Shape from planar curves: a linear escape from Flatland

Introduction

We revisit the problem of recovering 3D shape from a single photo containing planar curves. Previous work $[1,2,3]$ did not explicitly explore the space of flat solutions and its orthogonal complement

For intersecting planar curves, we study the space of solutions and derive a stable linear method
For parallel planar curves, we demonstrate special cases where the shape is similarly solved
Our work unifies relevant literature on shape from contour single view modeling and structured light

Intersecting curves

Consider planar curves

$$
z_{i}(x, y)=a_{i} x+b_{i} y+c
$$

At intersection points
$z_{i}\left(x_{i j}, y_{i j}\right)-z_{j}\left(x_{i j}, y_{i j}\right)=$

$\left(a_{i}-a_{j}\right) x_{i j}+\left(b_{i}-b_{j}\right) y_{i j}+\left(d_{i}-d_{j}\right)=0$
The homogenous linear system in vector form $\mathbf{A v}=0$
$\mathbf{v}=\left(a_{1}, \ldots, a_{N}, b_{1}, \ldots, b_{N}, d_{1}, \ldots, d_{N}\right)^{T}$
Let \mathbf{C} be a matrix so that $\|\mathbf{C v}\|^{2}$ is the linear regression residue of fitting a plane to a sample of 3 D points on the curves

Space of solutions $\mathbf{A v}=0$			
Trivial subspace $\mathbf{C v}=0$		Non-trivial solutions $\mathbf{C v}$ \# 0	
Basic trivial subspace (GBR ambiguity) $\begin{aligned} & \mathbf{v}_{1}=\frac{\left(1_{N}, 0_{2 N}\right)^{T}}{\sqrt{N}} \\ & \mathbf{v}_{2}=\frac{\left(0_{N}, 1_{N}, 0_{N} N\right.}{}{ }^{T} \\ & \mathbf{v}_{3}=\frac{\left(0_{2 N}, 1_{N}\right)^{T}}{\sqrt{N}} \end{aligned}$	Systems with lines have additional trivial solutions	True surface	

Ambiguity resolution: pick a vector orthogonal to the trivial subspace -For a large number of random planes, the relative magnitude of the trivial component is likely to be small $\frac{1}{\sqrt{N}}\left\|\left(\sum a_{i}, \sum b_{i}\right)\right\| /\left\|\left(a_{1}, \ldots, a_{N}, b_{1}, \ldots, b_{N}\right)\right\|$

Simple linear method
$\operatorname{argmin}\|\boldsymbol{A v}\|$ s.t. $\|\mathbf{v}\|=1, \mathbf{v} \perp \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$
$\stackrel{\mathrm{v}}{- \text { Breaks in presence of straight lines }}$

- May collapse to a nearly-flat solution

Our method

$\underset{\operatorname{argmin}\|\mathbf{A v}\|}{ }$ s.t. $\|\mathbf{C v}\|=1, \quad \mathbf{v} \perp \operatorname{Null}(\mathbf{C})$
$\mathbf{v}=\mathbf{C}^{+} \mathbf{w}$, where \mathbf{w} is the last right singular vector of $\mathbf{A C}^{+}$
Similar linear formulation for perspective projection
-Singular values are independent of the focal length

Global planarity
For curves arranged around a principle plane,
the shape might be a singular vector of $\left[\begin{array}{l}\mathrm{R} \\ \mathrm{C}\end{array}\right]$,
$\|\mathbf{R v}\|^{2}=\lambda\left(\operatorname{Var}\left(a_{i}\right)+\operatorname{Var}\left(b_{i}\right)\right)$

Local planarity

- Reduce to the intersecting case by assuming virtual planar facets

References

[1] K. Sugihara. Machine Interpretation of Line Drawings. MIT press, 1986
[2] C. Rothwell and J. Stern. Understanding the shape properties of trihedral polyhedra. Technical Report 2661, INRIA, 1995
[3] J.-Y. Bouguet, M. Weber, and P. Perona. What do planar shadows tel

