Semidefinite Programming Heuristics for Surface Reconstruction Ambiguities

Ady Ecker, Allan D. Jepson and Kiriakos N. Kutulakos
 University of Toronto

Introduction

Several depth cues are locally ambiguous, e.g.
-Shape from shading [1]
-Shape from texture [2]
-Two-light photometric stereo
-Shape from defocus
We consider the problem of reconstructing a smooth surface under
constraints that have discrete ambiguities.
constraints that have discrete ambiguities. [1], we convert these problems to a discrete optimization problem The problem is addressed using semidefinite programming (SPD) relaxation. We improve the rounding phase using a combination of heuristics.

Formulation for two-fold ambiguities

Linear surface representation:	$z(x, y)=\sum b_{i}(x, y) v_{i}$		
General form:	$\underset{v, d}{\operatorname{argmin}\\|\boldsymbol{A} v-\boldsymbol{B} d\\|^{2}, v \in \mathbb{R}^{m}, d \in\{-1,1\}^{n}}$		

Adding smoothness term $\|\boldsymbol{E v}\|^{2}: \underset{v, d}{\operatorname{argmin}}\left\|\left[\begin{array}{l}\boldsymbol{E} \\ \boldsymbol{A}^{\prime}\end{array}\right] v-\left[\begin{array}{c}\mathbf{0} \\ \boldsymbol{B}^{\prime}\end{array}\right] d\right\|^{2}$
Eliminating continuous variables: $v=\boldsymbol{A}^{+} \boldsymbol{B} d$
Discrete optimization problem: $\underset{d}{\operatorname{argmin}\left\|\left(\boldsymbol{A}^{+} \boldsymbol{B}-\boldsymbol{B}\right) d\right\|^{2}}$
$\underset{x}{\operatorname{argmin}} c \cdot x=\sum c_{i j} X_{i j}$
$\boldsymbol{C}=\left(\boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{B}-\boldsymbol{B}\right)^{t}\left(\boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{B}-\boldsymbol{B}\right), \boldsymbol{X}=d d^{t}$
Must solve a theoretically hard discrete optimization problem

- Global approach - local decisions affect the entire surface

Standard SDP approach

$$
\text { SDP relaxation: } \underset{y}{\operatorname{argmin}} \boldsymbol{C} \bullet \boldsymbol{X} \text { s.t. } \boldsymbol{X}_{i i}=1, \boldsymbol{X} \succcurlyeq 0
$$

$$
\text { Cholesky factorization: } X=\boldsymbol{R} \boldsymbol{R}^{t}
$$

Embedding on the unit sphere: $u_{i}=i$-th row of $\boldsymbol{R}, u_{i} \in \mathbb{R}^{n},\left\|u_{i}\right\|=1$
Goemans-Williamson rounding: $d_{i}=\operatorname{sign}\left(u_{i} \cdot N\right), N$ is a random vector

Our SDP rounding heuristics

Project the points embedded on the unit sphere onto planes in the subspace of their principle components
Perform efficient circular sweeps [3]. Each sweep is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

- Use Kernighan-Lin (K-L) local search for refinement

Example \#1: Two-fold ambiguous normals Texture cues provide two choices for the surface derivatives $p=\frac{d z}{d x}, q=\frac{d z}{d y}$ $\left(0, \ldots 0, p_{i}, 0, \ldots 0\right) d=a_{p_{i}} v,\left(0, \ldots 0, q_{i}, 0, \ldots 0\right) d=a_{q_{i}} v$

Extracted parallelograms

Circular sweep

Example \#2: Segments of known length
A segment of 3D length l and image length $r_{i j}$ poses the constraint
$z_{i}-z_{j}=\left(a_{i}-a_{j}\right) v=\left(0, \ldots 0, \sqrt{l^{2}-r_{i j}^{2}}, 0, \ldots, 0\right) d$

Example \#3: Four-fold ambiguous normals

$$
p=d_{1} p_{1}+d_{2} p_{2}, q=d_{1} q_{1}+d_{2} q_{2}
$$

$d_{1}, d_{2} \in\{-1,0,1\}, d_{1} \cdot d_{2}=0$

SDP relaxation

$\underset{X}{\operatorname{argmin}} \boldsymbol{C} \cdot X$ s.t.

Rounding heuristics

- Scale u_{i} by the magnitude of the i-th column of \boldsymbol{X} - Circular sweeps - for each pair of vectors, the smaller projection is considered inactive - Count the percentage p_{i} each variable is inactive, and modify the diagonal $\boldsymbol{C}_{i i}=\boldsymbol{C}_{i i}+\mu p_{i}$
- Solve the modified SDP
- Use K-L for refinement

References

1. Zhu, Q., Shi, J.: Shape from shading: Recognizing the mountains through a global view. In: Proc. CVPR 2006, pp. 1839-1846
2. Forsyth, D.: Shape from texture and integrability. In: Proc. ICCV 2001, pp. 447-452.
3. Burer, S., Monteiro, R.D.C., Zhang Y. Rank-two relaxation heuristics for max-cut and other binary quadratic programs. SIAM J. on Optimization 12(2), pp. 503-521, 2002
