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Abstract

What property of the data distribution determines the excess risk of principal com-
ponent analysis? In this paper, we provide a precise answer to this question. We
establish a central limit theorem for the error of the principal subspace estimated by
PCA, and derive the asymptotic distribution of its excess risk under the reconstruc-
tion loss. We obtain a non-asymptotic upper bound on the excess risk of PCA that
recovers, in the large sample limit, our asymptotic characterization. Underlying our
contributions is the following result: we prove that the negative block Rayleigh quo-
tient, defined on the Grassmannian, is generalized self-concordant along geodesics
emanating from its minimizer of maximum rotation less than π/4.

1 Introduction

Principal Component Analysis (PCA) is a core method of machine learning and statistics, prized
for its simplicity and consistently strong empirical performance across diverse tasks. In contrast,
analyzing its theoretical performance is challenging: an explicit characterization of its asymptotic
excess risk is known for the special case of Gaussian data [RW20], while non-asymptotic results on
the excess risk are in general limited to upper bounds [Sha+05; BBZ07; Nad08; RW20].

Traditionally, two main approaches have been adopted to analyze PCA. In the first, it is treated as a
plug-in estimator: the empirical covariance replaces the population one, and its principal components
estimate the true ones. Matrix perturbation bounds [SS90], most famously the Davis-Kahan theorem
[DK70; YWS15], are then used to control the error of PCA by the deviation of the empirical
covariance from the population one. In the second approach, adopted in [Sha+05; BBZ07], PCA is
viewed as an instance of empirical risk minimization, for which variants of the uniform convergence
analysis apply. Unfortunately, neither of these approaches leads to provably accurate bounds.

The recent work of Reiss and Wahl [RW20] takes a different approach and analyzes the projector
found by PCA directly, building on earlier work of Dauxois et al. [DPR82] who established its
asymptotic normality. The excess risk bounds obtained therein are powerful enough that under
Gaussian data and certain eigenvalue decay assumptions, they recover the leading term in the exact
asymptotic expansion of the excess risk. In the general case, however, asymptotically tight bounds do
not appear to be available in the existing literature.

In this paper, we take a different approach that allows us, among other things, to obtain such bounds:
we view PCA as an M-estimator, and use tools from the theory of asymptotic statistics [Van00], and
its accompanying non-asymptotic theory [e.g. OB21], to analyze its performance. From this point of
view, PCA is similar to linear regression with ordinary least squares. A significant difference, and a
major source of difficulty, resides in the nature of their respective search spaces: for linear regression,
it is Rd, whereas for PCA, it is the manifold of k-dimensional subspaces of Rd - the Grassmannian
[e.g. EAS98]. We build extensively on the accessible expositions in [Bou23; BZA24] to overcome
this difficulty.
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Our contributions are as follows. In Theorem 1, we establish a central limit theorem for the error
of the principal subspace obtained by PCA, and use this result to obtain the asymptotic distribution
of its excess risk under the reconstruction loss, all under a necessary moment assumption. We then
establish, in Theorem 2, a non-asymptotic upper bound on the excess risk that, in the large-sample
limit, accurately recovers our asymptotic characterization. At the heart of our analysis is the following
key result (Proposition 1): we prove that the reconstruction risk is generalized self-concordant — in a
sense analogous to the one introduced by Bach [Bac10] in his analysis of logistic regression - when
restricted to geodesics originating from its global minimizer of maximum rotation less than π/4.

The rest of the paper is organized as follows. In Section 2 we formalize our problem and provide an
overview of the Grassmann manifold, restricting ourselves to the objects needed to state our theorems.
In Section 3 we characterize the asymptotic performance of PCA. In Section 4 we establish the
self-concordance of the reconstruction risk. In Section 5 we provide a non-asymptotic bound on the
error of PCA, and conclude with a discussion in Section 6. Proofs of our statements are provided in
the Appendix.

2 Problem setup & Background

The goal of linear dimensionality reduction is to project high-dimensional data onto a lower dimen-
sional subspace while preserving as much information about the original data as possible. Specifically,
given i.i.d. data points (Xi)

n
i=1 in Rd and a choice of dimension k ∈ [d], PCA finds an orthogonal

projector UUT ∈ Rd×d onto a k-dimensional subspace of Rd such that the following empirical
reconstruction error is as small as possible

R̃n(U) :=
1

2n

n∑
i=1

∥Xi − UUTXi∥22. (1)

HereU ∈ Rd×k is a matrix whose columns form an orthonormal basis of the aforementioned subspace.
Denote by Σn := n−1

∑n
i=1XiX

T
i the empirical covariance matrix, and fix an orthonormal basis

(un,j)
d
j=1 of eigenvectors of Σn, ordered non-increasingly according to their eigenvalues, with ties

broken arbitrarily. The d× k matrix Un whose j-th column is un,j is a minimizer of (1).

Typically, however, we care about the population reconstruction error of this projector. If X is a
random vector with the same distribution as that of the data points, this error is given by

R̃(U) :=
1

2
E[∥X − UUTX∥22]. (2)

Denote by Σ := E[XXT ] the population covariance matrix, and fix an orthonormal basis (uj)dj=1 of
eigenvectors of Σ, ordered non-increasingly according to their eigenvalues (λj)dj=1, with ties broken
arbitrarily. The d× k matrix U∗ whose j-th column is uj is a minimizer of (2).

A redundancy in the parametrization. The analysis of PCA is complicated by the fact that the
map U 7→ UUT is a redundant parametrization of the set of orthogonal projectors. Fortunately, this
redundancy is well-structured: two such matrices U, V represent the same projector (i.e. UUT =
V V T ) if and only if there exists an orthogonal matrix Q ∈ Rk×k such that V = UQ. This defines an
equivalence relation ∼ on the set St(d, k) :=

{
U ∈ Rd×k | UTU = Ik

}
. The space of equivalence

classes under this relation is known as the Grassmann manifold Gr(d, k) := St(d, k)/ ∼. We denote
a generic element in this space by [U ].

To gain some intuition about this abstract set, note that every element of Gr(d, k) can be identified
with a k-dimensional subspace of Rd through the map that sends [U ] to the column space of U .
Therefore for the sake of intuition we can think of [U ] as the column space of U . In the special case
of Gr(3, 2), which we will use as a running example, we can visualize [U ] as a plane passing through
the origin embedded in 3 dimensions.

Equipped with this new space, we define our final population and empirical risks by R([U ]) := R̃(U)

and Rn([U ]) := R̃n(U), and note that, with the definitions of Un and U∗ given above,

[U∗] ∈ argmin
[U ]∈Gr(d,k)

R([U ]), [Un] ∈ argmin
[U ]∈Gr(d,k)

Rn([U ]). (3)
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To be precise, we will call PCA the abstract procedure that takes as input (Xi)
n
i=1 and outputs the

subspace [Un], even though in practice it returns the representative Un. In this paper, our goal is to
understand the performance of this procedure in terms of the distribution of X , as measured both by
how close [Un] is to [U∗], and by the excess risk R([Un])−R([U∗]).

2.1 Background on the Grassmann manifold

Our analysis takes place on the Grassmannian Gr(d, k), which admits the structure of a Riemannian
manifold. In this section, we give a high-level description of the objects needed to state our results.
For a more rigorous yet accessible introduction, see for example [BZA24] and [Bou23, Chapter 9].
Throughout, we let [U ], [V ] ∈ Gr(d, k) and let U, V ∈ St(d, k) be corresponding representatives.

Tangent space. The tangent space of Gr(d, k) at [U ], denoted by T[U ] Gr(d, k), is a vector space of
dimension k(d− k). Our results are stated in terms of a more concrete, yet equivalent, set

HU :=
{
∆ ∈ Rd×k | UT∆ = 0

}
. (4)

For our purposes, HU is easier to work with and there exists a canonical, invertible, linear map1

liftU : T[U ] Gr(d, k) → HU that lifts tangent vectors ξ ∈ T[U ] Gr(d, k) into HU . The elements of
HU can be thought of concretely as “velocities” in the sense that the basis U with “velocity” liftU (ξ)
moves infinitesimally to “U + ϵ liftU (ξ)” while remaining an orthonormal basis. By requiring that
liftU (ξ) has columns in the orthogonal complement of U , we are guaranteed that the subspace [U ]
changes when U moves in the direction of liftU (ξ).

The tangent space is equipped with an inner product ⟨·, ·⟩[U ] known as the Riemannian metric at [U ].
To calculate ⟨·, ·⟩[U ], we lift tangent vectors into HU and apply the Frobenius inner product,

⟨ξ1, ξ2⟩[U ] = ⟨liftU (ξ1), liftU (ξ2)⟩F , (5)

for all ξ1, ξ2 ∈ T[U ] Gr(d, k).

Geodesics and the exponential map. Let ξ ∈ T[U ] Gr(d, k). The geodesic starting at [U ] in the
direction ξ is the curve γ : [0, 1] → Gr(d, k) with γ(0) = [U ] of constant velocity ξ. Intuitively, one
may think of γ(t) as the straight line "[U ] + tξ", in the sense that γ is a curve with zero acceleration,
properly defined. γ(t) can be calculated with the SVD liftU (ξ) = PSQT 2 via the identity

γ(t) := [UQ cos(tS)QT + P sin(tS)QT ]. (6)

The exponential map at [U ] in the direction ξ is then defined by Exp[U ](ξ) = γ(1). Returning to our
running example, Gr(3, 2), these geodesics correspond to "constant velocity" rotations of the plane
[U ] along the pitch or roll axes, as specified by the directions of the columns of liftU (ξ), and the
extent of rotation between [U ] and Exp[U ](ξ) depends on the magnitudes of the columns of liftU (ξ).

Principal angles and Riemannian distance. The j-th principal angle θj([U ], [V ]) ∈ [0, π/2] is
defined by cos(θj([U ], [V ])) = sj where sj is the j-th largest singular value of UTV . These angles
generalize the notion of angles between lines to angles between subspaces, and they measure the
magnitude of the most efficient rotation that aligns [U ] with [V ]. For Gr(d, k), the principal angles
give us an explicit expression for the Riemannian distance between [U ] and [V ], which, properly
defined, is the length of a shortest curve connecting [U ] and [V ],

dist2([U ], [V ]) :=

k∑
j=1

θ2j ([U ], [V ]). (7)

Logarithmic map. Where well-defined, the logarithmic map at [U ] evaluated at [V ] is the inverse
of the exponential map, i.e., Exp[U ](Log[U ]([V ])) = [V ]. It can be thought of as "[V ]− [U ]". For
Gr(d, k), the logarithmic map can be calculated by liftU (Log[U ]([V ])) = (P arctan(S)QT ) where
(I − UUT )V (UTV )−1 = PSQT is a SVD. This map is only well-defined for θk([U ], [V ]) < π/2.
The singular values of liftU (Log[U ]([V ])) are the principal angles, and hence the following holds
∥liftU (Log[U ]([V ]))∥F = dist([U ], [V ]), see also [AV24]. In Gr(3, 2), the logarithmic map at [U ]

evaluated at [V ] gives us the most efficient rotation that transforms the plane [U ] into [V ].
1The inverse of the differential of the quotient map U 7→ [U ] at U restricted to HU .
2P ∈ Rd×k, S ∈ Rk×k, Q ∈ Rk×k.

3



3 Asymptotic characterization

Before stating our first main result, we briefly recap our notation. The empirical and population
covariance matrices are denoted by Σn = n−1

∑n
i=1XiX

T
i and Σ = E[XXT ], (un,j) is an

orthonormal basis of eigenvectors of Σn ordered non-increasingly according their corresponding
eigenvalues, and (uj) is an orthonormal basis of eigenvectors of Σ ordered non-increasingly according
to their corresponding eigenvalues (λj). Un ∈ St(d, k) is the matrix whose j-th column is un,j , and
corresponds to the output of PCA, while U∗ ∈ St(d, k) is the matrix whose j-th column is uj .

We further define U⊥
∗ ∈ St(d, d− k) to be the matrix whose i-th column is uk+i. It is easy to verify

that the map Γ 7→ U⊥
∗ Γ for (d−k)×k matrices Γ is linear and its image isHU∗ as defined in (4). It is

invertible and preserves the Frobenius inner product, soHU∗ can be identified with R(d−k)×k through
it. Finally, recall that the logarithm at [U∗] of [Un] is only well-defined when all the principal angles
between them are strictly less than π/2. In what follows, this logarithm can be defined arbitrarily
when this condition fails - the validity of the statement is unaffected by this choice.

The following is the first main result of the paper.
Theorem 1. Assume that λk > λk+1, E[∥X∥22] is finite, and for all i, s ∈ [d− k] and j, t ∈ [k],

Λijst := E[⟨uk+i, X⟩⟨uj , X⟩⟨uk+s, X⟩⟨ut, X⟩] (8)

is finite. Define δij := λj − λk+i. Then as n→ ∞, the following holds.

• Consistency:
P(dist([Un], [U∗]) > ε) → 0,

for all ε > 0, where dist is the Riemannian distance given by (7).

• Asymptotic normality:
√
n · liftU∗(Log[U∗]([Un]))

d−→ U⊥
∗ G, (9)

where G is a mean zero (d− k)× k Gaussian matrix with E[GijGst] = Λijst/δijδst.

• Excess risk:
n · [R([Un])−R([U∗])]

d→ 1

2
∥H∥2F , (10)

where H is a mean zero (d− k)× k Gaussian matrix with E[HijHst] = Λijst/
√
δijδst.

Under an eigengap and moment condition, Theorem 1 characterizes the performance of PCA in
the large sample limit. The consistency statement says that, with enough data, the principal sub-
space found by PCA gets arbitrarily close to the true one under the Riemannian distance (7) with
overwhelming probability. The asymptotic normality result refines this statement: it says that the
fluctuations of PCA around the true principal subspace are asymptotically normal with the prescribed
covariance structure. Finally, the last statement expresses the asymptotic distribution of the excess
risk as the squared Frobenius norm of a Gaussian matrix.

Relationship with existing work and assumptions. The consistency result is a direct consequence
of the Davis-Kahan theorem [DK70]. To the best of our knowledge, the asymptotic normality result
in Theorem 1 is new. The finiteness of (8) is necessary, in the same way that finite variance is for
the classical central limit theorem. Tripuraneni et al. [Tri+18] obtained a similar expression for the
asymptotic variance of averaged Riemannian SGD on PCA, albeit under an unverified assumption.
Dauxois et al. [DPR82] established the asymptotic normality of the Euclidean fluctuations of empirical
projectors and eigenvectors - our result may be viewed as a Riemannian analogue of theirs. Under the
eigengap condition, the excess risk bound in Theorem 1 extends the result of Reiss and Wahl [RW20,
Proposition 2.14]. While their statement is restricted to Gaussian data, the underlying argument
carries over directly to any distribution with finite fourth moments. Theorem 1 strengthens this result
further by requiring only the finiteness of (8). A detailed discussion of the eigengap condition is
deferred to Section 6; for now, we simply note that it is a mild assumption.

Our main interest is in the excess risk, as it directly measures how well PCA performs on the
reconstruction task. Corollary 1 below offers a more interpretable version of the result in Theorem 1,
and serves as a benchmark for our non-asymptotic analysis. To motivate it, we briefly digress.
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Performance guarantees in machine learning are typically stated as: with probability at least 1− δ,
the excess risk is at most some quantity. While intuitive, the accuracy of such statements is hard to
quantify: what is a "high-probability lower bound"? This ambiguity can be avoided by interpreting
such statements as upper bounds on the 1− δ quantile of the excess risk. Specifically, recall that for a
random variable Z, its 1− δ quantile, for δ ∈ [0, 1], is defined by

QZ(1− δ) := inf{t ∈ R | P(Z ≤ t) ≥ 1− δ}.

In words, this quantile describes the best upper bound on the random variable Z that holds with
probability at least 1 − δ. We may then make sense of a "high-probability lower bound" on the
excess risk as a lower bound on its 1− δ quantile. The following corollary, a simple consequence of
Gaussian concentration, gives matching upper and lower bounds on the asymptotic quantiles of the
excess risk.
Corollary 1. In the setting of Theorem 1, and for all δ ∈ [0, 0.1)

lim
n→∞

n ·QEn
(1− δ) ≍

d−k∑
i=1

k∑
j=1

E[⟨uk+i, X⟩2⟨uj , X⟩2]
λj − λk+i

+ 2τ2 log(1/δ),

where En = R([Un])−R([U∗]) is the excess risk of PCA, τ2 = sup∥A∥F=1 E[⟨A,H⟩2F ], and a ≍ b

means that cb ≤ a ≤ Cb for some C, c > 0. Here C = 1 and c = 1/64 are valid choices.

To interpret this statement, it will be useful to introduce the following definition. For a random matrix
W ∈ Rd×k, we define its covariance operator to be the linear map Cov(W ) : Rd×k → Rd×k given
by Cov(W )[A] := E[⟨W,A⟩FW ]. It is positive semi-definite, i.e. ⟨A,Cov(W )[A]⟩F ≥ 0 for all A,
and so has non-negative eigenvalues, whose sum is the trace of Cov(W ), which equals E[∥W∥2F ].
Corollary 1 then says that for sufficiently small failure probability δ, the 1− δ asymptotic quantile of
the excess risk is equivalent, up to explicit constants, to a sum of two terms. The first is E[∥H∥2F ]
which equals the trace of Cov(H) - that is the sum of its eigenvalues. It admits an explicit expression
in terms of (i) a second-order covariance between pairs of projections of X onto a top k and a bottom
d− k eigenvector of Σ, (ii) the eigenvalue gaps between a top k and a bottom d− k eigenvalue of
Σ. The second term is the product of the largest eigenvalue of Cov(H) and log(1/δ). In typical
regimes where δ is moderately small, this second term is much smaller than the first. Returning to the
question we raised in the abstract, Corollary 1 thus identifies the first term as the key property of the
distribution of X that determines the excess risk of PCA, at least in the large sample regime.

Our goal in the next sections will be to derive a non-asymptotic upper bound on the 1− δ quantile of
the excess risk that matches its expression from Corollary 1. We conclude this section by offering
two remarks highlighting other aspects of Theorem 1, accompanied by an example illustrating our
result on the spiked covariance model.
Remark 1 (Empirical projectors). In some applications it is of more interest to measure the perfor-
mance of PCA through the closeness of the empirical projector UnU

T
n to the population one U∗U

T
∗ in

a given norm. Dauxois et al. [DPR82] derive the exact asymptotic distribution of
√
n(UnU

T
n −U∗U

T
∗ )

from which the result we are about to discuss can potentially be deduced. Here we would like to point
out that the asymptotic normality result of Theorem 1 can also be used to establish that as n→ ∞,

√
n · ∥UnUn − U∗U

T
∗ ∥p

d−→ 21/p∥G∥p,

for all p ∈ [1,∞], where G is the Gaussian matrix defined in Theorem 1 and ∥G∥p is the Schatten-p
norm of G, i.e. the p-norm of its singular values. Compare with equation (2.22) in [RW20].

The case p = 2 corresponds to the Frobenius norm ∥UnUn −U∗U
T
∗ ∥F , and a statement analogous to

Corollary 1 holds. Specifically, for δ ∈ [0, 0.1) it holds that

lim
n→∞

n ·QPn(1− δ) ≍ 4

d−k∑
i=1

k∑
j=1

E[⟨uk+i, X⟩2⟨uj , X⟩2]
(λj − λk+i)2

+ 8τ2 log(1/δ),

where Pn := ∥UnUn − U∗U
T
∗ ∥2F , τ2 = sup∥A∥F=1 E[⟨A,G⟩2F ], and the constants are the same as

in Corollary 1. A similar result can be obtained for the other values of p using the noncommutative
Khintchine inequality [Tro+15; Van17], though the upper and lower bounds differ by a logarithmic
factor in the dimension d for large values of p.
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Example 1 (Spiked covariance model). As an application of Theorem 1, we consider the spiked
covariance model [Joh01; Nad08]. Specifically, we assume that X = Z + ε such that Z and ε are
independent, ε ∼ N (0, σ2Id), and S = E[ZZT ] has rank k. Then Σ = S + I , the support of Z is
contained in the k-dimensional subspace spanned by (uj)

k
j=1, and λj = ηj + σ2 where (ηj) are the

eigenvalues of S ordered non-increasingly. Taking ξj := ⟨Z, uj⟩ we recover the standard form

X =

k∑
j=1

ξjuj + ε.

This spiked covariance model captures the scenario where we observe a noisy version X of the true
lower dimensional data point Z corrupted with isotropic noise ε. The goal is to recover, using PCA,
the subspace span({uj | j ∈ [k]}) on which the noise-free data Z is supported. In this setting,
Theorem 1 simplifies significantly. Specifically, under this model, the Gaussian matrices G and H in
the statements (9) and (10) have independent entries with variances

E[G2
ij ] = σ2(1 + σ2/η2j ), E[H2

ij ] = σ2(ηj + σ2/ηj),

which are constant along rows. From Remark 1 and Theorem 1, we have the distributional results

√
n · ∥UnU

T
n − U∗U

T
∗ ∥p

d−→ 21/p∥G∥p, n · [R([Un])−R([U∗])]
d−→ 1

2
∥H∥2F,

as n→ ∞. The asymptotic quantiles of Pn = ∥UnU
T
n − U∗U

T
∗ ∥2F have the equivalent expression

lim
n→∞

n ·QPn
(1− δ) ≍ 4σ2(d− k)

k∑
j=1

(1 + σ2/η2j ) + 8σ2(1 + σ2/η2k) log(1/δ), (11)

while those of the excess risk En = R([Un])−R([U∗]) have the equivalent expression

lim
n→∞

n ·QEn(1− δ) ≍ σ2(d− k)

k∑
j=1

(ηj + σ2/ηj) + σ2 max
j∈[k]

(ηj + σ2/ηj) log(1/δ),

both for δ ∈ [0, 0.1) and the same constants as in Corollary 1. We conclude this example by noting
that, using a recent result of Latała et al. [LHY18] and leveraging the independence of the entries of
G, an analogue of (11) can be derived for large values of p without suffering from the inefficiency of
the noncommutative Khintchine inequality highlighted at the end of Remark 1.
Remark 2 (Generalized PCA). While our results are framed for PCA, we remark here that they apply
to the more general problem of estimating the leading k-dimensional eigenspace of a symmetric
matrix. Specifically, let (Ai)

n
i=1 be i.i.d. realizations of a random symmetric matrix A, and suppose

that we are interested in estimating the leading k-dimensional eigenspace of M := E[A]. A
natural and common procedure is to estimate it using the leading k-dimensional eigenspace of
Mn := n−1

∑n
i=1Ai. While the reconstruction loss does not make sense for this problem, we may

still cast this procedure as an instance of ERM where the loss is given by the negative block Rayleigh
quotient. The population and empirical risks are then given by

F ([U ]) = −1

2
Tr(UTMU), Fn([U ]) = −1

2
Tr(UTMnU). (12)

PCA then corresponds to the special case A = XXT where X is a random vector, and the population
and empirical reconstruction risks are, up to additive constants, equal to those in (12). Theorem 1
applies almost verbatim to this generic setting, with the only change being that (8) is generalized to

Λijst = E[(uTk+iAuj) · (uTk+sAut)]. (13)

As an example different from PCA, consider the case where M is the adjacency matrix of an
undirected weighted graph with non-negative weights. Suppose that we observe n i.i.d. edges
{Ji,Ki}ni=1 of the graph, sampled from the distribution on the edges that is proportional to their
weights. Then one may take Ai = eJie

T
Ki

+ eKie
T
Ji

, and Theorem 1 with (8) replaced by (13)
applies. A similar argument can be made for the estimation of the trailing k-dimensional eigenspace
of the Laplacian matrix. As examples of potential applications, we mention spectral clustering [e.g.
NJW01], community detection [e.g. Abb18], and contrastive learning [e.g. Hao+21].
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4 Self-concordance of the block Rayleigh quotient

The main ingredient behind Theorem 1 is a Taylor expansion of the population and excess risks at
[Un] around [U∗], which becomes exact in the large sample limit. In order to make Corollary 1 non-
asymptotic, an explicit control of the error in these expansions in a reasonably large neighbourhood of
[U∗] is what is needed. In this section, we show that the population and empirical reconstruction risks
are geodesically generalized self-concordant, in a sense analogous to the one introduced by Bach
[Bac10]. This provides the needed control for the non-asymptotic analysis. As this self-concordance
result can potentially be of broader interest, we frame it here in more general terms.

Let A be a d × d symmetric matrix, and let (vj) be a basis of eigenvectors of A ordered non-
increasingly in terms of their eigenvalues (µj). Recall that eigenvectors corresponding to the
largest eigenvalue are maximizers of the Rayleigh quotient. The following known construction is a
generalization of this familiar identity. Let F : Gr(d, k) → R be given by

F ([V ]) = −Tr(V TAV )/2. (14)
To see how F relates to the reconstruction risk, note that it can be expressed in terms of it

R([U ]) = E
[
∥X − UUTX∥22

]
/2 = E[∥X∥22]/2− Tr(UTΣU)/2.

The trace expression in (14) is known as the block Rayleigh quotient of A. Let k1 and k2 be the
smallest and largest indices i such that µi = µk respectively. The set of minimizers of F is given by
(see for example [Tao12, Proposition 1.3.4])

V∗ := {[V ] ∈ Gr(d, k) | col(V ) = span(v1, . . . , vk1−1)⊕ S, S ⊂ span(vk1
, . . . , vk2

)} (15)
where ⊕ is the direct sum of subspaces, and S is a subspace of dimension k − k1 + 1. In the case
where µk > µk+1 that we have been operating under, k1 = k2 = k and V∗ becomes a singleton.

Recall the definition of geodesics and principal angles from Section 2.1. The following is the main
result of this section [c.f. Bac10, Lemma 1].
Proposition 1 (Generalized self-concordance of the block Rayleigh quotient). Assume µk > µk+1,
let [V∗] be the global minimizer of F , and let [V ] ∈ Gr(d, k) \ [V∗] such that θk([V∗], [V ]) < π/4.
Let g(t) := F (γ(t)) where γ(t) is either Exp[V∗](tLog[V∗]([V ])) or Exp[V ](tLog[V ]([V∗])). Then

|g′′′(t)| ≤ 2θ · tan(2tθ) · g′′(t),
for all t ∈ [0, 1] where we shortened θk([V∗], [V ]) to θ. As a consequence,

sin2(θ)

θ2
· g

′′(0)

2
≤ g(1)− g(0)− g′(0) ≤ ψ(θ) · g

′′(0)

2
,

where

ψ(θ) := θ−1

∫ 1

0

log[tan(θt+ π/4)] dt,

satisfies ψ(θ) → 1 as θ → 0 and ψ(θ) → c as θ → π/4 for c ≈ 1.485.

In words, Proposition 1 says that for any [V ] ∈ Gr(d, k) that is less than π/4 away from the minimizer
of F in maximum principal angle, the restriction of F to the geodesic connecting [V ] to this minimizer
is well approximated by its second order Taylor expansion, up to a factor of approximately 2 in the
second term of this expansion. We have the immediate corollary [cf. Bac10, Proposition 1].
Corollary 2. In the setting of Proposition 1, the following estimates hold.

F ([V ]) ≥ F ([V∗]) + ⟨gradF ([V∗]), ξ⟩[V∗] +
4

5
· 1
2
⟨HessF ([V∗])[ξ], ξ⟩[V∗],

F ([V ]) ≤ F ([V∗]) + ⟨gradF ([V∗]), ξ⟩[V∗] +
3

2
· 1
2
⟨HessF ([V∗])[ξ], ξ⟩[V∗],

where ξ = Log[V∗]([V ]), and where for any [U ] ∈ Gr(d, k) and ζ ∈ T[U ] Gr(d, k) with ∆ = liftU (ζ)

liftU (gradF ([U ])) = −(I − UUT )AU, liftU (HessF ([U ])[ζ]) = ∆UTAU − (I − UUT )A∆.

The statement remains true when [V ] and [V∗] are interchanged in the above inequalities.

Related results include those of [ZJS16] who showed that F satisfies a version of the Polyak–
Łojasiewicz inequality for k = 1, and [AV24] who showed that F , when restricted as in Proposition
1, satisfies a version of strong convexity - Proposition 1 was inspired by the latter work. The result of
the next section builds on Corollary 2 to provide a non-asymptotic analogue of Corollary 1.
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5 Non-asymptotic bound

The following is the second main result of the paper. The parameters V and ν appearing in it are
defined in Remark 3 below. We compute them explicitly under a Gaussian model in Example 2.
Theorem 2. Assume that λk+1 > λk, E[X4

j ] <∞ for all j ∈ [d], and let δ ∈ [0, 1). If

n ≥ (32V + 4) log(3k(d− k)) + (16ν + 8) log(4/δ) +
16(S + r(n))

δ(λk − λk+1)2
, (16)

then with probability at least 1− δ

R([Un])−R([U∗]) ≤
75

n · δ

d−k∑
i=1

k∑
j=1

E[⟨uk+i, X⟩2⟨uj , X⟩2]
λj − λk+i

, (17)

where for c(d) = 4(1 + 2⌈log(d)⌉),
S := c(d) · ∥E[(XXT − Σ)2]∥op, r(n) := c2(d) · n−1 E[maxi∈[n] ∥XiX

T
i − Σ∥2op].

Focusing on (17), Theorem 2 says that, up to a worse dependence on δ, the tight asymptotic upper
bound on the 1− δ quantile of the excess risk in Corollary 1 holds true for finitely many samples,
provided that the sample size is larger than a certain distribution-dependent constant. Given the weak
moment condition assumed, the dependence on δ in Theorem 2 is likely unimprovable. It is possible
to obtain a log(1/δ) dependence as in Corollary 1 under the assumption that X is bounded. We
favour the above statement as it highlights an important shortcoming of ERM, and thus PCA: its
performance degrades under heavy-tailed data - we refer the interested reader to the literature on
robust estimation [e.g. LM19]. The results in [RW20] are the most closely related, though they do
not capture the right dependence on the distribution of X identified in Corollary 1 and recovered in
(17). They however hold under different assumptions and can cover a wider range of sample sizes.

The sample size restriction (16) consists of three terms. They arise from two distinct steps of the
analysis: a global and a local one. The global one ensures that with high probability, [Un] is within a
maximum principal angle of π/4 from [U∗]. This step is carried out using standard existing tools -
namely the Davis-Kahan theorem [e.g. YWS15] - and is likely loose. It results in the third term of
(16), the largest of the three. The second step is a local analysis that uses our new self-concordance
result from Proposition 1, and is where our original contribution lies. This step results in the first
two terms of (16), the first of which typically dominates: their role is to ensure that the curvature
of the empirical risk at [U∗] is strong enough to force [Un] to be near it. Qualitatively, the explicit
expression of V and ν in Remark 3 below indicate that they induce a quadratic dependence on the
inverse of the eigengap on the sample size restriction. Example 2 below gives an easily interpretable
expression for V and ν in the special case when X is Gaussian and centered.
Remark 3 (Variance parameters). The parameters V and ν appearing in Theorem 2 admit an explicit
expression, though it is quite involved in the general case. Recall from Theorem 1 the definition of
the eigengaps δij = λj − λk+i. Let X̃ denote the coordinates of X in the basis of eigenvectors (uj),
i.e. X̃j := ⟨X,uj⟩. Define and recall from Theorem 1

Γjsrp := E[X̃jX̃sX̃rX̃p], Λijts = E[X̃k+iX̃jX̃k+tX̃s], Ωitql := E[X̃k+iX̃k+tX̃k+qX̃k+l],

for j, s, r, p ∈ [k] and i, t, q, l ∈ [d− k]. These form a subset of the fourth order moments of X̃ . Let

V := sup
∥M∥F=1

∑
j,r,p

ajrp(M) · Γjjrp − 2
∑
i,j,t,s

bijts(M) · Λijts +
∑
i,q,l

ciql(M) · Ωiiql, (18)

where the coefficients are given by

ajrp(M) :=
∑
i

mirmip

δi,j
√
δirδip

, bijts(M) :=
mismtj

δij
√
δisδtj

, ciql(M) :=
∑
j

mqjmlj

δij
√
δqjδlj

.

Finally, define the parameter

ν := sup
∥M∥F=1

∑
j,s,r,p

αjsrp(M) · Γjsrp − 2
∑

t,s,q,r

βtsqr(M) · Λtsqr +
∑
i,t,q,l

κitql(M) · Ωitql, (19)

where the coefficients are given by, suppressing the dependence on M

αjsrp :=
∑
i,t

mijmismtrmtp√
δijδisδtrδtp

, βtsqr :=
∑
i,j

mtjmismqjmir√
δtjδisδqjδir

, κitql :=
∑
j,s

mijmtjmqsmls√
δijδtjδqsδls

.

Typically, V is much larger than ν, and we always have V ≥ ν.
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Example 2 (Gaussian model). The variance parameters appearing in Theorem 2 and defined in
Remark 3 simplify greatly when X has mean zero and its coordinates in a basis of eigenvectors of Σ
are independent. When X ∼ N (0,Σ) we can compute them exactly in terms of the spectrum of Σ:

V =

k∑
s=1

(1 + I[s = k])λkλs
(λk − λk+1)(λs − λk+1)

+

d−k∑
t=1

(1 + I[t = 1])λk+1λk+t

(λk − λk+1)(λk − λk+t)
, (20)

ν = max
i∈[d−k]

max
j∈[k]

λ2j + λ2k+i

(λj − λk+i)2
. (21)

6 Discussion

We started this paper with a simple question: which property of the distribution of X governs the
performance of PCA as measured by its excess risk? In the large sample limit, and under very mild
assumptions, we found an equally simple answer (see (10) and Corollary 1):

d−k∑
i=1

k∑
j=1

E[⟨uk+i, X⟩2⟨uj , X⟩2]
λj − λk+i

. (22)

Our second main contribution was to derive an upper bound on the critical sample size - that beyond
which the excess risk of PCA is governed by (22) (see (16)). In the general case, this bound admits
an explicit expression in terms of the fourth moments of X and the eigengaps appearing in (22) (see
Remark 3), though its precise description is quite involved. In the special case of Gaussian X , we
showed that the terms in this bound take on an exceptionally simple form (see Example 2).

There are two main limitations of our results. The first is that they rely on the eigengap condition
λk+1 − λk > 0. While this is a mild assumption, it would be desirable to relax it, though this is quite
challenging with our approach. To see why, note that without it, the minimizers of the reconstruction
risk form a submanifold (itself a Grassmannian) of Gr(d, k) (see (15)). The classical theory of
asymptotic statistics, upon which our results rely, does not immediately apply in such a degenerate
setting [Van+96; Van00], and we leave this problem to future work.

The second limitation we would like to point out is related to Theorem 2. As described after its
statement, the global component of the analysis leading to it is unlikely to be tight. To accurately
capture the sample complexity of this step, we suspect that one would need to leverage analytical
properties of the reconstruction risk as we do in our local analysis. This is however quite challenging
as globally the reconstruction risk is ill-behaved and has for example many critical points [SI14]. We
anticipate that new insights are needed to fully capture the sample complexity of this global step.

Finally, let us mention that while the setting we consider is both classical and quite general, there are
potentially interesting cases that our framework does not cover. For example, our approach does not
directly apply to Kernel PCA [SSM98] or functional PCA [RS02], and extending it to these settings
would require us to work with an infinite-dimensional analogue of the Grassmannian - a daunting
task. Similarly our focus is on characterizing the performance of PCA on a fixed but unknown data
distribution, and to do this in as much generality as possible. This in contrast with the literature on
high-dimensional PCA which typically considers sequences of Gaussian problems indexed by their
dimension, but provides potentially finer-grained results [e.g. Joh01; Pau07; CMW13]. Finally, we
mention that in practice, PCA is typically performed with an initial centering step. This neatly fits
in our setting by changing the search space from the Grassmannian to the Grassmannian of affine
subspaces [LWY21], though some work is required to make this approach viable.

Beyond addressing the limitations discussed above, there are a few directions that are potentially
worth exploring. From an analysis standpoint, the output of PCA - along with its generalized version
described in Remark 2 - is often used as a preprocessing step for downstream tasks such as regression
or classification. It would be interesting to investigate whether the techniques developed in this paper
can be extended to provide end-to-end guarantees for such two-stage procedures. Another intriguing
direction would be to explore whether the self-concordance result established in Proposition 1 can
be leveraged to obtain improved convergence guarantees for optimization algorithms applied to the
block Rayleigh quotient (14), particularly for Edelman et al. [EAS98]’s version of Newton’s method.
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A Further background on the Grassmannian

In Section 2, we focused on the properties of the Grassmannian necessary to state our results. For the
analysis we require more tools, which we briefly describe here. As before, we adopt a computation-
oriented description, and refer the reader to Chapter 10 in [Bou23] for a rigorous treatment.

Parallel transport. Let [U ] ∈ Gr(d, k) and ξ ∈ T[U ] Gr(d, k), and consider the curve,

α(t) = UQ cos(tS)QT + P sin(tS)QT ,

for t ∈ [0, 1], and where liftU (ξ) = PSQT is a SVD. This is the geodesic starting at [U ] in direction
ξ as defined in (6) at the level of representatives in St(d, k), i.e. [α(t)] = Exp[U ](tξ). For each
t ∈ [0, 1] and ζ ∈ T[U ] Gr(d, k), define the map Pξ,t by

liftα(t)(Pξ,t(ζ)) := (−UQ sin(tS)PT + P cos(tS)PT + Id − PPT ) liftU (ζ). (23)

This is the parallel transport map along the geodesic [α(t)]. See equation (3.18) in [BZA24]. For any
fixed t, ζ 7→ Pξ,t(ζ) is an invertible linear map that preserves the inner product between T[U ] Gr(d, k)
and T[α(t)] Gr(d, k). Informally, t 7→ Pξ,t(ζ) transports ζ along the tangent spaces of [α(t)] such
that it stays "constant", i.e. the derivative of t 7→ Pξ,t(ζ), properly defined, is zero.

For the rest of this section, let f̃ : Rd×k → R be such that f̃(U) = f̃(UQ) for any orthogonal
Q ∈ Rk×k and U ∈ St(d, k). We define f : Gr(d, k) → R by f([U ]) := f̃(U). We assume that f is
sufficiently smooth, under the proper notion of smoothness, to justify the computations below.

Gradients and Hessians. The Riemannian gradient of f at [U ] is the element of T[U ] Gr(d, k)
given by

liftU (grad f([U ])) = (Id − UUT )∇f̃(U), (24)

where ∇f̃ is the Euclidean gradient of f̃ . See equation (9.84) in [Bou23]. Similarly, the Riemannian
Hessian of f is the linear map Hess f([U ]) : T[U ] Gr(d, k) → T[U ] Gr(d, k) given by

liftU (Hess f([U ])[ξ]) = (Id − UUT )∇2f̃(U)[liftU (ξ)]− liftU (ξ)U
T∇f̃(U), (25)

for any ξ ∈ T[U ] Gr(d, k), and where ∇2f̃ is the Euclidean Hessian of f̃ , viewed as a linear map
Rd×k → Rd×k. See equation (9.86) in [Bou23].

Higher order derivatives. The total s-th order covariant derivative of f is denoted by ∇mf . See
Definition 10.77 and Example 10.78 in [Bou23]. It is a map that takes anm+1 tuple ([U ], ξ1, . . . , ξm)
where [U ] ∈ Gr(d, k) and ξj ∈ T[U ] Gr(d, k) for all j ∈ [m] and outputs a real number. It is linear
in each of its last m arguments, and can be computed iteratively as follows: ∇0f = f and

∇mf([U ])(ξ1, . . . , ξm) =
d

dt
∇m−1f(Exp[U ](tξm), Pξm,t(ξ1), . . . , Pξm,t(ξm−1))

∣∣∣∣
t=0

. (26)

See equation (10.53) in [Bou23]. In particular, for m = 1 and m = 2 we have the identities

∇f([U ], ξ) = ⟨grad f([U ]), ξ⟩[U ], ∇2f([U ], ξ1, ξ2) = ⟨Hess f([U ])[ξ1], ξ2⟩[U ]. (27)

See Example 10.78 in [Bou23].

Taylor expansions. Let [U ] ∈ Gr(d, k) and ξ ∈ T[U ] Gr(d, k), and consider the geodesic γ(t) =
Exp[U ](tξ) for t ∈ [0, 1]. Define the function g : [0, 1] → R by g(t) := f(γ(t)). Then we have

g′(t) = ∇f(γ(t), Pξ(ξ)), g′′(t) = ∇2f(γ(t), Pξ,t(ξ), Pξ,t(ξ)), (28)

g′′′(t) = ∇3f(γ(t), Pξ,t(ξ), Pξ,t(ξ), Pξ,t(ξ)).

See Example 10.81 in [Bou23]. By Taylor’s theorem applied to g around 0 and (27) we have

f(Exp[U ](ξ)) = f([U ]) + ⟨grad f([U ]), ξ⟩[U ] +
1

2
⟨Hess f([U ])[ξ], ξ⟩[U ]

+
s3

6
∇3f(γ(s), Pξ,s(ξ), Pξ,s(ξ), Pξ,s(ξ)), (29)
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for some s ∈ [0, 1], and where we used the mean value form of the remainder. We also have the
following Taylor expansion the gradient of f

P−1
ξ,1 (grad f(Exp[U ](ξ))) = grad f([U ]) + Hess f([U ])[ξ]

+

∫ 1

0

{P−1
ξ,s ◦Hess f(γ(s)) ◦ Pξ,s −Hess f([U ])}[ξ] ds. (30)

See Step 2 in the proof of Proposition 10.55 in [Bou23].

Lipschitz continuous derivatives. The function f is said to have an L-Lipschitz continuous m-th
derivative if

sup
[U ]∈Gr(d,k)

sup
∥ξj∥=1,j∈[m+1]

|∇m+1f([U ], ξ1, . . . , ξm)| ≤ L. (31)

See Proposition 10.83 in [Bou23]. For the special case m = 2, this is equivalent to Hessian
L-Lipschitzness, which states that for all [U ] ∈ Gr(d, k) and ξ ∈ T[U ] Gr(d, k)

∥P−1
ξ,1 ◦Hess f(Exp[U ](ξ)) ◦ Pξ,1 −Hess f([U ])∥op ≤ L∥ξ∥.

See Exercise 10.89 in [Bou23].

B Analysis of the block Rayleigh quotient

In this section, we state and prove the two main technical results behind Theorems 1 and 2. We state
them here in terms of the negative block Rayleigh quotient (14). We will use them in subsequent
sections on the empirical and population reconstruction risk, which we recall from Section 4 are up
to an additive constant equal to the negative block Rayleigh quotient of Σn and Σ respectively.

Recall the setup of Section 4. We have a symmetric matrix A ∈ Rd×d and its associated negative
block Rayleigh quotient F : Gr(d, k) → R given by

F ([V ]) = −(1/2)Tr(V TAV ).

In the context of Appendix A, this function can be obtained from the one defined on Euclidean space
F̃ : Rd×k → R given by F̃ (B) = −(1/2)Tr(BTAB). Hence the Riemannian gradient and Hessian
of F are given by, using (24) and (25),

liftV (gradF ([V ])) = −(Id − V V T )AV (32)

liftV (HessF ([V ])[ξ]) = ∆V TAV − (Id − V V T )A∆ (33)

where ∆ = liftV (ξ).

B.1 Hessian Lipschitzness of the block Rayleigh quotient

Recall the discussion on the higher order derivatives ∇sF of F from Appendix A.
Proposition 2. For all [V ] ∈ Gr(d, k) and ξ1, ξ2, ξ3 ∈ T[V ] Gr(d, k), it holds that

∇3F ([V ], ξ1, ξ2, ξ3) = ⟨A, V [∆T
1 ∆2∆

T
3 +∆T

2 ∆1∆
T
3 +∆T

3 ∆1∆
T
2 +∆T

3 ∆2∆
T
1 ]⟩F ,

where ∆j = liftV (ξj) for j ∈ {1, 2, 3}. As a consequence

sup
[V ]∈Gr(d,k)

sup
∥ξ1∥=1,∥ξ2∥=1,∥ξ3∥=1

|∇3F ([V ], ξ1, ξ2, ξ3)| ≤ 4∥A∥F ,

and for all [V ] ∈ Gr(d, k) and ξ ∈ T[V ] Gr(d, k),

∥P−1
ξ,1 ◦HessF (Exp[V ](ξ)) ◦ Pξ,1 −HessF ([V ])∥op ≤ 4∥A∥F ∥ξ∥.

Proof. Fix [V ] ∈ Gr(d, k) and ξ1, ξ2, ξ3 ∈ T[V ] Gr(d, k). Then we have by (26)

∇3F ([V ], ξ1, ξ2, ξ3) =
d

dt
∇2F (Exp[V ](tξ3), Pξ3,t(ξ1), Pξ3,t(ξ2))

∣∣∣∣
t=0

. (34)
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Let ∆3 := liftV (ξ3) = PSQT be a SVD, ∆1 := liftV (ξ1), and ∆2 := liftV (ξ2). Define

V (t) := V Q cos(tS)QT + P sin(tS)QT , B(t) := −V Q sin(tS)PT + P cos(tS)PT − PPT ,

∆1(t) := liftV (t)(Pξ3,t(ξ1)) = B(t)∆1 +∆1, ∆2(t) := liftV (t)(Pξ3,t(ξ2)) = B(t)∆2 +∆2,

where [V (t)] = Exp[V ](tξ3) by (6) and where we used (23) for the parallel transport map. Using
these definitions, (27), (33), and the fact that the map lift preserves the inner product

∇2F (Exp[U ](tξ3), Pξ3,t(ξ1), Pξ3,t(ξ2)) = ⟨∆1(t)V (t)TAV (t)−A∆1(t),∆2(t)⟩F , (35)

where we used the identity (Id − V (t)V (t)T )∆2(t) = ∆2(t), which holds since V (t)T∆2(t) = 0
by (4), to simplify the resulting expression. Now taking derivatives with respect to t, dropping the
dependence on t in the notation, and writing V̇ for the derivative of V (t), we get

d

dt
⟨∆1V

TAV −A∆1,∆2⟩F = Tr(V̇ TAV∆T
1 ∆2) + Tr(V TAV̇∆T

1 ∆2) + Tr(V TAV ∆̇T
1 ∆2)

+ Tr(V TAV∆T
1 ∆̇2)− Tr(∆̇T

1 A∆2)− Tr(∆T
1 A∆̇2). (36)

Noting that Ḃ(t) = −V Q cos(tS)SPT − P sin(tS)SPT , we get

Ḃ(0) = −V QSPT = −V∆T
3 , ∆̇1(0) = −V∆T

3 ∆1, ∆̇2(0) = −V∆T
3 ∆2.

Replacing in (36) and simplifying, then using (35) and (34) finishes the proof of the first statement.
The second follows from the Cauchy-Schwarz inequality, the inequality ∥V C∥F ≤ ∥V ∥op∥C∥F and
∥V ∥op = 1, the submultiplicativity of the Frobenius norm, and the fact that ∥liftV (ξ)∥F = ∥ξ∥ for
all ξ ∈ T[U ] Gr(d, k). See the end of Appendix A for the last statement.

B.2 Generalized self-concordance of the block Rayleigh quotient

Proof of Proposition 1. Recall that (vj)dj=1 is a basis of eigenvectors of A ordered non-increasingly
according to their corresponding eigenvalues (µj)

d
j=1. Let V∗ ∈ St(d, k) be the matrix whose j-th col-

umn is vj . We start with the first statement, and with the case where γ(t) = Exp[V∗](tLog[V∗]([V ])).
Define ξ := Log[V∗]([V ]), and let liftV∗(ξ) = PSQT be a SVD. Let r be the rank of liftV∗(ξ), and
let Pr be the d× k matrix whose first r columns match those of P , and whose last k− r columns are
0. Then we have by (6)

γ(t) = [V∗Q cos(tS) + Pr sin(tS)], (37)

where we used that the post-multiplication by QT , an orthogonal matrix, can be dropped without
affecting the equivalence class, and we used that P sin(tS) = Pr sin(tS) since the last k− r singular
values in S are zero. Now let V (t) = V∗Q cos(tS) + Pr sin(tS). Then we have

g(t) = F (γ(t)) = −1

2
Tr(V (t)TAV (t)),

and its derivatives are given by

g′(t) = −Tr(V̇ (t)TAV (t)),

g′′(t) = −Tr(V̈ (t)TAV (t))− Tr(V̇ (t)TAV̇ (t)),

g′′′(t) = −Tr(
...
V (t)TAV (t))− 3Tr(V̈ (t)TAV̇ (t)).

A straightforward computation shows that

V̇ (t) = (−V∗Q sin(tS) + Pr cos(tS))S, V̈ (t) = −V (t)S2,
...
V (t) = −V̇ (t)S2.

Replacing yields

g′′(t) = Tr(S2V (t)TAV (t))− Tr(V̇ (t)TAV̇ (t)), g′′′(t) = 4Tr(S2V̇ (t)TAV (t)). (38)

To further simplify this expression, let V ⊥
∗ ∈ St(d, d− k) be the matrix whose j-th column is vk+j .

Then since V T
∗ liftV∗(ξ) = 0 by (4) and by definition of Pr, we have V T

∗ Pr = 0. Hence there exists
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Γ ∈ R(d−k)×k whose first r columns are orthonormal and last k − r columns are zero such that
Pr = V ⊥

∗ Γ. Finally, we may write an eigendecomposition of A as

A = [V∗ | V ⊥
∗ ] ·D · [V∗ | V ⊥

∗ ]T ,

where D = diag(µ1, . . . , µd). Performing block-wise matrix multiplication we obtain the identities

V T
∗ AV∗ = D≤k, V T

∗ APr = 0, PT
r APr = ΓTD>kΓ. (39)

where D<k = diag(d1, . . . , dk) and D>k = diag(dk+1, . . . , dd). Replacing in (38) V (t) and V̇ (t)
by their expressions and using the identities (39) yields

g′′(t) = Tr(S2 cos(2tS){QTD≤kQ− ΓTD>kΓ}), (40)
and

|g′′′(t)| = 2|Tr(S3 sin(2tS){QTD≤kQ− ΓTD>kΓ})|

= 2|Tr(S tan(2tS) · S
√
cos(2tS){QTD≤kQ− ΓTD>kΓ}S

√
cos(2tS))|

= 2|⟨S tan(2tS), S
√

cos(2tS){QTD≤kQ− ΓTD>kΓ}S
√

cos(2tS)⟩F |

≤ 2∥S tan(2tS)∥∞∥S
√
cos(2tS){QTD≤kQ− ΓTD>kΓ}S

√
cos(2tS)∥1

= 2∥S tan(2tS)∥∞ · g′′(t),
where in the penultimate line we have used Holder’s inequality for Schatten p-norms, and in the last
we have used the fact that the matrix S

√
cos(2tS){QTD≤kQ− ΓTD>kΓ}S

√
cos(2tS) is positive-

semidefinite, so its nuclear norm equals its trace. To see why the latter matrix is positive-semidefinite,
note that for any k-dimensional unit vector y,

yTQTD≤kQy ≥ µk, yTΓTD>kΓy ≤ µk+1

where these inequalities follow from the fact that Qy is unit norm, and Γy is at most unit norm by
definition of Γ, and furthermore the singular values in S correspond to the principal angles between
[V∗] and [V ], which by assumption are less than π/4, so that cos(2tS) > 0. This last observation also
shows that 2∥S tan(2tS)∥∞ = 2θ tan(2tθ) where θ is the maximum principal angle between [V∗]
and [V ]. This concludes the proof of the first statement for the case γ(t) = Exp[V∗](tLog[V∗]([V ])).

For the second statement, we first show that g′′(t) > 0 for all t ∈ [0, 1]. Indeed, expanding the trace
expression in (40) we obtain

g′′(t) =

k∑
j=1

S2
j cos(2tSj) ·

( k∑
i=1

µiQ
2
ji −

d−k∑
i=1

µk+iΓ
2
ji

)

≥
k∑

j=1

S2
j cos(2tSj) · (µk − µk+1)

> 0.

where in the second line we used that the columns of Q are orthonormal, and that the columns of Γ
are either of length one or zero, and in the last line we used the assumption µk − µk+1 > 0. We use
this result to justify rearranging the first statement of Proposition 1 as follows

−2θ tan(2tθ) ≤ d

dt
log(g′′(t)) =

g′′′(t)

g′′(t)
≤ 2θ tan(2tθ)

Integrating once, exponentiating, then integrating twice yields the second statement in Proposition 1.
See the proof of Lemma 1 in [Bac10] for a very similar calculation.

Finally, the case γ(t) = Exp[V ](tLog[V ]([V∗])) follows from the first one using the identity
Exp[V ](tLog[V ]([V∗])) = Exp[V∗]((1− t) Log[V∗]([V ])). This holds since both curves parametrize
the unique length-minimizing geodesic from [V ] to [V∗].

Proof of Corollary 2. This is an immediate consequence of Proposition 1. In particular, it is enough
to replace the occurrences of g′(0) and g′′(0) with their expressions in terms of the gradient and
Hessian of F using (28) and (27) and using the coarse bounds

sin2(θ)

θ2
≥ 4

5
, ψ(θ) ≤ 3

2
,

valid for θ ∈ (0, π/4).
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C Technical lemmas and computations

This section collects several supporting lemmas and explicit computations used in the proofs of the
main results in Section D. Throughout we make the assumption that E[∥X∥22] < ∞, so that Σ is
well-defined. Recall also the definition of U⊥

∗ from the second paragraph of Section 3.

C.1 Gradient and Hessian computations

Define the function ℓ̃ : Rd×k × Rd → [0,∞) by

ℓ̃(U, x) :=
1

2
∥x− UUTx∥22.

The reconstruction loss ℓ : Gr(d, k)× Rd → [0,∞) is given by

ℓ([U ], x) := ℓ̃(U, x), (41)

which is well defined, as the right-hand side does not depend on the choice of representative in [U ].
We thus have by (24) and (25), for any [U ] ∈ Gr(d, k) and ξ ∈ T[U ] Gr(d, k)

liftU (grad ℓ([U ], x)) = −(Id − UUT )xxTU, (42)

liftU (Hess ℓ([U ], x)[ξ]) = ∆UTxxTU − (Id − UUT )xxT∆, (43)

where ∆ = liftU (ξ), and where we computed the Euclidean gradient and Hessian of ℓ̃ with respect to
U to obtain these expressions. We can express the empirical and population risk defined in Section 2
in terms of the reconstruction loss (41) as

Rn([U ]) =
1

n

n∑
i=1

ℓ([U ], Xi), R([U ]) = E[ℓ([U ], X)].

By linearity of the grad and Hess operators along with (42) and (43), or alternatively by working
with R̃ and R̃n defined in (2) and (1) and formulas (24) and (25), the gradients of R and Rn satisfy

gradR([U ]) = E[grad ℓ([U ], X))], (44)

gradRn([U ]) =
1

n

n∑
i=1

grad ℓ([U ], Xi), (45)

and similarly for their Hessians

HessR([U ])[ξ] = E[Hess ℓ([U ], X)[ξ]], (46)

HessRn([U ])[ξ]) =
1

n

n∑
i=1

Hess ℓ([U ], Xi)[ξ]. (47)

Lemma 1. Let i ∈ [d− k], j ∈ [k], and Eij ∈ R(d−k)×k be the matrix whose (i, j)-th entry is one
and its remaining entries are zero. Define ξij by liftU∗(ξij) = U⊥

∗ Ei,j . Then

HessR([U∗])[ξij ] = (λj − λk+i) · ξij ,

i.e. (ξij) are a basis of eigenvectors of HessR([U∗]) and their associated eigenvalues are (λj−λk+i).

Proof. We have by (46) and (43)

liftU∗(HessR([U∗])[ξij ]) = U⊥
∗ (Ei,jU

T
∗ ΣU∗ − U⊥,T

∗ ΣU⊥
∗ Ei,j)

= U⊥
∗ (Ei,jΛ≤k − Λ>kEi,j)

= (λj − λk+i) · U⊥
∗ Ei,j

where in the first line we used the identity (I − U∗U
T
∗ ) = U⊥

∗ U
⊥,T
∗ , and in the second we expanded

Σ = [U∗ | UT
∗ ] · Λ · [U∗ | UT

∗ ]T and performed block-wise matrix multiplication.
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Corollary 3. Assume that λk > λk+1. Then HessR([U∗]) is positive definite, and for any ξ ∈
T[U∗] Gr(d, k)

liftU∗(HessR([U∗])
−1[ξ]) = U⊥

∗ C
′, liftU∗(HessR([U∗])

−1/2[ξ]) = U⊥
∗ C

′′,

where liftU∗(ξ) = U⊥
∗ C and

C ′
ij =

Cij

λj − λk+i
, C ′′

ij =
Cij√

λj − λk+i

.

Proof. The positive definiteness of HessR([U∗]) follows directly from the positiveness of its eigen-
values from Lemma 1 under the assumed condition λk > λk+1. This shows that HessR([U∗]) is
invertible. Expanding ξ into the basis of eigenvectors (ξij) from Lemma 1 yields

ξ =

d−k∑
i=1

k∑
j=1

⟨ξ, ξij⟩[U∗] · ξij =
d−k∑
i=1

k∑
j=1

⟨U⊥
∗ C,U

⊥
∗ Eij⟩F · ξij =

d−k∑
i=1

k∑
j=1

Cij · ξij .

where the second equality holds by (5). Therefore we have

HessR([U∗])
−1[ξ] =

d−k∑
i=1

k∑
j=1

Cij HessR([U∗])
−1[ξij ] =

d−k∑
i=1

k∑
j=1

Cij

λj − λk+i
· ξij .

Applying liftU∗ to both sides and using its linearity yields the first identity of the corollary. The
second follows from a similar argument.

C.2 Convergence of empirical gradients and Hessians

Lemma 2. For all n ∈ N, it holds that

E[∥gradRn([U∗])∥2H−1 ] = n−1 · E[∥grad ℓ([U∗], X)∥2H−1 ],

where H = HessR([U∗]) and where ∥ξ∥2H−1 = ⟨H−1(ξ), ξ⟩[U∗] for ξ ∈ T[U∗] Gr(d, k).

Proof. By (45) we have

E[∥gradRn([U∗])∥2H−1 ] = E

[∥∥∥∥n−1
n∑

i=1

grad ℓ([U∗], Xi)

∥∥∥∥2
H−1

]

=
1

n2

n∑
i=1

n∑
j=1

E[⟨H−1[grad ℓ([U∗], Xi)], grad ℓ([U∗], Xj)⟩[U∗]]

=
1

n2

n∑
i=1

E[∥grad ℓ([U∗], Xi)∥2H−1 ],

and the statement follows since the elements of the sum are all equal to E[∥grad ℓ([U∗], X)∥2H−1 ],
since (Xi) are i.i.d. with the same distribution asX . The third equality holds since the cross-terms van-
ish by the independence of (Xi), E[grad ℓ([U∗], X)] = gradR([U∗]) by (44), and gradR([U∗]) = 0
since [U∗] is a minimizer of R.

Lemma 3. It holds that

E[∥grad ℓ([U∗], X)∥2H−1 ] =

d−k∑
i=1

k∑
j=1

E[⟨uk+i, X⟩2⟨uj , X⟩2]
λj − λk+i

,

where H = HessR([U∗]) and where ∥ξ∥2H−1 = ⟨H−1(ξ), ξ⟩[U∗] for ξ ∈ T[U∗] Gr(d, k).

Proof. By (42), and using the identity (Id − U∗U
T
∗ ) = U⊥

∗ U
⊥,T
∗ we have

liftU∗(grad ℓ([U∗], X)) = −U⊥
∗ [(U⊥,T

∗ X)(U∗X)T ].
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Let C = (U⊥,T
∗ X)(U∗X)T . It has entries Ci,j = ⟨uk+i, X⟩ · ⟨uj , X⟩. Hence by Corollary 3

liftU∗(H
−1[grad ℓ([U∗], X)]) = −U⊥

∗ C
′,

where C ′ = Cij/(λj − λk+i). Now

E[∥grad ℓ([U∗], X)∥2H−1 ] = E[⟨liftU∗(H
−1[grad ℓ([U∗], X)]), liftU∗(grad ℓ([U∗], X))⟩F ]

= E[⟨U⊥
∗ C

′, U⊥
∗ C⟩F ] = E[⟨C ′, C⟩F ] =

d−k∑
i=1

k∑
j=1

E[C2
ij ]

λj − λk+i

Replacing Cij by its value yields the result.

Lemma 4. Assume that for all i, s ∈ [d− k] and j, t ∈ [k]

Λijst = E[⟨uk+i, X⟩⟨uj , X⟩⟨uk+s, X⟩⟨ut, X⟩] <∞.

Then
liftU∗(H

−1
n [

√
n · gradRn([U∗])]

d−→ U⊥
∗ G,

where Hn = HessRn([U∗]), and where G is a (d− k)× k matrix with jointly Gaussian mean zero
entries with covariances E[GijGst] = Λijst/(δijδst) where δij = λj − λk+i.

Proof. Recall the global assumption E ∥X∥22 <∞ so that the population covariance matrix Σ exists.
By (46) and (43) this implies that H = HessR([U∗]) exists. Thus by (47) and the weak law of large
numbers, we have Hn

p−→ H , and by the continuous mapping theorem H−1
n

p−→ H−1. On the other
hand consider the random matrix

Z := U⊥,T
∗ liftU∗(H

−1[grad ℓ([U∗], X)]).

By the proof of Lemma (3) we have Z = −C ′ where C ′
ij = (⟨uk+i, X⟩ · ⟨uj , X⟩)/(λj − λk+i),

thus E[Zij ] = 0 and E[ZijZst] = Λijst/(δijδst). Hence by the central limit theorem and (45), as
n→ ∞,

U⊥,T
∗ liftU∗(H

−1[
√
n · gradRn([U∗])]) =

1√
n
·

n∑
i=1

Zi
d−→ G,

where G is the Gaussian random matrix in the statement. Finally, by another application of the central
limit theorem, we have that

√
n · gradRn([U∗]) converges in distribution to a random Gaussian

element, and hence (H−1
n −H−1)[

√
n · gradRn([U∗])] converges to 0 in probability by Slutsky’s

theorem. Therefore

U⊥,T
∗ liftU∗(H

−1
n [

√
n · gradRn([U∗])]

= U⊥,T
∗ liftU∗((H

−1
n −H−1)[

√
n · gradRn([U∗])]︸ ︷︷ ︸

p−→0

+U⊥,T
∗ liftU∗(H

−1[
√
n · gradRn([U∗])]︸ ︷︷ ︸

d−→G

,

and the final statement of the lemma is obtained by another application of Slutsky’s theorem,
an an application of the continuous mapping theorem with the map C 7→ U⊥

∗ C, recalling that
U⊥
∗ U

⊥,T
∗ ∆ = ∆ for all ∆ ∈ HU∗ .

Lemma 5. Assume that λk > λk+1 and that E[X4
j ] <∞ for all j ∈ [d]. If

n ≥ 4(8V + 1) log(3k(d− k)) + 8(2ν + 1) log(4/δ),

then with probability at least 1− δ/4,

λmin(H̃n) ≥
1

2
,

where H̃n = H−1/2 ◦Hn ◦H−1/2 and

V = sup
∥ξ∥=1

E[∥M [ξ]∥2[U∗]
]− 1, ν = sup

∥ξ∥=1

E[∥M1/2[ξ]∥4[U∗]
]− 1,

where M = H−1/2 ◦Hess ℓ([U∗], X) ◦H−1/2, Hn = HessRn([U∗]), and H = HessR([U∗]).

18



Proof. Let Mi = H−1/2 ◦Hess ℓ([U∗], Xi) ◦H−1/2. We have the variational characterization

1− λmin(H̃n) = λmax(Id− H̃n) = sup
∥ξ∥=1

1

n

n∑
i=1

(E[⟨M [ξ], ξ⟩[U∗]]− ⟨Mi[ξ], ξ⟩[U∗])

Thus by Bousquet’s inequality [Bou02], specifically the version in [Van+16, Corollary 16.1], with
probability at least 1− δ/4

λmax(Id− H̃n) ≤ 2E[λmax(Id− H̃n)] +

√
2ν log(4/δ)

n
+

4 log(4/δ)

3n
.

Now by the Matrix Bernstein inequality [Tro+15, Theorem 6.6.1], we have

E[λmax(Id− H̃n)] = E[λmax

( 1
n

n∑
i=1

Id−Mi

)
] ≤

√
2V log(3k(d− k))

n
+

log(3k(d− k))

3n
.

Combining the two bounds and solving for n yields the result.

Lemma 6. The parameters V and ν defined in Lemma 5 admit the explicit expression given in
Remark 3.

Proof. Let ξ ∈ T[U∗] Gr(d, k), and let UT
∗ C = ∆ = liftU∗(ξ). We have by Corollary 3, for

ξ1 = H−1/2[ξ]
liftU∗(ξ1) = U⊥

∗ C
′,

where C ′
ij = Cij/

√
λj − λk+i. Now by (43), we have for ξ2 = Hess ℓ([U∗], X)[ξ1]

liftU∗(ξ2) = U⊥
∗ [C ′UT

∗ XX
TU∗ − U⊥,T

∗ XXTU⊥
∗ C

′]

Defining X̃j = ⟨X,uj⟩, and writing X̃≤k for its first k entries, and X̃>k for its remaining d − k
entries, we have

liftU∗(ξ2) = U⊥
∗ [C ′X̃≤kX̃

T
≤k − X̃>kX̃

T
>kC

′].

Denote the term in brackets by D. Then again by Corollary 3, for ξ3 = H−1/2[ξ2], we get

liftU∗(ξ3) = U⊥
∗ D

′,

where D′
ij = Dij/

√
λj − λk+i. We start with the computation of ⟨M [ξ], ξ⟩[U∗]. We have

⟨M [ξ], ξ⟩[U∗] = ⟨H−1/2 ◦Hess ℓ([U∗], X) ◦H−1/2[ξ], ξ⟩[U∗]

= ⟨Hess ℓ([U∗], X) ◦H−1/2[ξ], H−1/2[ξ]⟩[U∗]

= ⟨C ′X̃≤kX̃
T
≤k − X̃>kX̃

T
>kC

′, C ′⟩F
= Tr(X̃≤kX̃

T
≤kC

′TC ′)− Tr(C ′T X̃>kX̃
T
>kC

′)

= ∥C ′X̃≤k∥22 − ∥C ′T X̃>k∥22

=

d−k∑
i=1

( k∑
j=1

Cij

λj − λk+i
· X̃j

)2 − k∑
j=1

( d−k∑
i=1

Cij

λj − λk+i
X̃k+i

)2
Taking the square of this expression, expanding, and taking expectations yields an explicit expression
of ⟨M [ξ], ξ⟩2[U∗]

in terms of C. Noting that the map that sends ξ to C is an isometric isomorphism, the
supremum of the former over vectors ∥ξ∥ = 1 is equal to the supremum of the latter over ∥C∥F = 1.
This concludes the proof for ν. For V , note that

∥M [ξ]∥[U∗]
2 = ∥U⊥

∗ D∥2F = ∥D∥2F

=

d−k∑
i=1

d−k∑
j=1

1

λj − λk+i
·
(
X̃j

k∑
s=1

Cis√
λs − λk+i

X̃s − X̃k+i

d−k∑
t=1

Ctj√
λj − λk+t

X̃k+t

)2

Expanding the square and taking expectations gives an explicit expression of ∥M [ξ]∥22 in terms of C,
and by the same argument as for ν, V is the supremum over ∥C∥F = 1 of this explicit expression.
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C.3 Localization argument for ERM

The following two corollaries are immediate consequences of Corollary 2 and Proposition 2, since
the population and empirical reconstruction risks R and Rn are, up to an insignificant constant, equal
to the negative block Rayleigh quotients −(1/2)Tr(UTΣU) and −(1/2)Tr(UTΣnU) respectively.
Corollary 4. Assume that λk > λk+1, and let [U ] ∈ Gr(d, k) such that θk([U∗], [U ]) < π/4. Then

Rn([U ])−Rn([U∗]) ≥ ⟨gradRn([U∗]), ξ⟩[U∗] +
2

5
⟨HessRn([U∗])[ξ], ξ⟩[U∗]

R([U ])−R([U∗]) ≤
3

4
⟨HessR([U∗])[ξ], ξ⟩[U∗]

where ξ = Log[U∗]([U ]).

Corollary 5. It holds that

sup
[U ]∈Gr(d,k)

sup
∥ξ1∥=1,∥ξ2∥=1,∥ξ3∥=1

|∇3R([U ], ξ1, ξ2, ξ3)| ≤ 4∥Σ∥F ,

and for all [U ] ∈ Gr(d, k) and ξ ∈ T[U ] Gr(d, k),

∥P−1
ξ,1 ◦HessRn(Exp[U ](ξ)) ◦ Pξ,1 −HessRn([U ])∥op ≤ 4∥Σn∥F ∥ξ∥.

Lemma 7. On the event that θk([Un], [U∗]) < π/4, it holds that

∥Log[U∗]([Un])∥2H ≤ 25

4
· λ−2

min(H̃n) · ∥gradRn([U∗])∥2H−1 ,

where H̃n = H−1/2 ◦ Hn ◦ H−1/2, λmin(H̃n) is its smallest eigenvalue, H = HessR([U∗]),
Hn = HessRn([U∗]), and ∥ξ∥2H = ⟨H(ξ), ξ⟩[U∗] for ξ ∈ T[U∗] Gr(d, k).

Proof. Denote Log[U∗]([Un]) by ξn. Since [Un] minimizes the empirical risk we have

Rn([Un])−Rn([U∗]) ≤ 0. (48)

On the other hand by Corollary 4 we have

Rn([Un])−Rn([U∗]) ≥ ⟨gradRn([U∗]), ξn⟩+
2

5
∥ξn∥2Hn

. (49)

By the Cauchy-Schwartz inequality

⟨gradRn([U∗]), ξn⟩ ≥ −∥gradRn([U∗])∥H−1 · ∥ξn∥H . (50)

And we also have

∥ξn∥2Hn
≥

(
inf
ξ ̸=0

∥ξ∥2Hn

∥ξ∥2H

)
· ∥ξn∥2H = inf

∥ξ∥=1
⟨H̃n[ξ], ξ⟩ · ∥ξn∥2H = λmin(H̃n) · ∥ξn∥2H . (51)

Combining (48), (49), (50), and (51) we obtain the result.

C.4 Matrix identities and perturbation bounds

Lemma 8. Assume that λk − λk+1 > 0 and that ∥Σ− Σn∥op ≤ (λk − λk+1)/2. Then

sin θk([Un], [U∗]) ≤
2∥Σn − Σ∥op
λk − λk+1

.

Proof. Let δ = λk − λk+1. Recall that (un,j) is an orthonormal basis of eigenvectors of Σn ordered
non-increasingly according to their corresponding eigenvalues (λn,j), with ties broken arbitrarily.
On the one hand, we have by inequality (1.63) in [Tao12]

|λj − λj,n| ≤ ∥Σn − Σ∥op, (52)

for all j ∈ [d]. This implies that

λn,k+1 ≤ λk+1 + ∥Σn − Σ∥op < λk+1 + (λk − λk+1) ≤ λk, (53)
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where the inequality follows by the assumed bound in the lemma. On the other hand, we have by the
operator norm version of Theorem 1 in [YWS15]3, and taking r = 1 and s = k in the statement

sin θk([Un], [U∗]) ≤
∥Σn − Σ∥op
λk − λn,k+1

,

where we have used (53) to simplify the denominator appearing in the original statement. Using
again (52) to lower bound the denominator we get

sin θk([Un], [U∗]) ≤
∥Σn − Σ∥op

δ − ∥Σn − Σ∥op
.

Using the inequality x/(c− x) ≤ 2x/c valid for x ∈ [0, c/2] finishes the proof.

Corollary 6. Assume that λk > λk+1 and that E[X4
j ] <∞ for all j ∈ [d]. If

n ≥ 16(S + r(n))

δ(λk − λk+1)2
,

Then with probability at least 1− δ/2

θk([Un], [U∗]) < π/4,

where

S := c(d) · ∥E[(XXT − Σ)2]∥op, r(n) := c2(d) · n−1 E[maxi∈[n] ∥XiX
T
i − Σ∥2op],

and c(d) = 4(1 + 2⌈log(d)⌉).

Proof. By the second item of Theorem 5.1 in [Tro16], we have

n · E[∥Σn − Σ∥2op] ≤ 2S + 2r(n)

Applying Markov’s inequality, using Lemma 8, and solving for n yields the result.

Lemma 9. Let U, V ∈ St(d, k). Let (σi)di=1 be the singular values of UUT − V V T ordered
non-increasingly. Then for i ∈ [2k],

σi = sin θk−⌊(i−1)/2⌋([U ], [V ]),

and the remaining singular values are zero.

Proof. See Theorem 5.5 in Chapter 1 of [SS90].

D Proofs of main results

D.1 Proof of Theorem 1

Consistency. Since E[∥X∥22] <∞, we have by the weak law of large numbers Σn
p−→ Σ, i.e. for all

ε > 0
lim
n→∞

P(∥Σn − Σ∥op ≥ ε) = 0.

Let An be the event that ∥Σn−Σ∥op < (λk −λk+1)/2. By assumption the right-hand side is strictly
larger than 0, so limn→∞ P(An) = 1. On the one hand, by Lemma 8, we have on the event An

sin(θk([Un], [U∗])) ≤
2∥Σn − Σ∥op
λk − λk+1

.

On the other we have

dist([Un], [U∗]) =

( k∑
j=1

θ2j ([Un], [U∗])

)1/2

≤
√
k · θk([Un], [U∗]).

3See the beginning of the second paragraph after the statement of the theorem.

21



Now let 0 < ε <
√
kπ/2. Using the above two bounds we obtain

P(dist([Un], [U∗]) ≥ ε) ≤ P(θk([Un], [U∗]) ≥ ε/
√
k)

≤ P({θk([Un], [U∗]) ≥ ε/
√
k} ∩An) + P(Ac

n)

≤ P(∥Σn − Σ∥op ≥ (λk − λk+1) · sin(ε/
√
k)/2) + P(Ac

n)

and both terms go to zero as n→ ∞.
√
n-consistency. For the rest of the proof, let ξn = Log[U∗]([U∗]) when well defined, and 0

otherwise. Let H = HessR([U∗]) and Hn = HessRn([U∗]), and for a positive semi-definite linear
map L : T[U∗] Gr(d, k) → T[U∗] Gr(d, k), let ∥ξ∥2L = ⟨L(ξ), ξ⟩ denote the (squared) semi-norm
it induces, for ξ ∈ T[U∗] Gr(d, k). We note that under the eigengap assumption of the theorem,
ξ 7→ ∥ξ∥H is a norm since H is positive-definite by Corollary 3.

Let An be the event that θk([Un], [U∗]) < π/4. By the consistency result, limn→∞ P(An) = 1. Now
on this event we have by Lemma 7

∥ξn∥H ≤ 5

2
· λ−1

min(H̃n) · ∥gradRn([U∗])∥H−1 ,

where H̃n = H−1/2 ◦Hn ◦H−1/2 and λmin(H̃n) is its smallest eigenvalue.

On the one hand, by the weak law of large numbers H̃n
p−→ Id, and by the continuous mapping theorem

λ−1
min(H̃n)

p−→ 1. Let Bn be the event that λ−1
min(H̃n) ≤ 2, which thus satisfies limn→∞ P(Bn) = 1.

On the other hand, we have by Lemma 2

E[∥gradRn([U∗])∥2H−1 ] = n−1 E[∥grad ℓ([U∗], X)∥2H−1 ],

and by the moment assumption of the theorem and Lemma 3 the expectation on the right-hand side is
finite.

Therefore we have for any ε > 0 and α ∈ [0, 1/2), using the above two displays and Markov’s
inequality

P(∥ξn∥H ≥ ε

nα
) ≤ P({∥ξn∥H ≥ ε

nα
} ∩ (An ∩Bn)) + P(Ac

n) + P(Bc
n)

≤ P(∥gradRn([U∗])∥H−1 ≥ ε

5nα
) + P(Ac

n) + P(Bc
n)

≤ 25 · n2α−1 · ε−2 · E[∥grad ℓ([U∗], X)∥2H−1 ] + P(Ac
n) + P(Bc

n)

and all three terms go to zero as n→ ∞ so that for all ε > 0 and α ∈ [0, 1/2)

lim
n→∞

P(∥ξn∥H ≥ ε

nα
) = 0. (54)

Asymptotic normality. Let An be the event that θk([Un], [U∗]) < π/4. By the consistency result,
limn→∞ P(An) = 1.

Since [Un] minimizes the empirical reconstruction risk, it holds that gradRn([Un]) = 0. On the
event An, we have by the Taylor expansion (30)

0 = gradRn([Un]) = gradRn([U∗]) +Hn[ξn] + En,

where we used that the parallel transport map introduced at the beginning of Appendix A sends 0 to
0, and where the term En is given by

En =

∫ 1

0

{P−1
ξn,s

◦HessRn(Exp[U∗](sξn)) ◦ Pξn,s −HessRn([U∗])}[ξn] ds.

By the weak law of large numbers Hn
p−→ H which is invertible by the eigengap assumption of the

theorem and Corollary 3. The event Bn on which Hn is invertible thus satisfies limn→∞ P(Bn) = 1.
On the event An ∩Bn we thus have, rearranging the first display and scaling by

√
n

√
n · ξn = −H−1

n [
√
n · gradRn([U∗])]−H−1

n [
√
n · En]
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Now we claim that
√
n · En

p−→ 0. Indeed, we have by Corollary 5

∥En∥ ≤ ∥ξn∥ ·
∫ 1

0

∥P−1
sξn,1

◦HessRn(Exp[U∗](sξn)) ◦ Psξn,1 −HessRn([U∗])∥opds

≤ 2 · ∥ξn∥2 · ∥Σn∥F .

where in the first line we used the easy to check identity Pξ,s = Psξ,1. Once again using the weak
law of large numbers and the continuous mapping theorem we obtain ∥Σn∥F

p−→ ∥Σ∥F . Thus using
(54) we obtain

√
n · En

p−→ 0. The asymptotic normality statement in the Theorem then follows from
Lemma 4, Slutsky’s theorem, and the fact that the events Ac

n and Bc
n have vanishing probability as

n→ ∞.

Excess Risk. Let An be the event that θk([Un], [U∗]) < π/4. By the consistency result,
limn→∞ P(An) = 1. By the Taylor expansion (29), we have on this event

n · [R([Un])−R([U∗])] =
1

2
∥
√
n · ξn∥2H + n · En,

where the error term En is given by

En =
s3

6
∇3R(Exp[U∗](ξn), Psξn,1(ξn), Psξn,1(ξn), Psξn,1(ξn)),

for some s ∈ [0, 1], and where we again used the easy to check identity Pξ,s = Psξ,1. We claim that
n · En

p−→ 0. Indeed by Corollary 5, we have

∥En∥ ≤ ∥Σ∥F · ∥Psξn,1(ξn)∥3 = ∥Σ∥F · ∥ξn∥3,

where we used in the equality that the parallel transport map is an isometry as described in the
beginning of Appendix A. Thus using (54) we obtain n · En

p−→ 0. Finally, we have, using the
asymptotic normality statement in the theorem, proven above, the continuous mapping theorem, and
the explicit description of H1/2 from Lemma 1 that liftU∗(H

1/2[
√
n · ξn]) converges in distribution

U⊥
∗ H where H is the Gaussian matrix in the statement of the theorem. The result then follows from

an application of Slutsky’s theorem, the fact that the event Ac
n has vanishing probability as n→ ∞,

and that ∥U⊥
∗ C∥F = ∥C∥F for any (d− k)× k matrix C.

D.2 Proof of Remark 1

We have on the one hand by Lemma 9 that

∥UnU
T
n − U∗U

T
∗ ∥p = 21/p ·

( k∑
j=1

sinp(θj)
)1/p

, (55)

where we have shortened θj = θj([Un], [U∗]). Recall from Section 2 that the singular values of
∆n = liftU∗(Log[U∗]([Un])) are the principal angles between [Un] and [U∗]. Define the function
φ : Rd×k → Rd×k as follows. For a matrix A ∈ Rd×k, let A = PSQT be a SVD of A. Then we
define φ(A) = P sin(S)QT where sin is applied element-wise to the singular values. Now

φ(A)− φ(0)−A = P sin(S)QT − PSQT = P (sin(S)− S)QT ,

Hence

lim
∥A∥op→0

∥φ(A)− φ(0)−A∥op
∥A∥op

≤ lim
∥A∥op→0

smax − sin(smax)

smax
= 0

where smax is the maximum singular value of A, and we used the fact that (x− sin(x))/x→ 0 as
x→ 0. Therefore φ is differentiable at 0, and its derivative there is the identity map, so by the delta
method [e.g. Van00, Theorem 3.1]) and the asymptotic normality result in Theorem 1 we obtain

√
n · φ(∆n)

d−→ U⊥
∗ G

Applying the continuous mapping theorem with the map A 7→ 21/p∥A∥p, using (55), and noting that
∥U⊥

∗ G∥p = ∥G∥p since U⊥
∗ ∈ St(d, d− k) finishes the proof.
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D.3 Proof of Theorem 2

Let ξn = Log[U∗]([U∗]) when well defined, and 0 otherwise. Let H = HessR([U∗]) and Hn =

HessRn([U∗]), and for a positive semi-definite linear map L : T[U∗] Gr(d, k) → T[U∗] Gr(d, k), let
∥ξ∥2L = ⟨L(ξ), ξ⟩ denote the (squared) semi-norm it induces, for ξ ∈ T[U∗] Gr(d, k).

Let An be the event that θk([Un], [U∗]) < π/4. Under the sample size restriction of the theorem, and
in particular the third term in this restriction, this event happens with probability at least 1− δ/2 by
Corollary 6.

Now on this event, we have by Lemma 7 that the following inequality holds

∥ξn∥H ≤ 5

2
· λ−1

min(H̃n) · ∥gradRn([U∗])∥H−1 ,

where H̃n = H−1/2 ◦Hn ◦H−1/2.

Let Bn be the event that λmin(H̃n) ≥ 1/2. Under the sample size restriction of the theorem, and in
particular the first two terms in this restriction, this event happens with probability at least 1− δ/4 by
Lemmas 5 and 6.

Now by Lemmas 2 and 3 and Markov’s inequality we also have that on an event Cn that holds with
probability at least 1− δ/4

∥gradRn([U∗])∥2H−1 ≤ 4

n · δ
·
d−k∑
i=1

k∑
j=1

E[⟨uk+i, X⟩2⟨uj , X⟩2]
λj − λk+i

.

Therefore, on the event An ∩Bn ∩ Cn that holds with probability at least 1− δ, we have

∥ξn∥2H ≤ 100

n · δ

d−k∑
i=1

k∑
j=1

E[⟨uk+i, X⟩2⟨uj , X⟩2]
λj − λk+i

and on this same event, we have by Corollary 4, noting that on this event ξn = Log[U∗]([U∗])

R([Un])−R([U∗]) ≤
75

n · δ

d−k∑
i=1

k∑
j=1

E[⟨uk+i, X⟩2⟨uj , X⟩2]
λj − λk+i

.

which concludes the proof.

D.4 Proof Sketch for Example 2

When X ∼ N (0,Σ), we have

Γjrsp =


3λ2j if j = s = r = p

λjλr if j = p ̸= r = s or j = s ̸= r = p

λjλs if j = r ̸= s = p

0 otherwise

and

Λtsqr =

{
λk+tλs if t = q and s = r

0 otherwise

and finally

Ωitql =


3λ2k+i if i = t = q = l

λk+iλk+t if i = q ̸= t = l or i = l ̸= t = q

λk+iλk+1q if i = t ̸= q = l

0 otherwise

Using these identities in the sums in Remark 3 and simplifying shows that the maximization problem
becomes one over the simplex which can be solved directly for V or very well-approximated for ν.

24



D.5 Remarks on omitted proofs

Quantile bounds in Corollary 1 and Remark 1. The upper bounds in these statements are a direct
consequence of the Gaussian concentration inequality [e.g. BLM13, Theorem 5.6]. For the lower
bounds and a step by step derivation, see for example [EME24, Appendix A]. Note also that the
quantile bounds in Example 1 are a direct consequence of those in Corollary 1 and Remark 1.

Claim in Remark 2. As is clear from the Proof of Theorem 1, the key properties leading to it are
the self-concordance and Hessian Lipschitzness of the empirical and populations reconstruction risks,
i.e. Corollaries 4 and 5. These are themselves derived from the more general results we obtained in
Propositions 1 and 2 that holds for the negative block Rayleigh quotient. These can be used directly
with minor adjustments to prove the claim we made in Remark 2. Furthermore, up to generalizing
the parameters appearing in the sample size restriction, one may use Propositions 1 and 2 to obtain a
more general version of Theorem 2 that holds in the setting described in Remark 2.
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