Recall that our goal is to sample from the probability measure ρ∗ defined in (1.5) which is

absolutely continuous with respect to Lebesgue measure. One function that is known to be
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minimized at the target measure is the relative entropy:

Hρ∗(ρ) :=

∫
Rd

ρ(x) log
ρ(x)

ρ∗(x)
dx

defined on Pab2 (Rd), and where we identify the elements of Pab2 (Rd) with their densities. It is

known that Hρ∗(ρ) ≥ 0 and Hρ∗(ρ) = 0⇔ ρ = ρ∗, so ρ∗ is the unique minimizer of Hρ∗(ρ).

The gradient, in the sense of Definition 5, of relative entropy is given by (Ambrosio et al.

(2005), Lemma 10.4.1):

∇Hρ∗(ρ) = ∇ log
ρ

ρ∗

where the gradient on the right-hand side is the usual Euclidean gradient. The gradient flow

of Hρ∗ is therefore given by the absolutely continuous curve (ρt)t∈R+ satisfying the equation:

∂ρt
∂t

= ∇ ·
(
ρt∇ log

ρt
ρ∗

)
= ∇ · (ρt∇ [− log ρ∗]) +∇ · (ρt∇ log ρt)

= ∇ · (ρt∇F ) +∇ · (∇ρt)

= ∇ · (ρt∇F ) + ∆ρt

which is precisely the Fokker-Planck equation (2.4) governing the evolution of the marginals

of the Langevin diffusion process !

2.4 Optimization as Sampling from Dirac Measure

The previous section shows how the sampling problem can be formulated as an optimization

one over the space of probability measures, and how the Langevin diffusion process can be

given the interpretation of the gradient flow of relative entropy. In this section, we go in the

opposite direction.

Consider the Dirac measure defined by, for all Borel sets A:

δx∗(A) =

1 if x∗ ∈ A

0 otherwise
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Then it is clear that optimizing F is equivalent to sampling from δx∗ . We have shown

previously that the Langevin diffusion process can be viewed as a gradient flow. Here we

ask: can we view the gradient flow of F as a Langevin diffusion process ?

We start by introducing a parameter β > 0 in the stochastic differential equation defining

the Langevin diffusion process (2.2):

dxt = −∇F (xt) dt+
√

2β−1 dWt

For some initial condition x0 ∼ ρ0, we refer to solutions of such stochastic differential equa-

tions by (xβt )t∈R+ By an argument similar to the one we gave in the proof of Theorem 3, the

invariant measures of (xβt )t∈R+ are given by:

dρβ = exp [−βF (x)] dx

Using the strong convexity of F , one can show that ρβ → δx∗ weakly as β → ∞. Similarly

one can show that the solutions (xβt ) converge to the gradient flow of F starting at x0 as

β → ∞ in some appropriate sense. Therefore, one may view the gradient flow of F as a

(limit of) Langevin diffusion process.
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Chapter 3

Discrete Time Algorithms

In the previous chapter, we constructed two continuous time processes that solve the op-

timization and sampling problems, and showed that converge exponentially fast to their

solutions in continuous time. Our task in this chapter will be to construct discretizations of

these processes and study their discretization error and convergence rates.

3.1 Algorithms

3.1.1 Gradient Descent

Recall that our goal in optimization is to minimize F . We achieved this in continuous time

by considering the gradient flow (xt)t∈R+ of F starting at some arbitrary point x0 ∈ Rd, and

showing that xt converges to x∗ exponentially fast. To obtain an implementable algorithm,

we need some way of evaluating xt for a large enough time t ∈ R+. Unfortunately, in almost

all cases, solving for the curve (xt)t∈R+ from its differential equation is not feasible. We

instead rely on numerical methods to approximate it. In particular we use the simplest such

method, namely Euler’s.

We approximate the gradient flow of F starting at x0 ∈ Rd as follows. Let (αk)
∞
k=0 be

a sequence of positive number with
∑∞

k=0 αk = ∞. Define tk :=
∑k−1

i=0 αi for k ∈ N ∪ {0}.

Consider the partition (tk, tk+1)∞k=0 of [0,∞). We approximate the curve (xt)t∈R+ at the
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points (tk)
∞
k=0 by the sequence (xk)

∞
k=0 defined as follows. We start by approximating xt1 by:

xt1 = xt0 −
∫ t1

t0

∇F (xt) dt

≈ x0 − (t1 − t0)∇F (x0)

= x0 − α0∇F (x0)

=: x1

Finally, we use this approximation to recursively approximate xtk+1
as:

xtk+1
= xtk −

∫ tk+1

tk

∇F (xt) dt

≈ xtk − (tk+1 − tk)∇F (xtk)

≈ xk − αk∇F (xk)

=: xk+1

This sequence (xk)
∞
k=0 gives rise to Algorithm 1, known as gradient descent, whose conver-

gence we study in at the end of this chapter.

Algorithm 1: Gradient Descent (GD)

Parameters: step sizes (αk)
∞
k=1 > 0

Initialization: x0 ∈ Rd

for k = 0, 1, 2, . . . do

xk+1 = xk − αk∇F (xk)

end

3.1.2 Langevin Dynamics

We proceed in a similar fashion to derive the Langevin dynamics algorithm. Let (αk)
∞
k=0 be

a sequence of positive number with
∑∞

k=0 αk = ∞. Define tk :=
∑k−1

i=0 αi for k ∈ N ∪ {0}.

Consider the partition (tk, tk+1)∞k=0 of [0,∞). We start by generating x0 ∼ ρ0 (we will always
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assume this is possible since we have the freedom to pick ρ0), and approximate xt1 by:

xt1 = xt0 −
∫ t1

t0

∇F (xt) dt+
√

2

∫ t1

t0

dWt

= xt0 −
∫ t1

t0

∇F (xt) dt+
√

2 [W (t1)−W (t0)]

≈ x0 − (t1 − t0)∇F (x0) +
√

2(t1 − t0) ξ0

= x0 − α0∇F (x0) +
√

2α0 ξ0

=: x1

Where ξ0 ∼ N (0, Id×d). We then recursively approximate xtk by:

xtk+1
= xtk −

∫ tk+1

tk

∇F (xt) dt+
√

2

∫ tk+1

tk

dWt

= xtk −
∫ tk+1

tk

∇F (xtk) +
√

2 [W (tk+1)−W (tk)]

≈ xtk − (tk+1 − tk)∇F (xtk) +
√

2(tk+1 − tk) ξk

≈ xk − αk∇F (xk) +
√

2αk ξk

=: xk+1

where ξk ∼ N (0, Id×d) and the collection (ξk)
∞
k=0 is independent. The discrete time Markov

chain (xk)
∞
k=0 gives rise to Algorithm 2, which we will call Langevin dynamics. We study the

convergence of the marginals of this Markov chain in the section.

Algorithm 2: Langevin Dynamics (LD)

Parameters: step sizes (αk)
∞
k=1 > 0

Initialization: ρ0 ∈ P2(Rd)

sample x0 ∼ ρ0

for k = 0, 1, 2, . . . do

sample ξk ∼ N (0, Id×d)

xk+1 = xk − αk∇F (xk) +
√

2αk ξk

end
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3.2 Convergence Analysis

In this section we analyze the convergence of both gradient descent (GD) and Langevin dy-

namics (LD). We will evaluate the computational complexity of an algorithm by counting the

number of iterations it requires to reach an ε accurate solution. In particular, for optimiza-

tion problems, we use the criterion ‖x− x∗‖2
2 ≤ ε, while for sampling we use W 2

2 (ρ, ρ∗) ≤ ε.

We do not introduce any additional assumptions here. We will however make use of the

condition number of F given by κ := L/µ. Compared to chapter 2, the role of the smoothness

of F (Assumption 2) will be to allow us to bound the discretization error. In particular,

we need the following refined version of Lemma 1. We refer the reader to (Nesterov (2004),

Theorem 2.1.11) for a proof.

Lemma 2. For all x, y ∈ Rd:

〈∇F (y)−∇F (x), y − x〉 ≥ µL

L+ µ
‖y − x‖2

2 +
1

L+ µ
‖∇F (y)−∇F (x)‖2

2

We will also need the “Peter-Paul” inequality, which we will use many times in subsequent

chapters:

Lemma 3. Let x, y ∈ Rd. Then for all β > 0 we have:

‖x± y‖2
2 ≤ (1 + β) ‖x‖2

2 + (1 + β−1) ‖y‖2
2

Proof. We have for x, y ∈ R and β > 0:

βx2 − 2xy + β−1y2 =
(√

βx−
√
β−1y

)2

≥ 0⇒ 2xy ≤ βx2 + β−1y2

βx2 + 2xy + β−1y2 =
(√

βx+
√
β−1y

)2

≥ 0⇒ −2xy ≤ βx2 + β−1y2

Therefore:

2|xy| ≤ βx2 + β−1y2
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Now by Cauchy-Schwarz inequality:

‖a± b‖2
2 = ‖a‖2

2 ± 2〈a, b〉+ ‖b‖2
2

≤ ‖a‖2
2 + 2|〈a, b〉|+ ‖b‖2

2

≤ ‖a‖2
2 + 2 ‖a‖2 ‖b‖2 + ‖b‖2

2

≤ (1 + β) ‖a‖2
2 + (1 + β−1) ‖b‖2

2

3.2.1 Convergence of Gradient Descent

We now have all the tools to prove the following theorem.

Theorem 6. Let (xk)
∞
k=0 be the gradient descent sequence generated by Algorithm 1 for a

constant step size αk = α satisfying:

α ≤ 2

L+ µ

Then:

‖xk − x∗‖2
2 ≤

(
1− 2α

µL

L+ µ

)k
‖x0 − x∗‖2

2

Proof. Let k ∈ N. We have:

‖xk+1 − x∗‖2
2 = ‖xk − α∇F (xk)− x∗‖2

2

= ‖xk − x∗‖2
2 − 2α〈∇F (xk), xk − x∗〉+ α2 ‖∇F (xk)‖2

2

= ‖xk − x∗‖2
2 − 2α〈∇F (xk)−∇F (x∗), xk − x∗〉+ α2 ‖∇F (xk)−∇F (x∗)‖2

2

≤
(

1− 2α
µL

L+ µ

)
‖xk − x∗‖2

2 + α

(
α− 2

L+ µ

)
‖∇F (xk)−∇F (x∗)‖2

2

≤
(

1− 2α
µL

L+ µ

)
‖xk − x∗‖2

2

where the third equality follows from ∇F (x∗) = 0 from Theorem 1, the first inequality from

Lemma 2, and the last inequality from the condition on the step size. The result then follows

by induction.

Based on this result, we can derive the complexity of gradient descent.
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Corollary 2. Let (xk)
∞
k=0 be the gradient descent sequence generated by Algorithm 1 with

αk = α = 2/(L+ µ) and let ε > 0. If:

k ≥ κ+ 1

4
log

(
‖x0 − x∗‖2

2

ε

)

Then:

‖xk − x∗‖2
2 ≤ ε

Proof. With the chosen α it is easy to show:

1− 2α
µL

L+ µ
=

(
1− 2

κ+ 1

)2

Replacing in the bound of Theorem 6 we get:

‖xk − x∗‖2
2 ≤

(
1− 2

κ+ 1

)2k

‖x0 − x∗‖2
2 ≤ exp

(
− 4k

κ+ 1

)
‖x0 − x∗‖2

2

where the second inequality follows from 1 − x ≤ exp (−x). Bounding the right hand side

by ε and solving for k by taking logarithms of both sides yields the result.

Keeping only the dependence on the condition number κ and the precision ε, gradient

descent therefore has complexity O(κ log (1/ε)) for any ε > 0.

3.2.2 Convergence of Langevin Dynamics

To study the convergence of Langevin dynamics, we need a few more preliminary results.

We start with a simple consequence of the Cauchy-Schwarz inequality.

Lemma 4. Let v : [a, b]→ Rd. Then:∥∥∥∥∫ b

a

v(t) dt

∥∥∥∥
2

≤
∫ b

a

‖v(t)‖2 dt

Proof. Let u =
∫ b
a
v(t) dt. We have:

‖u‖2
2 =

d∑
i=1

u2
i =

d∑
i=1

ui

∫ b

a

vi(t) dt =

∫ b

a

〈u, v(t)〉 dt ≤ ‖u‖2

∫ b

a

‖v(t)‖2 dt

where the inequality follows from Cauchy-Schwarz.
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Recall that for a real random variable X with finite second moment, its L2 norm is given

by:

‖X‖L2
=
(
E
[
‖X‖2

2

])1/2

We will make use of an application of Minkowski’s inequality for integrals (see, e.g., Folland

(2013), Theorem 6.19b).

Lemma 5. Let (Xt)t∈[a,b] be a real valued integrable stochastic process with finite second

moments. Then:

E

[(∫ b

a

Xt dt

)2
]1/2

≤
∫ b

a

E
[
X2
t

]1/2
dt

Combining these lemmas gives us the following corollary which we will be useful to us.

Corollary 3. Let (Xt)t∈[a,b] be a vector valued stochastic process with finite second moments.

Then: ∥∥∥∥∫ b

a

Xt dt

∥∥∥∥
L2

≤
∫ b

a

‖Xt‖L2
dt

Proof. We have:∥∥∥∥∫ b

a

Xt dt

∥∥∥∥
L2

=

(
E

[∥∥∥∥∫ b

a

Xt dt

∥∥∥∥2

2

])1/2

≤ E

[(∫ b

a

‖Xt‖2 dt

)2
]1/2

≤
∫ b

a

E
[
‖Xt‖2

2

]1/2
dt

where the first inequality follows from Lemma 4, and the second from Lemma 3.

Finally, we will need the following bound on the second moment on the gradient:

Lemma 6. Let Y ∼ ρ∗. Then:

E
[
‖∇F (y)‖2

2

]
≤ Ld
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Proof.

E
[
‖∇F (Y )‖2

2

]
=

∫
Rd

‖∇F (y)‖2
2 ρ
∗(y) dy

=

∫
Rd

〈∇F (y),∇F (y)〉ρ∗(y) dy

=

∫
Rd

〈∇ log ρ∗(y),∇ log ρ∗(y)〉ρ∗(y) dy

=

∫
Rd

〈∇ρ∗(y),∇ log ρ∗(y)〉 dy

= lim
r→∞

∫
B(x∗,r)

〈∇ρ∗(y),∇ log ρ∗(y)〉 dy

where the last line is justified by the positivity of the integrand and the monotone convergence

theorem. Applying integration by parts we get in the first term, where we denote by n̂ the

unit normal vector to the surface of the ball B(x∗, r):

lim
r→∞

∫
∂B(x∗,r)

ρ∗(y)〈∇ log ρ∗(y), n̂〉 dS

We claim this term is zero since:∣∣∣∣∫
∂B(x∗,r)

ρ∗(y)〈∇ log ρ∗(y), n̂〉 dS
∣∣∣∣ ≤ ∫

∂B(x∗,r)

|ρ∗(y)〈∇ log ρ∗(y), n̂〉|dS

≤
∫
∂B(x∗,r)

|ρ∗(y)| ‖∇ log ρ∗(y)‖2 dS

≤ 1

C1

exp
[
−F (x∗)− µ

2
r2
] ∫

∂B(x∗,r)

‖∇F (y)‖2 dS

≤ 1

C1

exp
[
−F (x∗)− µ

2
r2
] ∫

∂B(x∗,r)

‖∇F (y)−∇F (x∗)‖2 dS

≤ L

C1

exp
[
−F (x∗)− µ

2
r2
]
r

∫
∂B(x∗,r)

dS

=
LC2

C1

exp
[
−F (x∗)− µ

2
r2
]
rd

where in the second line we used Cauchy-Schwarz and ‖n̂‖2 = 1, in the third line we used

the strong convexity of F , and C1 is the normalization constant of ρ∗. In the fourth line

we used ∇F (x∗) = 0. In the fifth line we used the smoothness of F . In the last line we

used that the surface area of the d-dimension sphere of radius r is C2r
d−1 for a constant C2.
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Taking the limit r →∞ give 0.Therefore, only the second term coming from integration by

parts is non zero and we have:

E
[
‖∇F (Y )‖2

2

]
= −

∫
Rd

∆ log ρ∗(y)ρ∗(y) dy

=

∫
Rd

∆F (y)ρ∗(y) dy

≤ Ld

where in the last line we used:

∆F (y) =
d∑
i=1

∂2F

∂y2
i

= Tr
[
∇2F (y)

]
≤

d∑
i=1

λi(∇2F (y)) ≤ Ld

where λi(∇2F (y)) is the ith eigenvalue of the Hessian matrix and where the last inequality

follows from the smoothness of F .

We are now ready to state and prove our convergence theorem for the Langevin dynamics

algorithm.

Theorem 7. Let (xk)
∞
k=0 be the Markov chain simulated by Algorithm 2 with a constant step

size αk = α satisfying:

α ≤ 2

L+ µ

Then:

W 2
2 (ρk, ρ

∗) ≤
(

1− α µL

L+ µ

)k
W 2

2 (ρ0, ρ
∗) + 12ακ2d

where ρk is the distribution of xk.

Proof. We proceed using a coupling argument. Consider a Langevin diffusion process (yt)t∈R+

satisfying:

dyt = −∇F (yt) dt+
√

2 dWt

and starting at y0 ∼ ρ∗. From the proof of Theorem 3, we know that this implies yt ∼ ρ∗ for

all t ∈ R+. We also assume that the same Wiener process drives both (yt)t∈R+ and (xk)
∞
k=0.

Furthermore we assume that x0 and y0 are optimally coupled so that:

W 2
2 (ρ0, ρ

∗) = E
[
‖y0 − x0‖2

2

]
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Now we have:

∥∥y(k+1)α − xk+1

∥∥2

2

=

∥∥∥∥∥ykα − xk −
(∫ (k+1)α

kα

∇F (ys) ds− α∇F (xk)

)∥∥∥∥∥
2

2

=

∥∥∥∥∥ykα − xk − α (∇F (ykα)−∇F (xk))−
∫ (k+1)α

kα

[∇F (ys)−∇F (ykα)] ds

∥∥∥∥∥
2

2

≤ (1 + β) ‖ykα − xk − α (∇F (ykα)−∇F (xk))‖2
2 + (1 + β−1)

∥∥∥∥∥
∫ (k+1)α

kα

[∇F (ys)−∇F (ykα)] ds

∥∥∥∥∥
2

2

where in the first equality we used the fact that the same Wiener process drives both pro-

cesses, and the last inequality follows from Lemma 3 for a free parameters β > 0. The first

term can be bound as:

‖ykα − xk − α (∇F (ykα)−∇F (xk))‖2
2

= ‖ykα − xk‖2
2 − 2α〈∇F (ykα)−∇F (xk), ykα − xk〉+ α2 ‖∇F (ykα)−∇F (xk))‖2

2

≤
(

1− 2α
µL

L+ µ

)
‖ykα − xk‖2

2 + α

(
α− 2

L+ µ

)
‖∇F (ykα)−∇F (xk))‖2

2

≤
(

1− 2α
µL

L+ µ

)
‖ykα − xk‖2

2

where the first inequality follows from Lemma 2, and the second from the condition on the
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step size.We now bound the expectation of the second term:

E

∥∥∥∥∥
∫ (k+1)α

kα

[∇F (ys)−∇F (ykα)] ds

∥∥∥∥∥
2

2


=

∥∥∥∥∥
∫ (k+1)α

kα

[∇F (ys)−∇F (ykα)] ds

∥∥∥∥∥
2

L2

≤

(∫ (k+1)α

kα

‖∇F (ys)−∇F (ykα)‖L2
ds

)2

≤ L2

(∫ (k+1)α

kα

‖ys − ykα‖L2
ds

)2

≤ L2

(∫ (k+1)α

kα

∥∥∥∥∫ s

kα

∇F (yt) dt

∥∥∥∥
L2

ds+

∫ (k+1)α

kα

∥∥∥∥∫ s

kα

√
2 dWt

∥∥∥∥
L2

ds

)2

≤ L2

(∫ (k+1)α

kα

∫ s

kα

‖∇F (yt)‖L2
dt ds+

√
2d

∫ (k+1)α

kα

√
s ds

)2

= L2

(
1

2
α2 ‖∇F (ykα)‖L2

+
2
√

2

3
α3/2
√
d

)2

≤ L2

(
1

2
α2
√
Ld+

2
√

2

3
α3/2
√
d

)2

= L2α3d

(
1

2

√
αL+

2
√

2

3

)2

≤ L2α3d

(√
2

2
+

2
√

2

3

)2

≤ 3α3L2d

where the first line follows from the definition of the L2 norm, the second from Lemma 3,

the third from the smoothness of F , the fourth from the definition of the process (yt)t∈R+

and the triangle inequality, the fifth from Lemma 3, the sixth from the fact that the process

(yt)t∈R+ is stationary, the seventh from Lemma 6, and finally the eighth from α ≤ 2/L.Before

putting the inequalities together, we choose β = α(µL)/(L + µ) < 1 so that the coefficient

of the first term is bounded by:(
1 + α

µL

L+ µ

)(
1− 2α

µL

L+ µ

)
≤ 1− α µL

L+ µ

39



while that of the second term is bounded by:

(
1 + β−1

)
≤ 2β−1 =

2(L+ µ)

αµL

The overall bound is therefore:

E
[∥∥y(k+1)α − xk+1

∥∥2

2

]
≤
(

1− α µL

L+ µ

)
E
[
‖ykα − xk‖2

2

]
+ 6α2κ(L+ µ)d

so that by induction we get:

E
[∥∥y(k)α − xk

∥∥2

2

]
≤
(

1− α µL

L+ µ

)k
E
[
‖y0 − x0‖2

2

]
+ 6α2κ(L+ µ)d

k−1∑
i=0

(
1− α µL

L+ µ

)i
≤
(

1− α µL

L+ µ

)k
E
[
‖y0 − x0‖2

2

]
+ 6α2κ(L+ µ)d

∞∑
i=0

(
1− α µL

L+ µ

)i
≤
(

1− α µL

L+ µ

)k
E
[
‖y0 − x0‖2

2

]
+ 12ακ2d

By minimality of the coupling defining the Wasserstein distance we get:

W 2
2 (ρk, ρ

∗) ≤ E
[
‖ykα − xk‖2

2

]
and by the the fact that x0 and y0 are optimally coupled we obtain the stated result.

We can now derive the complexity of the Langevin dynamics algorithm.

Corollary 4. Let ε > 0, and let (xk)
∞
k=0 be the Markov chain simulated by Algorithm 2 with

step size:

αk = α = min

{
2

L+ µ
,

ε

24κ2d

}
If:

k ≥ max

{
κ+ 1

2
,
24κ2d(L+ µ)

εµL

}
log

(
2W 2

2 (ρ0, ρ
∗)

ε

)
Then:

W 2
2 (ρk, ρ

∗) ≤ ε

where ρk is the distribution of xk.
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Proof. With the chosen α we have:

12ακ2d ≤ ε

2

combining this with Theorem 7 we have:

W 2
2 (ρk, ρ

∗) ≤
(

1− α µL

L+ µ

)k
W 2

2 (ρ0, ρ
∗) +

ε

2

replacing α with its value, using the inequality 1 − x ≤ exp (−x), and solving for k we get

the result.

The convergence of Algorithm 2 has two regimes. In the low precision regime, ε > O(κ2d),

it has complexity O(κ log(1/ε)), similar to gradient descent. In the high precision regime

ε < O(κ2d) however, this complexity deteriorates rapidly to Õ(κ2d/ε). Notice also the linear

dimension dependence, which is completely absent from the complexity of gradient descent.

This makes the sampling problem significantly more difficult than the optimization one in

the high precision high dimension regime. Note that by using decreasing step sizes, one can

get rid of the logarithmic factor, but we won’t pursue this further here.
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Chapter 4

Stochastic Algorithms

In the last two chapters, we studied continuous time processes that solve the optimization and

sampling problems, showed how to discretize them, and studied their convergence rates. We

did all this in the general case where F has no particular structure besides strong convexity

and smoothness. In this chapter, we will treat the case where F can be expressed as an

expectation. Problems of this form occur often in machine learning and statistics.

The setup we will consider is the following. We assume that F is of the form:

F (x) := E [f(x, ζ)] (4.1)

where ζ is a random variable taking values in some arbitrary space E over which the ex-

pectation is taken. If we could compute this expectation directly, we could then just use

the algorithms from chapter 3 to solve the corresponding optimization or sampling problem.

The underlying assumption here however is that ζ models the environment, in which case

we do not know its distribution and are only able to obtain realizations of it.

Before introducing our model of computation, we make the following assumption on the

component functions:

Assumption 3. For any ζ ∈ E, the function f(·, ζ) : Rd → R is differentiable and convex,

that is, for all x, y ∈ Rd:

f(y, ζ) ≥ f(x, ζ) + 〈∇f(x, ζ), y − x〉
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Note that our assumption on the differentiability of F from previous chapters combined

with the convexity of the f(·, ζ) for each ζ ∈ E already implies that the functions f(·, ζ) are

differentiable for almost all ζ ∈ E, see (Bertsekas (1973), Proposition 2.3). We extend this to

all ζ ∈ E in our assumption to avoid making almost sure statements. Perhaps surprisingly,

our assumptions on F and the f(·, ζ) are enough to allow the interchange of differentiation

and integration. See (Bertsekas (1973), Proposition 2.2).

Lemma 7. For all x ∈ Rd:

∇F (x) = E [∇f(x, ζ)]

In light of this, we will use the following model of computation. We assume that we have

access to an oracle which takes as input a point x ∈ Rd, samples ζ from its distribution

(independently from other oracle calls), and returns ∇f(x, ζ). This provides us with an

unbiased estimate of ∇F (x) by Lemma 7. In the classical study of problems of this form,

one usually assumes that the variance of this estimate is uniformly bounded over all of Rd by

some constant. This assumption is however too strong, excluding many standard problems.

Here instead we make an additional assumption on the functions f(·, ζ).

Assumption 4. For any ζ ∈ E, the function f(·, ζ) is smooth, that is, there exists an Lζ > 0

such that for all x, y ∈ Rd:

‖∇f(y, ζ)−∇f(x, ζ)‖2 ≤ Lζ ‖y − x‖2

Furthermore:

sup
ζ∈E

Lζ = Lsup <∞

This additional smoothness assumption is satisfied in many cases of interest, and allows

much weaker assumptions on the variance of the gradient estimate generated by our oracle.

We will state such assumptions when we need them. Finally, note that E [Lζ ] and Lsup are

valid smoothness constants of F .

Lemma 8. For all x, y ∈ Rd:

‖∇F (y)−∇F (x)‖2 ≤ E [Lζ ] ‖y − x‖2 ≤ Lsup ‖y − x‖2
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Proof.

‖∇F (y)−∇F (x)‖2 = ‖E [∇f(y, ζ)−∇f(x, ζ)]‖2

≤ E [‖∇f(y, ζ)−∇f(x, ζ)‖2]

≤ E [Lζ ] ‖y − x‖2

≤ Lsup ‖y − x‖2

where the second line follows from Jensen’s inequality and the convexity of the Euclidean

norm, and the third from the smoothness of f(·, ζ).

In light of this result, we define an alternative condition number κsup := Lsup/µ, which

we will use to characterize the complexity of SGD and SGLD.

4.1 Algorithms

Given that our oracle provides us with unbiased estimates of the gradient, it seems reasonable

to simply replace the gradient by its unbiased estimate in gradient descent (Algorithm 1) and

Langevin dynamics (Algorithm 2) for the purposes of solving the optimization or sampling

problems associated with F . Doing this yields Algorithm 3 known as Stochastic Gradient

Descent (SGD) for optimization, and Algorithm 4 known as Stochastic Gradient Langevin

Dynamics (SGLD) for sampling. Note that by definition of our oracle, the random variables

(ζk)
∞
k=0 are independent and identically distributed.

4.1.1 Stochastic Gradient Descent

Algorithm 3: Stochastic Gradient Descent (SGD)

Parameters: step sizes (αk)
∞
k=1 > 0

Initialization: x0 ∈ Rd

for k = 0, 1, 2, . . . do

xk+1 = xk − αk∇f(xk, ζk)

end
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4.1.2 Stochastic Gradient Langevin Dynamics

Algorithm 4: Stochastic Gradient Langevin Dynamics (SGLD)

Parameters: step sizes (αk)
∞
k=1 > 0

Initialization: ρ0 ∈ Rd

sample x0 ∼ ρ0

for k = 0, 1, 2, . . . do

sample ξk ∼ N (0, Id×d)

xk+1 = xk − αk∇f(xk, ζk) +
√

2αk ξk

end

4.2 Convergence Analysis

In this section we analyze the convergence of both Stochastic Gradient Descent and Stochas-

tic Gradient Langevin Dynamics. To evaluate the complexity of each algorithm, we will

count the number of oracle calls needed to reach an ε accurate solution. We will use the

same criteria we used in chapter 3, namely ‖x− x∗‖2
2 ≤ ε and W 2

2 (ρ, ρ∗) ≤ ε.

In chapter 3, the smoothness assumption on F was used to control the discretization

error. It will play the same role in this chapter. The smoothness of the functions f(·, ζ) will

play a different role here, namely that of bounding the variance of the gradient estimate.

In particular, we will need the following result which is a consequence of the convexity and

smoothness of the f(·, ζ).

Lemma 9. For all x, y ∈ Rd, we have:

E
[
‖∇f(y, ζ)−∇f(x, ζ)‖2

2

]
≤ 2Lsup [F (y)− F (x)− 〈∇F (x), y − x〉]

Proof. Let ζ ∈ E. By convexity and smoothness of f(·, ζ) and (Nesterov (2004), Theorem

2.1.5) we have:

‖∇f(y, ζ)−∇f(x, ζ)‖2
2 ≤ 2Lζ [f(y, ζ)− f(x, ζ)− 〈∇f(x, ζ), y − x〉]

Using Lζ ≤ Lsup and taking expectation of both sides we get the result.
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As mentioned at the beginning of the chapter, the convexity and smoothness of the f(·, ζ)

allows much weaker assumptions on the variance of the gradient estimate generated by the

oracle than uniform boundedness. To make the statement of these assumptions easier, we

define the averaged variance function σ2 : P2(Rd)→ R given by, for ρ ∈ P2(Rd):

σ2(ρ) = E
x∼ρ

[
E
[
‖∇f(x, ζ)‖2

2

]
− ‖∇F (x)‖2

2

]
where the inner expectation is with respect to ζ. Recall that P2(Rd) is the space of probability

measures in Rd with finite second moment. From this we can show the following sufficient

condition for the finiteness of σ2 over its domain.

Lemma 10. If there exists a z ∈ Rd such that:

σ2(δz) <∞

then σ2(ρ) <∞ for all ρ ∈ P2(Rd)

Proof.

σ2(ρ) ≤ E
x∼ρ

[
E
[
‖∇f(x, ζ)‖2

2

]]
= E

x∼ρ

[
E
[
‖∇f(x, ζ)−∇f(z, ζ) +∇f(z, ζ)‖2

2

]]
≤ 2 E

x∼ρ

[
E
[
‖∇f(x, ζ)−∇f(z, ζ)‖2

2

]]
+ 2E

[
‖∇f(z, ζ)‖2

2

]
≤ 2L2

sup E
x∼ρ

[
‖x− z‖2

2

]
+ 2σ2(δz) + 2 ‖∇F (z)‖2

2

≤ 4L2
sup E

x∼ρ

[
‖x‖2

2

]
+ 4L2

sup ‖z‖
2
2 + 2σ2(δz) + 2 ‖∇F (z)‖2

2

<∞

where in the third and fifth line we used the Peter-Paul inequality from Lemma 3 with

β = 1, in the fourth line we used the smoothness of f(·, ζ), and in the last line we used the

hypothesis and the finiteness of the second moment of ρ.
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4.2.1 Convergence of Stochastic Gradient Descent

To prove our convergence result, we will need one last assumption. Unlike the other assump-

tions in this text, this one is exclusive to this subsection.

σ2(δx∗) <∞

We are now finally ready to state our convergence theorem.

Theorem 8. Let (xk)
∞
k=0 be the stochastic gradient descent sequence generated by Algorithm

3 with αk = α satisfying:

α ≤ 1

2Lsup

Then:

E
[
‖xk − x∗‖2

2

]
≤ (1− αµ)k ‖x0 − x∗‖2

2 +
2ασ2(δx∗)

µ

where the expectation is taken with respect to the randomness of the oracle due to the sampling

of (ζt)
k−1
t=0 .

Proof. Let k ∈ N. Taking expectation over ζk, conditional on (ζt)
k−1
t=0 we have:

E
[
‖xk+1 − x∗‖2

2

]
= E

[
‖xk − α∇f(xk, ζk)− x∗‖2

2

]
= ‖xk − x∗‖2

2 − 2α〈E [∇f(xk, ζk)] , xk − x∗〉+ α2E
[
‖∇f(xk, ζk)‖2

2

]
= ‖xk − x∗‖2

2 − 2α〈∇F (xk), xk − x∗〉+ α2E
[
‖∇f(xk, ζk)‖2

2

]
where the last line follows from Lemma 7. We bound the last term as follows:

E
[
‖∇f(xk, ζk)‖2

2

]
= E

[
‖∇f(xk, ζk)−∇f(x∗, ζk) +∇f(x∗, ζk)‖2

2

]
≤ 2E

[
‖∇f(xk, ζk)−∇f(x∗, ζk)‖2

2

]
+ 2E

[
‖∇f(x∗, ζk)‖2

2

]
≤ 4Lsup [F (xk)− F (x∗)] + 2σ2(δx∗)

where the second line follows from Lemma 3, and the third from Lemma 9 and ∇F (x∗) =

0.Replacing in the original bound, and using the strong convexity of F on the inner product

term, we obtain:

E
[
‖xk+1 − x∗‖2

2

]
≤ (1− αµ) ‖xk − x∗‖2

2 + 2α (2αLsup − 1) [F (xk)− F (x∗)] + 2α2σ2(δx∗)

≤ (1− αµ) ‖xk − x∗‖2
2 + 2α2σ2(δx∗)
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where the last line follows from the condition on the step size.Taking expectation over (ζt)
k−1
t=0

on both sides, and applying the resulting inequality recursively we get:

E
[
‖xk − x∗‖2

2

]
≤ (1− αµ)k ‖x0 − x∗‖2

2 + 2α2σ2(δx∗)
k−1∑
i=0

(1− αµ)i

≤ (1− αµ)k ‖x0 − x∗‖2
2 + 2α2σ2(δx∗)

∞∑
i=0

(1− αµ)i

= (1− αµ)k ‖x0 − x∗‖2
2 +

2ασ2(δx∗)

µ

From this theorem, we can derive the complexity of Stochastic Gradient Descent. We

leave the proof to the reader as it is a simple adaptation of the argument in the proof of

Corollary 4.

Corollary 5. Let ε > 0, and let (xk)
∞
k=0 be the sequence generated by Algorithm 3 with step

size:

αk = α = min

{
1

2Lsup
,

εµ

4σ2(δx∗)

}
If:

k ≥ max

{
2κsup,

4σ2(δx∗)

εµ2

}
log

(
2 ‖x0 − x∗‖2

2

ε

)
Then:

E
[
‖xk − x∗‖2

2

]
≤ ε

The complexity of SGD has therefore two regimes. In the low precision regime ε <

O(σ2(δx∗)/Lµ), SGD convergence at the fast linear rate O(κsup log (1/ε)) similar to gradient

descent. In the high precision regime however, this complexity deteriorates to Õ(σ2(δx∗)/εµ2).

Note that by using decreasing step sizes, one can remove the logarithmic factor in the high

precision regime, as well as use ε independent step sizes, but we do not pursue this further

here.
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4.2.2 Convergence of Stochastic Gradient Langevin Dynamics

We start by making the following assumption, which again is exclusive to this subsection.

σ2(ρ∗) <∞

The convergence theorem for SGLD follows.

Theorem 9. Let (xk)
∞
k=0 be the Markov chain simulated by Algorithm 4 with a constant step

size αk = α satisfying:

α ≤ 1

2Lsup

Then:

W 2
2 (ρk, ρ

∗) ≤
(

1− αµ

2

)k
W 2

2 (ρ0, ρ
∗) + 24ακ2d+

4ασ2(ρ∗)

µ

Proof. As usual, we proceed using a coupling argument. Consider a Langevin diffusion

process (yt)t∈R+ satisfying:

dyt = −∇F (yt) dt+
√

2 dWt

and starting at y0 ∼ ρ∗. From the proof of Theorem 3, we know that this implies yt ∼ ρ∗ for

all t ∈ R+. We also assume that the same Wiener process drives both (yt)t∈R+ and (xk)
∞
k=0.

Furthermore we assume that x0 and y0 are optimally coupled so that:

W 2
2 (ρ0, ρ

∗) = E
[
‖x0 − y0‖2

2

]
Let k ∈ N. We bound

∥∥xk+1 − y(k+1)α

∥∥2

2
in the same way as in Theorem 7, replacing ∇F (xk)

by ∇f(xk, ζk) to get, for a free parameter β > 0:∥∥xk+1 − y(k+1)α

∥∥2

2

≤ (1 + β) ‖xk − ykα − α [∇f(xk, ζk)−∇F (ykα)]‖2
2 + (1 + β−1)

∥∥∥∥∥
∫ (k+1)α

kα

[∇F (ys)−∇F (ykα)] ds

∥∥∥∥∥
2

2

The expectation of the second term is bounded by 3α3L2d as we showed in the proof of

Theorem 7. For the first term, we take expectation over ζk, conditional on (ζt)
k−1
t=0 to get:

E
[
‖xk − ykα − α [∇f(xk, ζk)−∇F (ykα)]‖2

2

]
= ‖xk − ykα‖2

2 − 2α〈E [∇f(xk, ζk)]−∇F (ykα), xk − ykα〉+ α2E
[
‖∇f(xk, ζk)−∇F (ykα)‖2

2

]
= ‖xk − ykα‖2

2 − 2α〈∇F (xk)−∇F (ykα), xk − ykα〉+ α2E
[
‖∇f(xk, ζk)−∇F (ykα)‖2

2

]
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where the last line follows from Lemma 7. We now bound the last term as:

E
[
‖∇f(xk, ζk)−∇F (ykα)‖2

2

]
= E

[
‖∇f(xk, ζk)−∇f(ykα, ζk) +∇f(ykα, ζk)−∇F (ykα)‖2

2

]
≤ 2E

[
‖∇f(xk, ζk)−∇f(ykα, ζk)‖2

2

]
+ 2E

[
‖∇f(ykα, ζk)−∇F (ykα)‖2

2

]
≤ 4Lsup [F (xk)− F (ykα)− 〈∇F (ykα), xk − ykα〉] + 2E

[
‖∇f(ykα, ζk)−∇F (ykα)‖2

2

]
where we uses Lemma 3 for the first inequality, and Lemma 9 for the second. Replacing and

using the strong convexity of F to bound the inner product term we obtain:

E
[
‖xk − ykα − α [∇f(xk, ζk)−∇F (ykα)]‖2

2

]
≤ (1− αµ) ‖xk − ykα‖2

2 + α (2αLsup − 1) [F (xk)− F (ykα)− 〈∇F (ykα), xk − ykα〉] +

2α2E
[
‖∇f(ykα, ζk)−∇F (ykα)‖2

2

]
≤ (1− αµ) ‖xk − ykα‖2

2 + 2α2E
[
‖∇f(ykα, ζk)−∇F (ykα)‖2

2

]
where the last inequality follows from the positivity of the term in brackets due to the

convexity of F and the condition on the step size. Replacing in the original bound and

taking expectation with respect to all the randomness we obtain:

E
[∥∥xk+1 − y(k+1)α

∥∥2

2

]
≤ (1 + β)(1− αµ)E

[
‖xk − ykα‖2

2

]
+ 3(1 + β−1)α3L2d+ 2α2σ2(ρ∗)

Taking β = αµ/2 < 1 the first coefficient is bounded by:(
1 +

αµ

2

)
(1− αµ) ≤

(
1− αµ

2

)
while the second is bounded by:

(1 + β−1) ≤ 2β−1 =
4

αµ

so that our bound is:

E
[∥∥xk+1 − y(k+1)α

∥∥2

2

]
≤
(

1− αµ

2

)
E
[
‖xk − ykα‖2

2

]
+ 12α2κLd+ 2α2σ2(ρ∗)

Applying this inequality recursively, and bounding the resulting geometric sums we get:

E
[
‖xk − ykα‖2

2

]
≤
(

1− αµ

2

)k
E
[
‖x0 − y0‖2

2

]
+ 24ακ2d+

4ασ2(ρ∗)

µ
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By minimality of the coupling defining the Wasserstein distance we get:

W 2
2 (ρk, ρ

∗) ≤ E
[
‖xk − ykα‖2

2

]
and by the fact that x0 and y0 are optimally coupled we obtain the stated result.

Corollary 6. Let ε > 0, and let (xk)
∞
k=0 be the Markov chain simulated by Algorithm 4 with

step size:

αk = α = min

{
1

2Lsup
,

εµ

48κ2dµ+ 8σ2(ρ∗)

}
If:

k ≥ max

{
2κsup,

48κ2dµ+ 8σ2(ρ∗)

εµ2

}
log

(
2 ‖x0 − x∗‖2

2

ε

)
Then:

W 2
2 (ρk, ρ

∗) ≤ ε

where ρk is the distribution of xk.
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Chapter 5

Finite Sum Algorithms

In this chapter, we come back to the problem that motivated us from the start: the case

where F has a finite sum structure. In particular, using the notation of the previous chapter,

if ζ is uniformly distributed over [n], then F can be written as, after defining fζ(x) := f(x, ζ):

F (x) := E [fζ(x)] =
1

n

n∑
i=1

fi(x) (5.1)

We will write Li for the smoothness constant of fi, and define Lmax := maxi∈[n] Li = Lsup.

The maximum condition number is κmax := Lmax/µ.

As an aside, note that the particular form of F in (5.1) can be obtained for more general

random variables ζ, all that is required is for ζ to have finite support (ζi)
n
i=1, in which case

we have:

F (x) = E [f(x, ζ)] =
n∑
i=1

pif(x, ζi)

where pi = P(ζ = ζi). We then recover the form (5.1) after defining fi(x) = npif(x, ζi).

The underlying assumption we will be making in this chapter, which further separates

our setup here from the one of chapter 4, is that we have the ability to pick any function

from (fi)
n
i=1 by its index. In particular, as opposed to the oracle of the previous chapter

which took as input a point x ∈ Rd, internally generated ζ, and returned ∇f(x, ζ), here we

will assume that our oracle takes as input a point x ∈ Rd and an index i ∈ [n] and returns

∇fi(x). This gives us extra freedom in how we generate the index i, and allows us to identify
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a particular gradient estimate ∇fi(x) with its index. The main point of this chapter will be

to show that we can leverage the finite sum structure of F and this more powerful oracle to

build better algorithms.

The main idea of SGD and SGLD from chapter 4 is that of replacing the gradient ∇F (x)

by the unbiased estimate ∇f(x, ζ) provided by the oracle. We can replicate this idea in our

case using our more powerful oracle as follows. We first sample an index i uniformly from

[n], and then call our oracle to obtain the unbiased estimate ∇fi(x) of ∇F (x). We then get

the convergence guarantees of the previous chapter.

We can do better. In parallel to the sequence (xk)
∞
k=0, we maintain the sequence ((gik)

n
i=1)∞k=0

defined recursively as follows:

gik+1 =

∇fi(xk) if i = ik

gik otherwise

for an arbitrary initialization (gi0)ni=1 and where ik is the index sampled at iteration k. The

goal of this sequence is to track the component gradients ∇fi(xk) as much as possible, while

introducing no extra computational cost. Now consider the naive decomposition:

∇F (xk) = ∇fik(xk)−∇fik(xk) +
1

n

n∑
i=1

∇fi(xk)

approximating ∇fi(xk) ≈ gik, we arrive at the unbiased estimate:

∇F (xk) ≈ ∇fik(xk)− gikk +
1

n

n∑
i=1

gik

Using this estimate we arrive at the following Algorithms.

53



5.1 Algorithms

5.1.1 Controlled Stochastic Gradient Descent

Algorithm 5: Controlled Stochastic Gradient Descent (CSGD)

Parameters: step sizes (αk)
∞
k=1 > 0

Initialization: x0 ∈ Rd, (gi0)ni=1 ∈ Rd

for k = 0, 1, 2, . . . do

sample ik uniformly from [n]

xk+1 = xk − αk
(
∇fik(xk)− gikk + 1

n

∑n
i=1 g

i
k

)
gik+1 =

∇fi(xk) if i = ik

gik otherwise

end

5.1.2 Controlled Stochastic Gradient Langevin Dynamics

Algorithm 6: Controlled Stochastic Langevin Dynamics (CSGLD)

Parameters: step sizes (αk)
∞
k=1 > 0

Initialization: x0 ∈ Rd, (gi0)ni=1 ∈ Rd

for k = 0, 1, 2, . . . do

sample ξk ∼ N (0, Id×d)

sample ik uniformly from [n]

xk+1 = xk − αk
(
∇fik(xk)− gikk + 1

n

∑n
i=1 g

i
k

)
+
√

2αk ξk

gik+1 =

∇fi(xk) if i = ik

gik otherwise

end
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5.2 Convergence Analysis

5.2.1 Convergence of Controlled Stochastic Gradient Descent

Theorem 10. Let (xk, (g
i
k)
n
i=1)∞k=0 be the sequence generated by Algorithm 5 with αk = α

satisfying:

α ≤ 1

5Lmax

Then:

E
[
‖xk − x∗‖2

2

]
≤ (1− λ)k T 0

where:

λ := min

{
1

5n
, αµ

}
and:

T k :=
α

2Lmax

n∑
i=1

∥∥gik −∇fi(x∗)∥∥2

2
+ ‖xk − x∗‖2

2

Proof. We bound E
[
T k+1

]
. Unless otherwise mentioned, all expectations in this proof are

with respect to ik conditional on (it)
k−1
t=0 . The first term of E

[
T k+1

]
is bounded by:

E

[
n∑
i=1

∥∥gik+1 −∇fi(x∗)
∥∥2

2

]

=
n∑
j=1

P(ik = j)

 n∑
i=1
i 6=j

∥∥gik −∇fi(x∗)∥∥2

2
+ ‖∇fj(xk)−∇fj(x∗)‖2

2


=

n∑
j=1

1

n

(
n∑
i=1

∥∥gik −∇fi(x∗)∥∥2

2
−
∥∥gjk −∇fj(x∗)∥∥2

2
+ ‖∇fj(xk)−∇fj(x∗)‖2

2

)

=

(
1− 1

n

) n∑
i=1

∥∥gik −∇fi(x∗)∥∥2

2
+ E

[
‖∇fik(xk)−∇fik(x∗)‖2

2

]
≤
(

1− 1

n

) n∑
i=1

∥∥gik −∇fi(x∗)∥∥2

2
+ 2Lmax [F (xk)− F (x∗)]

where the first equality follow from the update of (gik)
n
i=1 in Algorithm 5, and the last line
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follows from Lemma 9. The second term of E
[
T k+1

]
is bounded by:

E
[
‖xk+1 − x∗‖2

2

]
= E

∥∥∥∥∥xk − α
(
∇fik(xk)− gikk +

1

n

n∑
i=1

gik

)
− x∗

∥∥∥∥∥
2

2


= ‖xk − x∗‖2

2 − 2α

〈
E

[
∇fik(xk)− gikk +

1

n

n∑
i=1

gik

]
, xk − x∗

〉
+ E

∥∥∥∥∥∇fik(xk)− gikk +
1

n

n∑
i=1

gik

∥∥∥∥∥
2

2


= ‖xk − x∗‖2

2 − 2α〈∇F (xk), xk − x∗〉+ E

∥∥∥∥∥∇fik(xk)− gikk +
1

n

n∑
i=1

gik

∥∥∥∥∥
2

2


We bound the last term as follows:

E

∥∥∥∥∥∇fik(xk)− gikk +
1

n

n∑
i=1

gik

∥∥∥∥∥
2

2


= E

∥∥∥∥∥∇fik(xk)−∇fik(x∗) +∇fik(x∗)− gikk +
1

n

n∑
i=1

gik

∥∥∥∥∥
2

2


≤ 2E

[
‖∇fik(xk)−∇fik(x∗)‖2

2

]
+ 2E

∥∥∥∥∥∇fik(x∗)− gikk −

(
∇F (x∗)− 1

n

n∑
i=1

gik

)∥∥∥∥∥
2

2


≤ 4Lmax [F (xk)− F (x∗)] + 2E

[∥∥∇fik(x∗)− gikk
∥∥2

2

]
where the first inequality follows from Lemma 3 with β = 1 and ∇F (x∗) = 0, and the second

from Lemma 9 and the fact that for a random vector X:

E
[
‖X − E [X]‖2

2

]
= E

[
‖X‖2

2

]
− ‖E [X]‖2

2 ≤ E
[
‖X‖2

2

]
Putting together all the inequalities we get:

E
[
T k+1

]
≤
(

1− 1

n
+

4αLmax
n

)
α

2Lmax

n∑
i=1

∥∥gik −∇fi(x∗)∥∥2

2
+ (1− αµ) ‖xk − x∗‖2

2 +

α (4αLmax − 1) [F (xk)− F (x∗)]

≤
(

1− 1

5n

)
α

2Lmax

n∑
i=1

∥∥gik −∇fi(x∗)∥∥2

2
+ (1− αµ) ‖xk − x∗‖2

2

≤ (1− λ)T k
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where the second line follows from the condition on the step size, and the last from the

definition of λ. Taking expectation over all of the randomness of both sides, applying this

inequality recursively, and noticing that:

E
[
‖xk − x∗‖2

2

]
≤ E

[
T k
]

we get the result.

5.2.2 Convergence of Controlled Stochastic Gradient Langevin

Dynamics

Theorem 11. Let (xk, (g
i
k)
n
i=1) be the Markov chain simulated by Algorithm 6 with a constant

step size αk = α satisfying:

α ≤ 1

14Lmax

Then:

W 2
2 (ρk, ρ

∗) ≤ (1− λ)k

(
W 2

2 (ρ0, ρ
∗) +

α

2Lmax
E

[
n∑
i=1

∥∥gik −∇fi(y)
∥∥2

2

])
+

96ακmaxn
2d (2κmax + 7αnLmax)

where y ∼ ρ∗ and:

λ := min

{
1

7n
,
αµ

2

}
Proof. As usual, we proceed using a coupling argument. Consider a Langevin diffusion

process (yt)t∈R+ satisfying:

dyt = −∇F (yt) dt+
√

2 dWt

and starting at y0 ∼ ρ∗. From the proof of Theorem 3, we know that this implies yt ∼ ρ∗ for

all t ∈ R+. We also assume that the same Wiener process drives both (yt)t∈R+ and (xk)
∞
k=0.

Furthermore we assume that x0 and y0 are optimally coupled so that:

W 2
2 (ρ0, ρ

∗) = E
[
‖x0 − y0‖2

2

]
Finally we define the sequence ((hik)

n
i=1)∞k=0 with respect to (ykα)∞k=0 similarly to how ((gik)

n
i=1)∞k=0

is defined with respect to (xk)
∞
k=0. In particular, we initialize:

hi0 = ∇fi(y0)
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and perform the update:

hik+1 =

∇fi(ykα) if i = ik

hik otherwise

Let k ∈ N. We study the evolution of the Lyapunov function:

T k :=
α

2Lmax

n∑
i=1

∥∥gik − hik∥∥2

2
+ ‖xk − ykα‖2

2

Let us bound E
[
T k+1

]
. We start with the first term. Taking expectation with respect to ik

conditional on (it)
k−1
t=1 have:

E

[
n∑
i=1

∥∥gik+1 − hik+1

∥∥2

2

]

=
n∑
j=1

P(ik = j)

 n∑
i=1
i 6=j

∥∥gik − hik∥∥2

2
+ ‖∇fj(xk)−∇fj(ykα)‖2

2


=

n∑
j=1

1

n

(
n∑
i=1

∥∥gik − hik∥∥2

2
−
∥∥gjk − hjk∥∥2

2
+ ‖∇fj(xk)−∇fj(ykα)‖2

2

)

=

(
1− 1

n

) n∑
i=1

∥∥gik − hik∥∥2

2
+ E

[
‖∇fik(xk)−∇fik(ykα)‖2

2

]
≤
(

1− 1

n

) n∑
i=1

∥∥gik − hik∥∥2

2
+ 2Lmax [F (xk)− F (ykα)− 〈∇F (ykα), xk − ykα〉]

For the second term
∥∥xk+1 − y(k+1)α

∥∥2

2
we bound it in the same way as in Theorem 7, replacing

∇F (xk) by
(
∇fik(xk)− gikk + 1

n

∑n
i=1 g

i
k

)
to get, for a free parameter β > 0:

∥∥xk+1 − y(k+1)α

∥∥2

2

≤ (1 + β)

∥∥∥∥∥xk − ykα − α
[(
∇fik(xk)− gikk +

1

n

n∑
i=1

gik

)
−∇F (ykα)

]∥∥∥∥∥
2

2

+

(1 + β−1)

∥∥∥∥∥
∫ (k+1)α

kα

[∇F (ys)−∇F (ykα)] ds

∥∥∥∥∥
2

2

The expectation of the second term is bounded by 3α3L2d as we showed in the proof of
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Theorem 7. For the first term, we take expectation over ik, conditional on (it)
k−1
t=0 to get:

E

∥∥∥∥∥xk − ykα − α
[(
∇fik(xk)− gikk +

1

n

n∑
i=1

gik

)
−∇F (ykα)

]∥∥∥∥∥
2

2


= ‖xk − ykα‖2

2 − 2α

〈
E

[
∇fik(xk)− gikk +

1

n

n∑
i=1

gik

]
−∇F (ykα), xk − ykα

〉

+ α2E

∥∥∥∥∥∇fik(xk)− gikk +
1

n

n∑
i=1

gik −∇F (ykα)

∥∥∥∥∥
2

2


= ‖xk − ykα‖2

2 − 2α〈∇F (xk)−∇F (ykα), xk − ykα〉

+ α2E

∥∥∥∥∥
(
∇fik(xk)− gikk +

1

n

n∑
i=1

gik

)
−∇F (ykα)

∥∥∥∥∥
2

2


We now bound the last term as follows. First let us rewrite the term inside the squared

norm as: (
∇fik(xk)− gikk +

1

n

n∑
i=1

gik

)
−∇F (ykα)

=

(
∇fik(xk)− gikk +

1

n

n∑
i=1

gik

)
−

(
∇fik(ykα)− hikk +

1

n

n∑
i=1

hik

)
+(

∇fik(ykα)− hikk +
1

n

n∑
i=1

hik

)
−∇F (ykα)

= [∇fik(xk)−∇fik(ykα)] +

[
hikk − g

ik
k −

(
1

n

n∑
i=1

hik −
1

n

n∑
i=1

gik

)]
+[

∇fik(ykα)− hikk −

(
∇F (ykα)− 1

n

n∑
i=1

hik

)]

Using Lemma 3, and the fact that E
[
‖X − E [X]‖2

2

]
= E

[
‖X‖2

2

]
−‖E [X]‖2

2 ≤ E
[
‖X‖2

2

]
, we

therefore have the bound:

E

∥∥∥∥∥
(
∇fik(xk)− gikk +

1

n

n∑
i=1

gik

)
−∇F (ykα)

∥∥∥∥∥
2

2


≤ 3E

[
‖∇fik(xk)−∇fik(ykα)‖2

2

]
+ 3E

[∥∥gikk − hikk ∥∥2

2

]
+ 3E

[∥∥∇fik(ykα)− hikk
∥∥2

2

]
≤ 6Lmax [F (xk)− F (ykα)− 〈∇F (ykα), xk − ykα〉)] + 3E

[∥∥gikk − hikk ∥∥2

2

]
+ 3E

[∥∥∇fik(ykα)− hikk
∥∥2

2

]
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The last term is:

E
[∥∥∇fik(ykα)− hikk

∥∥2

2

]
=

1

n

n∑
i=1

∥∥∇fi(ykα)− hik
∥∥2

2

We can bound the expectation of each term as follows. Taking expectation with respect to

all sources of randomness we have:

E
[∥∥∇fi(ykα)− hik

∥∥2

2

]
=

k−1∑
j=0

P(hik = ∇fi(yjα))E
[
‖∇fi(ykα)−∇fi(yjα)‖2

2

]
=

k−1∑
j=0

P(ij = i, ij+1 6= i, . . . , ik−1 6= i)E
[
‖∇fi(ykα)−∇fi(yjα)‖2

2

]
=

k−1∑
j=0

1

n

(
1− 1

n

)k−j−1

E
[
‖∇fi(ykα)−∇fi(yjα)‖2

2

]
≤ L2

max

n

k−1∑
j=0

(
1− 1

n

)k−j−1

E
[
‖ykα − yjα‖2

2

]
Let us bound the inner expectation:

E
[
‖ykα − yjα‖2

2

]
= E

[∥∥∥∥∫ kα

jα

−∇F (yt) dt+
√

2 (W (kα)−W (jα))

∥∥∥∥2

2

]

≤ 2E

[∥∥∥∥∫ kα

jα

∇F (yt) dt

∥∥∥∥2

2

]
+ 4E

[
‖W (kα)−W (jα)‖2

2

]
≤ 2

∥∥∥∥∫ kα

jα

∇F (yt) dt

∥∥∥∥2

L2

+ 4E
[
‖W (kα)−W (jα)‖2

2

]
≤ 2

(∫ kα

jα

‖∇F (yt)‖L2
dt

)2

+ 4α(k − j)d

= 2E
[
‖∇F (y0)‖2

2

](∫ kα

jα

dt

)2

+ 4α(k − j)d

≤ 2α2Ld(k − j)2 + 4α(k − j)d
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replacing we get:

E
[∥∥∇fi(ykα)− hik

∥∥2

2

]
≤ L2

max

n

[
2α2Ld

k−1∑
j=0

(
1− 1

n

)k−j−1

(k − j)2 + 4αd
k−1∑
j=0

(
1− 1

n

)k−j−1

(k − j)

]

≤ L2
max

n

[
2α2Ld

k∑
j=1

j2

(
1− 1

n

)j−1

+ 4αd
k∑
j=1

j

(
1− 1

n

)j−1
]

≤ L2
max

n

[
2α2Ld

∞∑
j=1

j2

(
1− 1

n

)j−1

+ 4αd
∞∑
j=1

j

(
1− 1

n

)j−1
]

≤ 4α2n2L2
maxLd+ 4αnL2

maxd

≤ 4αnL2
maxd (αnL+ 1)

Collecting all the bounds and taking β = (αµ)/2 we obtain:

E
[
T k+1

]
≤
(

1− 1

n
+

12αLmax
n

)
α

2Lmax

n∑
i=1

∥∥gik − hik∥∥2

2
+
(

1− αµ

2

)
‖xk − ykα‖2

2 +

α (6αLmax − 1) [F (xk)− F (ykα)− 〈∇F (ykα), xkα − ykα〉] +

12α2κLd+ 48α2nκmaxLmaxd (αnL+ 1)

≤ (1− λ)E
[
T k
]

+ 96α2n2κmaxLmaxd

Applying this inequality recursively, and bounding the resulting geometric sum we get the

result after noticing that:

W 2
2 (ρk, ρ

∗) ≤ E
[
‖xk − ykα‖2

2

]
≤ E

[
T k
]
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